
Cost and Availability Aware Resource Allocation
and Virtual Function Placement

for CDNaaS Provision
Louiza Yala, Pantelis A. Frangoudis , Giorgio Lucarelli, and Adlen Ksentini , Senior Member, IEEE

Abstract—We address the fundamental tradeoff between
deployment cost and service availability in the context of
on-demand content delivery service provision over a telecom
operator’s network functions virtualization infrastructure. In
particular, given a specific set of preferences and constraints with
respect to deployment cost, availability and computing resource
capacity, we provide polynomial-time heuristics for the prob-
lem of jointly deriving an appropriate assignment of computing
resources to a set of virtual instances and the placement of the
latter in a subset of the available physical hosts. We capture the
conflicting criteria of service availability and deployment cost by
proposing a multi-objective optimization problem formulation.
Our algorithms are experimentally shown to outperform state-of-
the-art solutions in terms of both execution time and optimality,
while providing the system operator with the necessary flexibility
to balance between conflicting objectives and reflect the relevant
preferences of the customer in the produced solutions.

Index Terms—Content delivery networks, cloud computing,
network functions virtualization, resource allocation, service
availability, VNF placement.

I. INTRODUCTION

RECENT studies in networking and cloud computing
focus on virtualizing network functions with the aim

of providing highly scalable and flexible service deployment,
cost reductions, and improved end-user experience. The ETSI
has recently proposed a Network Functions Virtualization
Management and Orchestration framework (NFV-MANO) [1],
which specifies a set of architectural components and inter-
faces to realize the NFV vision. Among the many use cases
envisioned in such an environment is the provision of a vir-
tualized Content Delivery Network (vCDN) service [2, Use
Case #8].

Manuscript received April 15, 2018; revised August 12, 2018; accepted
October 1, 2018. Date of publication October 8, 2018; date of current
version December 10, 2018. This work was supported in part by the
French FUI-18 DVD2C project and by the European Union’s Horizon 2020
research and innovation program under the 5G-Transformer project (grant
no. 761536). The associate editor coordinating the review of this paper
and approving it for publication was G. Schembra. (Corresponding author:
Pantelis A. Frangoudis.)

L. Yala is with IRISA/University of Rennes 1, 35042 Rennes, France
(e-mail: louiza.yala@irisa.fr).

P. A. Frangoudis and A. Ksentini are with the Communication
Systems Department, EURECOM, 06904 Sophia Antipolis, France (e-mail:
pantelis.frangoudis@eurecom.fr; adlen.ksentini@eurecom.fr).

G. Lucarelli was with CNRS, INRIA, LIG, University Grenoble Alpes,
38000 Grenoble, France. He is now with LCOMS, University of Lorraine,
57000 Metz, France (e-mail: giorgio.lucarelli@univ-lorraine.fr).

The interactions between CDN providers and network
operators [3] have received considerable attention. Many con-
tent delivery models involve different degrees of cooperation
between stakeholders [4]. The telco CDN is one of the stud-
ied models, where a telecom operator installs data centers at
points of presence in its network and offers a CDN service to
content providers. NFV facilitates the deployment of such a
service. The operator moves from deploying dedicated hard-
ware for hosting CDN components, such as content origin
servers, caches, load balancers, and DNS resolvers, to leas-
ing its telco cloud resources for launching virtual instances
(Virtual Machines (VMs) or other containers) of the above
components on demand, allocating resources intelligently at
the optimal locations in its network, and scaling them to match
dynamic workloads.

In our prior work [5], we presented an architecture for CDN-
as-a-Service (CDNaaS) provision over a network operator’s
cloud, with a design following the NFV-MANO spirit. Our
architecture allows content providers to request the dynamic
instantiation of a full vCDN using RESTful northbound inter-
faces, expressing their expected end-user demand per region,
as well as Quality of Experience (QoE) and service availability
requirements. At the heart of this system, service orchestra-
tion components are responsible for taking all necessary steps
for run-time management of the vCDN instance on the under-
lying NFV Infrastructure (NFVI) of the operator, abstracting
internal details and offering the customer (content provider)
only the necessary entry points to the vCDN, e.g., in order to
infuse content or terminate the service.

One distinctive characteristic of our design is that it allows
for the application of a multitude of service-tailored dimen-
sioning, resource allocation, and resource management algo-
rithms in a plugin fashion. This article focuses on these aspects
in particular. A vCDN deployment request generally involves
solving the following problems: (i) Deciding on the neces-
sary amount of computing (and other) resources to dedicate
in order to efficiently respond to user requests. (ii) Deriving
an appropriate placement of virtual CDN service components
on the underlying NFVI, with the aim ideally of minimizing
cost and offering availability guarantees. Trying to achieve
these two objectives can be compromising, due to their con-
flicting nature; employing more virtual or physical resources
to improve on service availability via redundancy and fault
tolerance naturally increases management (e.g., power con-
sumption) cost. It should be noted that the importance of

https://orcid.org/0000-0001-6901-7714
https://orcid.org/0000-0002-0972-3091

resilience and availability for NFV has been acknowledged
by the ETSI NFV Industry Specification Group, which has
published specific requirements and guidelines, identifying,
among others, the cost-availability tradeoff [6].

We have provided solutions for the first problem in our
prior work [7], where the main objective was to combine
customer-provided demand dimensioning information (e.g.,
target number of users/video streams per region) with network
and compute infrastructure awareness for optimal resource
allocation. For that, we focused on a video content delivery
service; we experimentally quantified the relationship between
video QoE and service workload, and used this information to
optimally decide on the amount of CPU resources to allocate
to satisfy customer QoE requirements while minimizing the
cost for the operator. With this as a starting point, this article
provides solutions to the second problem, namely the distribu-
tion of the necessary virtual computing resources to a number
of virtual service components and the appropriate placement
of the latter in the operator’s NFVI. We make the following
contributions:

• We capture the conflicting objectives of service availabil-
ity and deployment cost by proposing a multi-objective
optimization formulation for the problem of joint com-
pute resource allocation and VM placement, which we
initially introduced in [8].

• By relaxing some of the problem’s assumptions, we pro-
vide polynomial-time heuristic algorithms to solve it and
show experimentally that the derived solutions are close
to the optimal, while at the same time being significantly
faster than an exact algorithm provided by a commercial
solver.

• We show our approach to outperform two baseline
schemes (random placement and first-fit), as well as a
genetic algorithm inspired from the state of the art [9]
which we have devised as an alternative solution.

This article is organized as follows: In Section II we review
the state of the art. In Section III we provide an overview
of our architecture for CDNaaS provision over a telco cloud,
in the context of which we put our proposed algorithms.
Furthermore, we provide an overview of our measurement-
driven methodology for determining the amount of CPU
resources necessary to satisfy specific QoE levels for a CDN
service, presented in our prior work [7], which is the input
to the algorithms presented in this article. In Section IV we
propose a model for joint vCPU-to-VM allocation and VM
placement, and propose a heuristic solution for a relaxed ver-
sion of it in Section V. Furthermore, we study an alternative
way to tackle our problem by proposing an adaptation of a
genetic algorithm from the state of the art in Section VI. We
present experimental results on the performance of our scheme
compared with heuristics widely used in the literature, the
aforementioned genetic algorithm, and an exact solution in
Section VII and conclude the article in Section VIII.

II. RELATED WORK

The placement of virtual instances to physical hosts is cen-
tral in NFV in particular, and cloud computing in general. The

main objective is to find a suitable set of physical machines
(PMs) with enough capacity to host the virtual instances with
specific resources allocated to each one of them. In NFV,
these instances host Virtual Network Functions (VNFs), and
are implemented as VMs or other container technologies. A
suitable VNF placement is mostly motivated by maximizing
resource utilization or overall performance, while minimiz-
ing cost in terms of energy consumption, network traffic
or penalties associated with SLA violations under various
constraints [10]–[12].

Mann [13] reviews different VM placement models and
algorithms, citing, among different formulations, the problem
of packing the VMs into a minimal number of PMs, consid-
ering PM capacities and the load of VMs. This reduces to the
bin packing problem which is NP-hard. Various heuristics to
solve it in this context exist, such as first-fit, where the items
(VMs) are placed in the first suitable bin (PM) [14], [15].

Li and Qian [16] survey different network function orches-
tration frameworks. In particular the authors compare different
network function placement strategies and highlight the pos-
itive and negative points of different approaches of VNF
placement.

The common ground in the way various flavors of the VM
placement problem are tackled is the need to provide heuris-
tics to problems with typically high computational complexity.
Minimizing the number of physical hosts to place VMs for cost
and performance optimizations, a procedure known as VM
consolidation, may have an adverse effect on service resilience
and availability in the face of PM failures. Contrary to the
aforementioned works, service availability is our special focus.

Mijumbi et al. [17] propose an evaluation of resource allo-
cation algorithms considering parameters such as successful
service mappings, total service processing times, revenue or
cost under varying network conditions. In particular, they
define cost as the total amount of physical resources that
are used by a given mapping and scheduling. The difference
between revenue and cost is that the revenue only consists of
the processing time of the functions, while the cost involves
time gaps that are left unused due to functions waiting for
their assignment. On the other hand, Bari et al. [18] pro-
pose an optimization problem formulated as an Integer Linear
Program (ILP) referred to as the VNF orchestration problem
(VNF-OP), which consists in minimizing the cost (deployment
cost, energy cost, and cost of forwarding traffic), penalties for
Service Level Objective (SLO) violations, and resource frag-
mentation. The constraints taken into account are related with
server/link capacities and service chaining. In our work we
consider cost as the fixed managerial overhead of operating
a virtual machine (resp. physical machine), which is not a
function of its workload.

Integer Linear Programming (ILP) has been a popular
modeling technique for VM allocation problems. However,
experimental results from Rankothge et al. [19] show that
using ILP to find an optimal configuration can have a very long
execution time even for a small number of network functions.
The authors thus studied approximations by means of finding
the best fitted solution according to a Genetic Algorithm (GA)
model of the problem. In particular, they proposed a Genetic

Programming-based approach to solve the VM allocation and
network management problem, exploring a fixed amount of
generations. Although their GA may not provide the optimal
solution, it can compute configurations orders of magnitude
faster than ILP. GAs are a part of evolutionary computing
and were introduced as a computational analogy of adaptive
systems [20, p. 64–75].

The relevant state of the art also includes the GA of
Xu and Fortes [9], which aims to solve VM placement
formulated as a multi-objective optimization problem of
simultaneously minimizing the total resource wastage, power
consumption and maximum thermal dissipation. With this
work as a starting point, in Section VI we propose a GA
tailored to our problem settings. The heuristic algorithms we
present in this article, however, are shown to outperform our
GA both in terms of approximating the optimal solution and
execution time.

Yang et al. [21] focus on reliable VM placement, and, in
a similar spirit to our case, model service availability as the
probability that a subset of the requested VMs is operational.
However, they address a different VM placement problem,
which, among others, does not consider the distribution of
the resources (in our case vCPUs, in their case storage) to be
committed, assuming fixed VM resource specifications, and
does not take into account VM-level failures. Ecarot et al. [22]
present a method for cloud resource allocation which aims to
satisfy both consumers’ (or end-users’) and providers’ inter-
ests. Their model is an ILP which minimizes the costs and
service unavailability, the latter corresponding to the penal-
ties for quality of service degradations or violations by the
providers of a service, which are in turn associated with exces-
sive service workload. This is contrary to our approach, where
availability is defined as the probability that a virtualized ser-
vice is accessible. To deal with the complexity of the problem,
the authors apply evolutionary algorithms. Others, such as
Casazza et al. [23], propose to guarantee the availability of
a service by replicating VNFs across multiple servers. They
apply a probabilistic metric for availability but, contrary to our
work, they aim at maximizing the minimum service availabil-
ity considering the latter as their sole objective under server
capacity and other constraints.

Qu et al. [24] focus on the problem of VNF chaining and
aim to minimize the network-wide communication bandwidth
for the operation of VNF chains under service reliability con-
straints. Their model does not consider failures at the VM
level in its reliability functions and their focus is rather on
chain-specific issues such as routing and VNF ordering, which
constrain VNF-to-host placement. Furthermore, their model
does not include CPU capacity constraints.

Regarding cost modeling, Callau-Zori et al. [25] experimen-
tally quantify how the number of VMs deployed impacts both
energy cost and performance. This work verifies our model
assumption that cost is linear to the number of VMs and PMs
utilized.

Ouarnoughi et al. [26], on the other hand, focus on storage
cost. They propose a detailed cost model for IaaS infrastruc-
tures which takes into account at the same time various param-
eters, such as VM execution and storage migration, system

TABLE I
STATE OF THE ART CLASSIFICATION ACCORDING

TO THE CRITERIA CONSIDERED

storage performance, power and wear out. They also con-
sider cloud Service Level Agreement (SLA) violations and the
associated penalties. Our cost model is more abstract, encom-
passing all related sub-costs in linear functions of the number
of PMs and VMs utilized. Also, it is not considering the oper-
ational cost due to service workload, since this cost is assumed
proportional to the workload and in any case independent on
the number of PMs or VMs deployed, thus not influencing the
selection of an appropriate virtual function placement.

A relevant aspect is fault recovery to maintain high cloud
service availability. To tackle this issue Israel and Raz [27] pro-
pose approximation algorithms with performance guarantees
and heuristics. This topic is outside the scope of this article.

A classification of existing papers dealing with the VNF
placement problem proposed in the state of the art is presented
in Table I, according to the different optimization criteria used
in each model.

As can be seen in Table I, most of the works in the rel-
evant literature focus only on a single objective, knowing in
advance the number of VNF instances to place and having as
an objective to place these virtual instances on physical hosts.
Rare are those works which treat the subjects of availability
and cost jointly, and there lies the distinctive characteristic of
our approach. Furthermore, we should note that in the con-
text of CDNaaS provision, our design tackles the problem of
compute resource allocation for a video service and virtual
instance placement in a holistic manner, although this article
mainly focuses on the latter, namely the joint vCPU to VM
assignment and VM-to-PM placement.

III. A CDNAAS ARCHITECTURE

FOR THE TELCO CLOUD

A. Design

In our prior work [5] we presented an architecture which
offers the flexibility to a telecom operator to lease its CDN
infrastructure in a dynamic manner, offering a virtual CDN
(vCDN) service that can be deployed on demand over the oper-
ator’s private cloud. We highlighted the fact that our design
offers a flexible sharing by allowing the customer to, for exam-
ple, use the leased infrastructure to respond to predicted traffic
surges at particular regions, enjoying the network operator’s
regional presence. From the network provider side, this con-
cept allows more efficient use of its infrastructure resources,
compared to a less dynamic resource reservation model with
static allocation of data center resources to customers.

Our CDNaaS architecture (Fig. 1) involves various func-
tional blocks which communicate via well-specified interfaces.

Fig. 1. CDNaaS architectural components [5].

This decouples their operation from any physical loca-
tion, allowing the CDNaaS provider to execute any block
autonomously as a virtual function over its own, or any, cloud
infrastructure. Notably, our design is in line with the ETSI
NFV-MANO specification [1], with its functional blocks and
interfaces mapping to MANO components.

Via the Customer Interface Manager component, our system
features a northbound RESTful API through which customers
(content providers) can request to deploy a virtual CDN over
the telco cloud. This API offers the customer a way to specify
details on the expected end user demand for its service per
region, and, importantly, a target QoE level for the end users
of the content delivery service.

This information is critical for service deployment, a task
which is coordinated by the Service Orchestrator (SO) com-
ponent. In particular, the SO is responsible for deriving an
appropriate compute resource allocation and VNF placement,
taking into account the customer requirements (demand and
QoE) included in the service request and its operational
capacity. With flexibility in mind, our design allows for the
application of various such schemes in a pluggable manner.
This article targets this aspect in particular: While in [5] we
focused on the infrastructure support, here we provide con-
crete, low-complexity algorithmic solutions for the problem of
compute resource allocation and VNF placement for a vCDN
instance.

The output of the above process is represented as a Service
Instance Graph (SIG), which maps VNF instances (VMs) and
the respective resources allocated to each one of them to phys-
ical nodes. The SIG is then handed to the Virtual Infrastructure
Manager (VIM) for deployment on the underlying cloud sub-
strate. Since OpenStack [28] is the de facto VIM software
solution, we opted for its use in our system implementation.

B. Virtualized CDN Service-Level Features

Although our architecture is fairly generic and could support
heterogeneous types of services,1 we focus on the specifics of
a video content delivery service. Shifting our attention from
infrastructure- to service-level features, we present some spe-
cific characteristics and assumptions regarding the operation
of the vCDN application.

1For example, apart from supporting various different CDN flavors, we have
successfully used our scheme to orchestrate the deployment of a virtualized
Evolved Packet Core network, in a 4G mobile network context.

The vCDN delivers video content over HTTP via a num-
ber of caches which operate as streaming servers. Caches are
implemented as VNFs. An end-user request for a video item
is redirected to a nearby cache using DNS geolocation tech-
niques (other options are also possible). Each regional cache
is composed of a set of VMs with identical functionality
(HTTP servers caching and streaming video) and user requests
are transparently balanced among them using an HTTP load
balancer.

The CDNaaS operator has data centers in a number of
regions, on which vCDN instances for video distribution can
be deployed. The dimensioning and placement algorithms are
to be executed per region included in the customer request.
This is because the target of the operator is to deliver con-
tent to each region’s end users from the local data center.
We assume that vCDN traffic is handled exclusively by the
vCDN instance components assigned to a specific region and
thus resources are allocated in a region-local manner. Issues
regarding redirecting user traffic across regional data centers
are outside the scope of this work. For each region, a suffi-
cient number of virtual CPUs needs to be allocated for cache
(streaming) servers to cope with the expected service demand
and QoE constraints. The vCPUs are distributed to a num-
ber of VMs which are identical from a functional perspective
for reasons of fault tolerance, but also because it may not be
possible to consolidate them in a single VM, due to poten-
tial capacity limitations of the underlying physical host. From
a performance viewpoint, we assume that the number of VM
replicas used to deliver a service does not have any effect; only
the number of vCPUs allocated to handle the service workload
matters.2

In this work, we pay a particular attention to the fault tol-
erance of the vCDN service. By design, and not taking into
account other service components such as load balancers and
DNS servers, the video service is considered available in a
region if at least one VM hosting a cache is accessible to users.
This is due to the load balancers which transparently redirect
user requests to available local cache instances. It should be
noted that service availability defined as such does not guar-
antee that the required QoE levels are met in the event of
failures, since the latter depend on the number of compute
resources available for responding to user demand. If a VM
fails and appropriate repair activities are not in place, the CPU
resources allocated to this VM become unavailable. However,
with appropriate service monitoring and management schemes,
this issue could be adequately addressed: The released CPU
resources could be automatically and transparently reallocated
to a running VM on the same host, if such one already exists
(scaling up), VMs on other physical hosts covering the same
region could be scaled up if there is available CPU capac-
ity in their hosts, or, as a last resort, the failing VM could
be relaunched on the same host. Such self-healing/repairing
techniques are outside the scope of this article.

2In practice, using a load balancer to distribute user requests for content
can have a performance effect (e.g., increased latency) compared to serving
requests directly, without the intervention of the load balancer. However, we
consider these performance effects negligible in this study.

C. Resource Allocation

This procedure is composed of two main phases. First, a
resource dimensioning algorithm which decides on the opti-
mal allocation of vCPU resources per region needs to be
executed, aiming to satisfy the constraints dictated by the cus-
tomer request and the operator’s capacity for a given service
demand. For a video streaming vCDN service, these can be
expressed in terms of a maximum number of concurrent users
that will be accessing the video service per region, respect-
ing the minimum QoE constraint set by the customer, which
takes the form of a minimum Mean Opinion Score (MOS) for
specific video characteristics (e.g., high definition video).

In our prior work [7], following extensive testbed measure-
ments, we derived an empirical model of video QoE as a
function of the compute resources utilized and the workload
in terms of parallel video streaming sessions. Based on this
model, we proposed a mechanism for the CDNaaS provider
to optimize the amount of compute resources to allocate to
guarantee the desired video QoE levels, and demonstrated
how such informed resource allocation decisions offer sav-
ings on operator costs while improving on user experience.
In particular, this mechanism calculates the minimum num-
ber of vCPUs needed to serve a given customer-specified
demand under capacity (operator) and quality (customer)
constraints.

The second phase, which is the main focus of this article,
uses as input the amount of compute resources (number of
vCPUs) calculated in the first phase and derives an appropri-
ate assignment of them over a number of VMs to be deployed
on a subset of the available telco cloud physical hosts. How
exactly these resources are allocated and how the respective
virtual instances are placed is a matter of addressing the trade-
off between availability and cost: Splitting resources across
instances and distributing the latter across multiple physi-
cal hosts can result in higher service availability, but also
increased operational cost (e.g., power consumption) for the
operator, which may be reflected in the service price. In this
work we respond to the latter by proposing a multi-objective
optimization formulation for the joint CPU resource alloca-
tion and virtual instance placement problem, where customer
preferences are translated to specific weightings for the two
conflicting objectives. Note that the two resource allocation
phases are independent. The model and algorithms presented
in this article could be directly applied in conjunction with any
algorithm for deriving the number of vCPUs necessary for a
service request.

We should note that our model and algorithms, detailed in
Sections IV and V, have been introduced in our prior work [8].
This article extends this work by putting them in context of our
CDNaaS design and presenting a comparison with an adap-
tation of a state-of-the-art genetic algorithm which we also
implemented, beyond the random and first-fit placement meth-
ods which are typically used in the literature as benchmarks.
Importantly, in this article we also delve into computational
aspects; we discuss the problem’s complexity and quantify
the performance of our algorithms in terms of execution time
vs. solution quality. For the latter, we have implemented our

model using the CPLEX solver to derive exact solutions and
compare them with our heuristic ones.

IV. A MODEL FOR JOINT VCPU-TO-VM ALLOCATION

AND VM PLACEMENT

A. Preliminaries

We aim to assign p vCPUs, the output of the first phase
of the resource allocation procedure, to a number of up to
p virtual machines (VMs), and the placement of the latter
in (a subset of) the available m physical machines (PMs) of
a regional data center, aiming to minimize the deployment
cost and to maximize service availability, while respecting PM
vCPU capacity constraints. The outcome of this process is
a matrix X = (xij) with i ∈ [1, p] and j ∈ [1,m], where
xij denotes the number of vCPUs assigned to VM i hosted
in PM j. The upper bound for i is the number of vCPUs to
assign (since our unit of processing is a vCPU, we cannot
have more VMs than the number of vCPUs to assign). The
calculation of the optimal assignment should respect physical
capacity, cost, and availability constraints.

B. Cost Model

We consider that the deployment of a VM comes with a
fixed management overhead which is not a function of its
workload. For example, this cost can account for the energy
consumed for booting the VM or for operating other system-
or service-level components (e.g., operating system). We fur-
ther assume that for each PM which hosts service instances,
there is a fixed overhead which is not a function of the PM
workload nor the number of VMs hosted by it (e.g., energy
cost for keeping the physical machine in an operating state,
overhead of various system-level components). We model the
above costs as linear functions of the number of VMs and
PMs utilized by a service deployment, which is in line with
the experimental observations of Callau-Zori et al. [25].

In matrix X, the number of non-zero elements represents the
number of VMs deployed. Therefore, the cost of an assignment
X at the VM level is given by

CV (X) = eV
p∑

i=1

m∑

j=1

(
xij > 0

)
, (1)

where eV is the fixed cost per deployed VM. In a similar spirit,
the cost of an assignment X at the PM level is determined by
the number of PMs that host at least one VM. This corresponds
to the number of columns in X that contain at least one non-
zero element. This cost is thus given by

CP (X) = eP
m∑

j=1

(p∑

i=1

xij > 0

)
, (2)

where eP is the fixed cost per used PM, and the overall cost
of an assignment follows:

C (X) = CV (X) + CP (X). (3)

C. Availability Model

We define service availability as the ability of the system to
offer at least a minimal service, i.e., to have, at any time, at
least one VM accessible, which implies that at least one PM
should be up to host the respective VM(s).

We make the following assumptions:
• A VM i can fail with probability q(V)

i , independently of
the other VMs and PMs, and irrespectively of the load
imposed on the VM.

• Each PM j can fail with probability q(P)
j , independently

of the other PMs or the load imposed on it. The above
probabilities are assumed to be known to the operator as a
result of measurement studies, prior experience, or other
historical information. (The same applies to VM failure
probabilities.)

• If a PM fails, all VMs deployed on top of it are assumed
to fail because of that.

Therefore, a VM may become inaccessible either because
it fails or because the PM that hosts it fails. VM failures can
be correlated due to their dependence on the underlying PMs.
Based on this, we define a correlated group of VMs as the
VMs which are executed on the same PM. For a correlated
group to be available, the following conditions should hold:

• The PM is up, and
• At least one of the VMs deployed on the PM does not

fail.
The probability that a correlated group deployed on PM j

is available is thus given by:

aj =
(
1 − q(P)

j

)
⎛

⎝1 −
∏

i∈[1,p]|xij >0

q(V)
i

⎞

⎠ (4)

For a vCDN service deployment to be available, at least
one correlated group should be available. Since correlated
groups fail independently, the probability that a vCDN service
deployment is available is given by

A(X)

= 1 − Pr{All correlated groups fail}
= 1 −

∏

j∈[1,m]|Σp
i=1xij >0

(1 − aj)

= 1 −
∏

j∈[1,m]|Σp
i=1xij >0

⎡

⎣q
(P)
j +

(
1 − q

(P)
j

) ∏

i∈[1,p]|xij >0

q
(V)
i

⎤

⎦

(5)

Since, by construction, any feasible solution includes at least
one PM with at least one VM assigned to it, both product terms
in (5) are over non-empty sets.

D. Problem Formulation

The aim of the system operator is to derive an optimal
assignment X ∗ which minimizes cost while maximizing avail-
ability. These two criteria are conflicting: the more the VMs
deployed and the PMs used to host them, the less the risk of
service unavailability, but, at the same time, the higher the cost
of the deployment. Since it is not possible to optimize for both

criteria simultaneously, we apply a scalarization approach to
transform the problem to a single-objective one. The relative
importance of the two criteria in deriving an optimal assign-
ment is dictated by a specific policy, which is encoded in a
pair of weights wa and wc (resp. availability and cost) such
that wa +wc = 1. Given a specific policy, the system operator
derives the optimal solution to the following problem:

minimize
X

wcC (X) − waA(X) (6)

subject to C (X) ≤ E (7)

A(X) ≥ A (8)
m∑

j=1

(xij > 0) ≤ 1,∀i ∈ [1, p] (9)

p∑

i=1

m∑

j=1

xij = p (10)

p∑

i=1

xij ≤ Cj ,∀j ∈ [1,m]. (11)

To deal with the potential difference in the magnitude
of the two components of the objective function, the val-
ues of C(X) and A(X) are appropriately normalized in the
(0, 1) interval using the upper-lower-bound approach [29]. This
model supports specific maximum cost and minimum avail-
ability constraints (C and A, respectively; see (7) and (8)).
Constraint (9) ensures that, for any VM, its vCPU resources
are allocated on a single PM, since a VM cannot be split.
Note that an assignment can result in this sum being zero for
multiple values of i. This occurs when the number of VMs
to deploy is less than the number of vCPUs to assign, a case
typical in practice. Constraint (10) ensures that all vCPUs are
allocated, and constraint (11) guarantees that the CPU capacity
of each PM is not exceeded.

Resource allocation and virtual function placement prob-
lems such as the one that we address in this work are typically
shown to be hard to solve by reduction from known packing or
knapsack problems [13]. Our case has the particular properties
that (i) the function to minimize involves multiple objectives,
(ii) it is non-linear and non-separable due to the availability
component that it includes and its weighted combination with
the cost objective, and (iii) involves a non-linear constraint (8).
Such characteristics are known to make such problems harder
to tackle [30]. For example, the non-separable integer knap-
sack problem with the additional restriction that the objective
function has quadratic form is already NP-hard [31], [32].
Moreover, we should note that our availability model is generic
in the sense that it allows for heterogeneous PMs with differ-
ent failure probabilities. Even for the simpler version that we
consider in the rest of this article, where PMs are assumed
identical from a reliability perspective, thus having equal fail-
ure probabilities, we show experimentally that deriving exact
optimal solutions is computationally expensive by solving the
problem using the CPLEX optimizer.

Table II summarizes our notation.

TABLE II
SUMMARY OF NOTATION

E. Relevance With ETSI NFV

Our model and algorithms reflect the particular character-
istics of the vCDN use case described by ETSI [2]. From a
service viewpoint, the ETSI vCDN use case specifically targets
video distribution; our overall design is centered around video
delivery, too. The scenario described in the aforementioned
specification involves a centralized CDN controller and a num-
ber of cache VNF instances distributed across data centers.
These caches are identical from a functional perspective. This
is in line with our model, where we are interested in allocating
CPU resources to identical VNF instances following specific
criteria, constraints and performance targets. We are focusing
on the placement of cache VNF instances, as these are the ones
which will mainly absorb the load of the vCDN, not consid-
ering in our algorithms the placement of other components of
a vCDN instance. Caches are relatively simple network func-
tions and, as such, it is reasonable to assume that there is a 1:1
mapping between the cache instance and the VM that hosts it,
treating it as a VNF composed of a single VNF component.
This is the reason why in this article we use the terms VM
and VNF instance interchangeably.

Furthermore, at the heart of our model is the cost-
availability tradeoff, with both criteria appearing in the objec-
tive function and the constraints. This makes our model partic-
ularly relevant to NFV. The ETSI has published specifications
on NFV resiliency requirements [6], explicitly mentioning the
issues and tradeoffs we face and try to capture with our model.
The relevance of our work with NFV from a modeling per-
spective is further established by the fact that, as per the ETSI
specifications, there is a requirement for service availability
to be defined on a service basis and to be considered together
with the total cost and its importance for the customers (in our
case content providers). The policy mechanism that we have
introduced serves exactly to this end. Different policies and
availability constraints can be thus put in effect for different
service instances.

As a final note, although the focus of this work is on
CDN, other types of services are not out of the question. We
remark that our model and algorithms could be extended with
minor adaptations towards other families of virtualized appli-
cations, provided that a similar cost and availability model are
assumed, and that the VNF instances to place have identical
functionality, as is the case for CDN caches. Such potential
extensions are a topic for further study.

V. SOLVING A RELAXED VERSION OF THE PROBLEM

Finding an exact optimal solution to the problem can be pro-
hibitive computationally. We thus propose an efficient heuristic
algorithm to derive solutions which we show to be near-
optimal in Section VII. In particular, instead of jointly deciding
on optimally distributing the number of vCPUs to VMs and
placing the latter in PMs, we tackle the two subproblems
separately in two stages: First, we decide on the appropri-
ate number of VMs to utilize and, second, on their actual
placement on PMs and the CPU resource distribution to them.
Both steps of our Two-step Resource Allocation and Placement
(TRAP) heuristic algorithm can be efficiently solved in poly-
nomial time. Therefore, the overall procedure of deriving an
appropriate resource allocation and placement following a cus-
tomer’s CDNaaS instance deployment request involves three
sub-problems outlined below:

1) Find an optimal number of vCPUs to allocate per region
to serve customer demand. We solve this problem using
the procedure proposed in our prior work [7].

2) Decide on the optimal number of VMs to launch
under a specific policy, satisfying cost and availability
constraints.

3) Place those VMs on an optimal number of physical
hosts and distribute vCPUs among them using a suit-
able placement algorithm, having as input the results
of the previous steps (optimal number of VMs, number
of vCPUs). Specific host capacity, cost, and availability
constraints apply.

Sections V-A and V-B detail our methods to solve the
second and third subproblems respectively. We address each
subproblem independently, providing for each one a problem
formulation and an algorithm to optimally solve it.

We should note that, for each subproblem, the same min-
imum availability constraint value (A) as in the original
problem is applied, although the availability functions them-
selves may differ. For the management cost, there is a specific
budget for each subproblem (EV and EP for the VM- and the
PM-level problems respectively), such that EV + EP = E .
The system operator is free to decide how the overall bud-
get is split and various methods for this may be possible. For
example, a split ratio s ∈ (0, 1), such that EV = sE and
EP = (1 − s)E , can be selected by defining a parameter
ε ∈ (0, 1) and successively solving the two subproblems for
each s ∈ [ε, 2ε, . . . , 1), eventually selecting the assignment
which minimizes (6). This procedure involves �1/ε� execu-
tions of the proposed algorithms for the two subproblems.
If this method is applied, the operator can tune ε to force
a specific number of iterations.

A. Deciding on the Number of VMs to Launch

In this section, we describe our solution to the second sub-
problem, which consists in finding the optimal number of VMs
to launch. We define an objective function to minimize, which
includes a management cost and an availability component.

1) Availability: Given a known VM failure probability qV ,
assumed to be fixed and identical for all VMs of the same type
included in a vCDN instance (VMs of a specific type, e.g.,

streaming servers, are considered identical and their failure
probability does not depend on the resources allocated to them
nor their workload), we define service availability at the VM
level as

AV (x) = 1 − qx
V , (12)

where x is the number of VMs to deploy. This expression
for availability corresponds to the probability that at least one
VM is available and is heuristic in the sense that it ignores
PM failures and considers VM failures independent.

2) Management Cost: The management cost at the VM
level is given by (1) and is assumed linear on the number
of VMs used. A simplified expression defined in terms of the
number x of VMs to deploy is

CV (x) = eV x . (13)

3) Problem Formulation: Applying the specified policy
expressed as the combination of weights (wc , wa), the func-
tion to minimize at the VM level becomes

minimize
x

wcCV (x) − waAV (x) (14)

subject to AV (x) ≥ A, (15)

CV (x) ≤ EV , (16)

x ≥ mmin , (17)

x ≤ p, (18)

where A, EV are the respective constraints of availability
and cost, and mmin the minimum number of PMs capable
of accommodating the required number of vCPUs. The latter
is given by

mmin = min

{
l ∈ [1,m]|

l∑

i=1

Ci ≥ p

}
, (19)

where C1 ≥ C2 ≥ C3 ≥ · · · ≥ Cm are the capacities of the
m PMs of a given region in non-increasing order.

The objective (14) is to find an optimal number of x under
availability (15) and cost (16) constraints. Constraint (17)
ensures that x is such that no single VM is assigned more
vCPUs than the maximum single-host available capacity. If
x is not large enough, and given that the number of vCPUs
to distribute to these VMs is fixed, and at most x PMs will
eventually be used (we cannot use more PMs that the VMs to
deploy), it could happen that there exists no subset of x PMs
with enough aggregate vCPU capacity (i.e., at least p). This
would mean that at least one VM would need more vCPUs
than even the highest-capacity PM could offer. For instance,
when x = 1 (with p vCPUs to distribute), if there is no physical
host with a capacity superior to p, such a solution is infeasible.
On the other hand, (18) ensures that the VMs to be launched
will not be more than the number of vCPUs to allocate.

4) Selection of the Optimal Number of VMs: In order to
find the optimal number of VMs by solving (14) under a
specific policy, we propose an algorithm whose inputs are
(i) the total number, p, of vCPUs to be allocated across the
region’s hosts in order to serve the customer request, derived
in the first phase, (ii) the constraints per objective (A, EV),

and (iii) the combination of weights (wc , wa) that defines the
adopted policy.

We first observe that the objective function is convex and
the value that minimizes its continuous version with x ∈ R>0

is x0 = logqV
wceV

wa ln q−1
V

. Constraints (15) and (16) can be

rewritten as x ≥ logqV (1 − A) and x ≤ EV
eV

, respec-
tively. Constraints (15) and (17) thus provide a lower bound
to the optimal value of x. Which of the two constraints is
more restrictive depends on the configuration of the prob-
lem. Similarly, an upper bound is provided by the cost
constraint (16), and (18).

To minimize (14) we calculate the value x0 ∈ R>0 which
minimizes the continuous version of (14). If x0 lies within
the feasible region defined by the above bounds, we select the
closest (feasible) integer value to x0 as the optimal. Otherwise,
we select the value of the constraint that x0 violates.

We should note that in other problem settings where the
objective function is not convex, an optimal solution can be
found in pseudo-polynomial time in p by evaluating the objec-
tive function and the constraints for each x ∈ [mmin , p]. The
case x = mmin corresponds to a deployment which minimizes
the number of deployed VMs, while x = p to a deployment
that performs a one-to-one vCPU-to-VM assignment. This
algorithm runs efficiently for realistic values of p.

B. VM Placement and vCPU Distribution

With the number of VMs v to launch in place, we need
to decide on their suitable placement on the underlying PMs
and the distribution of the vCPUs among them. The output
of this step is an assignment X = (xij), with i ∈ [1, v] and
j ∈ [1,m], which represents a heuristic solution to (6).

Similar to how we treated the sub-problem of selecting an
optimal number of VMs, we define appropriate availability and
cost functions at the PM level as follows.

1) Availability: To measure a solution’s availability, we
use (5), assuming identical PMs with a known failure proba-
bility fixed to q(j)

P = qP ,∀j ∈ [1,m].
2) Management Cost: Assuming identical PMs, and in turn

a fixed management overhead for each PM on which we are
placing the customer’s VMs, irrespective of their number and
the service workload imposed, we model PM-level cost as
a linear function of the number of PMs eventually used for
hosting at least one VM. This cost is given by (2), substituting
p for v in the upper limit of the second summation, since the
number of VMs in this case is already known, as calculated
at the second step of our scheme.

3) Problem Formulation: We propose the following multi-
objective formulation for the problem of placing v VMs to
a subset of the available m PMs and distributing p vCPUs
to them under capacity, availability and cost constraints, and
given policy (wc ,wa):

minimize
X

wcCP (X) − waA(X) (20)

subject to A(X) ≥ A, (21)

CP (X) ≤ EP , (22)

m∑

j=1

(xij > 0) = 1,∀i ∈ [1, v] (23)

v∑

i=1

xij ≤ Cj ,∀j ∈ [1,m] (24)

where A, EP are the respective availability and cost
constraints.

Constraint (23) ensures that a VM is allocated to only one
PM, and the set of constraints (24) guarantees that the available
capacity per PM is not exceeded.

4) An Algorithm for VM Placement and vCPU Distribution:
We propose the following algorithm to derive an optimal solu-
tion to (20) in polynomial time, whose input is (i) the number,
p, of vCPUs to be allocated, (ii) the policy and constraints
per objective, (iii) the sorted PMs in non-increasing order of
capacities, i.e., C1 ≥ C2 ≥ C3 ≥ . . . ≥ Cm , (iv) mmin , and
(v) the number, v, of VMs; the latter three are obtained in the
previous step.

This algorithm consists in creating and evaluating a can-
didate assignment of VMs to m′ PMs, for each m ′ ∈
[mmin ,min(m, v)]. More than v PMs are not necessary, since
that would directly mean that at least one PM would not host
any VM. We observe that the value of the objective function
only depends on the number of PMs used and the number of
VMs assigned to each PM. Our algorithm starts by carrying
out the following steps for each m′:

1) Distribute the v VMs among the m′ first PMs propor-
tionally to their capacities.

2) Evaluate the objective function and the constraints for
the derived assignment.

Our algorithm returns the assignment X of VMs to PMs
which minimizes the objective function for the given policy,
or responds that there is no feasible solution under the given
constraints.

This procedure has O(m × min(m, v)) complexity: The
two steps have to be repeated at most min(m,v) times. Step 1
takes time linear on the number of PMs. (Using the largest
remainder apportionment method for proportional distribution
is O(m).) Evaluating the availability function could also be
implemented to take O(m) time, if we separately keep track
of the number of VMs assigned per PM in a candidate solution.

If a feasible solution using m∗ PMs is found, the algorithm
ends by:

1) Distributing the p vCPUs among the first m∗ PMs
proportionally to their capacities.

2) For each of the first m∗ PMs, distributing the num-
ber of the allocated vCPUs evenly to the VMs
assigned to it.

The complexity of the algorithm is dominated by the first
two steps. Finally, since only the number of PMs and VMs,
and the placement of the latter influence the objective func-
tion value, any method of sharing vCPUs to PMs/VMs is
equivalent.

C. A Note on Network Resource Allocation

Our model and algorithms are oriented towards computing
resources; allocating network resources is not in its scope. A

basic underlying assumption of this work is that for a given
level of user demand for video traffic (which has been trans-
lated to specific compute resources), it is more straightforward
for the operator of the CDNaaS infrastructure to calculate the
amount of necessary network resources. Then, it can accord-
ingly provision the network paths between the virtual instances
and end users, and/or perform the necessary traffic engineering
tasks.

We should also remark that with appropriate load balancing
policies in place (this is straightforward to implement at the
CDN service level), a VM with more vCPUs assigned would
receive more video requests. Therefore, the traffic that a VM
(and in turn a PM) receives is proportional to the amount of
compute resources allocated to it. This means that processing
resources can be directly linked/translated to networking ones.
The system operator then has to provide as input to the algo-
rithm the number of CPU resources per host for which it can
guarantee the availability of network capacity necessary for
the traffic these vCPUs will handle, which as we argue here
is realistic to assume.

Therefore, in this scenario where CPU and network capac-
ities are tightly coupled, our solutions indirectly capture
network constraints. However, this would not necessarily hold
true if network parameters were part of the objective function
to optimize. For example, if network link reliabilities need
to be considered in the service availability model or network
link costs need to be accounted for, our model and algorithms
would have to be reconsidered.

VI. A GENETIC ALGORITHM AS AN

ALTERNATIVE APPROACH

A question that may naturally emerge is whether applying
meta-heuristics, such as Genetic Algorithms (GA), could offer
high-quality solutions with reasonable computational cost. A
GA generally operates as follows. Each potential solution to
the problem is encoded as a string (chromosome) of prop-
erties (genes) and is characterized by a fitness value, which
is an expression of the solution’s quality. Starting from an
initial population of candidate solutions (chromosomes), a
GA iteratively applies genetic operations on them to produce
new generations of better quality. Genetic operations include
crossover, where new chromosomes are generated by selected
parents, and mutation, where a single chromosome is randomly
altered.

In this direction, we build on the approach of
Xu and Fortes [9] who, as in our case, deal with a
related multi-objective VM placement problem. In particular,
they propose a Grouping Genetic Algorithm (GGA) to
overcome the limitations of standard GAs when dealing with
grouping problems and solve the problem of instantiating
VMs on a set of physical hosts aiming to simultaneously
minimize resource wasteage, power consumption, and max-
imum thermal dissipation. These objectives are conflicting,
since consolidating VMs in a small number of PMs may lead
thermal dissipation to increase significantly in loaded PMs,
albeit minimizing the first two objectives.

Inspired by the GGA of Xu and Fortes and adapting it
to our problem settings, we have appropriately modified it
to integrate our cost and availability objectives. Furthermore,
Xu and Fortes apply a fuzzy logic system as a fitness function
to jointly consider the conflicting objectives. In our case, how-
ever, the preferences with respect to the objectives are known
a priori and are expressed using the combination of weights
(policy). We thus apply directly our weighted objective func-
tion of (6) as the fitness function. Moreover, their algorithm
takes as input the number of VMs to place. To obtain this
input, we execute the first phase of our heuristic which deter-
mines the number of VMs to deploy and then use the GA to
select their placement on PMs. After having decided on the
number of VMs (see Section V-A), our adapted version of the
GA starts by creating an initial population of chromosomes by
generating S random assignments of VMs to PMs. For each
solution in S, each group of VMs of a PM represents a gene.
Then, the algorithm operates iteratively for G generations.

In each generation, as Xu and Fortes suggest, the ranking-
crossover operator is applied, which is an improved version of
the classical crossover. In particular, the advantage of ranking-
crossover lies in the fact that it does not select genes blindly
from the selected parents, but instead attempts to pick the ones
which are ranked higher according to the average value of spe-
cific efficiency functions defined per objective, thus expected
to produce higher quality offspring.

In our context, for minimizing cost, a good solution uses
a minimum of virtual and physical resources, while maximiz-
ing availability requires instantiating more VMs and spreading
them across more PMs. For each ranking-crossover operation,
the algorithm selects two random chromosomes as parents and
calculates the efficiency values for each involved gene (i.e.,
group of VMs assigned to a PM). In our algorithm, the effi-
ciency function is defined as the euclidean distance between
the pair of values of availability and cost for a gene, given
respectively by (12) and (13) with x representing the num-
ber of VMs contained by the gene, and a centroid. We define
the centroid as a “utopian” point which represents the pair
of cost-availability values considered ideal (and probably not
attainable by a single solution at the same time; e.g., a solution
with minimum cost and maximum availability). The efficiency
function (object-centroid distance) of a gene is thus given by

E(c, a) =
√

(uc − c)2 + (ua − a)2

where the centroid (uc , ua) is the vector of ideal values of the
cost (uc) and availability (ua) objectives and (c, a) represents
the obtained cost and availability values for the gene.

Our algorithm ranks the genes of the parents in increasing
order of the object-centroid distance and creates a new chro-
mosome by combining the highest-ranking genes, i.e., the ones
with the smallest values of E .

For each generation round, this procedure is repeated
according to the desired crossover rate, rc , which determines
the number of new chromosomes to be generated per round.
Typically, the crossover rate is set to a value between 0.5 and 1,
producing rcS offspring on average. The eventual solution
pool population at the end of a generation is constructed by

evaluating the fitness function for each chromosome and keep-
ing the top-S of them. The algorithm is terminated after G
generations, where the solution with the minimum value of (6)
is returned. According to the observations of Xu and Fortes,
mutation does not offer tangible advantages in their case. We
therefore chose not to perform mutation either.

Xu and Fortes report that the complexity of their Grouping
Genetic Algorithm is O(SNlogN + NSG), where N is the
number of VMs to place. The first term is due to the execution
of the First-Fit placement algorithm to generate the initial pool
of S solutions and the second for generating and evaluating all
potential placements for G generations.

Our GGA has a slightly different complexity. Instead of
performing First-Fit, we generate the initial pool of S solu-
tions by randomly placing N VMs over the m PMs in O(SN)
time. Then, each of the G generation rounds involves rcS
ranking-crossover operations and the selection of the popu-
lation of the next generation. For each of the two parents
involved in a crossover, calculating the efficiency of up to
m genes (in case all m PMs are utilized) requires O(m) time,
sorting the genes of the parents according to their efficiency
is O(mlogm), and creating a new offspring is O(m). This is
repeated rcS times yielding an O(Smlogm) time per gener-
ation. Finally, selecting the top-S solutions of the population
which also includes the offspring requires evaluating the fit-
ness function, i.e., computing the objective function of (6), for
each solution in the population. This be carried out in O(m)
time (see Section V-B4) per chromosome, while selecting an
(unordered) set of the top-S chromosomes of the population
to create the next generation is O(S (1 + rc)) = O(S). The
computation time for each generation is thus dominated by the
creation of offspring and the overall complexity of our GA is
O(SN + GSmlogm).

VII. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms under two
perspectives. First, we aim to demonstrate how our model and
algorithms address the cost-availability tradeoff and show how
the selection of specific policies drives the solutions towards
different optima. Second, we compare the performance of our
scheme (TRAP) with alternative approaches in terms of the
quality of the produced solutions (i.e., how close they are to
the optimal) and the execution time. Note that for the latter we
implemented our model in the CPLEX3 environment and used
its optimizer to derive exact optimal solutions as a benchmark.

A. Cost vs. Availability Tradeoff

We begin with an experiment where we run our algorithms
under different combinations of weights (wc , wa), each cor-
responding to a different policy and for the same problem
settings. In particular, we use (i) the same number of vCPUs
to allocate, (ii) the same number of available hosts and their
capacities, and (ii) the same cost and availability constraints.
We set the availability constraint to “five nines” (99,999%), a
popular availability target for carrier-grade NFV. We fix the

3http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/

Fig. 2. Solution space. The straight lines represent cost and availability
constraints. The filled boxes are the assignments selected as optimal by our
TRAP algorithm under different policies, while the empty boxes are feasible
but suboptimal solutions.

overall cost constraint to E = 160 and assume that the costs
for a single VM and PM are eV = 1 and eP = 1 respec-
tively. The failure probabilities for VMs and PMs are set to
qV = qP = 0.001. Unless otherwise noted, these values are
used all across the experiments of this section. We consider a
system with 50 PMs, each with a capacity between 2 and 15
vCPUs selected uniformly at random.

Fig. 2 presents the solution space, where the x-axis and y-
axis represent the absolute values of the cost and availability
functions respectively. Each filled square point corresponds to
the outcome of the TRAP algorithm (a vCPU-VM-PM assign-
ment identified as the optimal) according to a specific policy,
while empty squares are feasible but suboptimal solutions. The
vertical and horizontal lines are the respective cost and avail-
ability constraints and limit the space of feasible solutions.
Note that in our tests it is possible that for two different poli-
cies the same optimal solution is derived. These points are
superimposed in the figure.

The selected solutions represent what our algorithm iden-
tifies as the Pareto frontier, which, in our context, is the
set of solutions for which it is not possible to improve on
cost without sacrificing on availability and vice versa. Each
such solution represents a different availability-cost trade-
off. A cost-centric policy, e.g., (wc ,wa) = (0.8, 0.2), guides
our algorithm to select as the optimal a low-cost solution,
which, according to the cost function, uses a small number of
VMs/PMs. In turn, this corresponds to a lower service avail-
ability. (The algorithm guarantees that it is a feasible solution,
not violating the 0.99999 availability constraint.) Availability
is increasingly higher (≈ 1) when more hosts are used. Such
solutions correspond to increasing wa values, which our mech-
anism takes into account to drive the calculation towards an
appropriate VNF placement which uses more virtual instances
and PMs.

This is more evident in Fig. 3, where we detail the evolution
of the value of each objective (cost and availability) in each
optimal solution as a function of the given policy. For reasons

Fig. 3. Availability and cost as a function of the selected policy.

of clarity, the values presented are normalized by mapping the
lowest and highest value per objective to 0 and 1 respectively.
The figure indicates that as the weight of the cost objective
wc increases, both functions are decreasing. This is positive
from a cost but not from an availability perspective, and is
due to less VMs/PMs being used as wc approaches 1 and wa

approaches 0. (The inverse holds for availability.)

B. Performance Comparison

We compare TRAP with the following placement algo-
rithms:

• Random: Given a number of VMs, Random places each
VM at an available host selected uniformly at random.

• First-Fit (FF): This algorithm places each VM at the first
available machine that has the capacity to host it.

• Genetic Algorithm (GA): This is the grouping genetic
algorithm we proposed in Section VI.

• CPLEX: This is an exact algorithm which derives the
optimal solution to (6) using the CPLEX optimizer.

Random, FF and GA require the number of VMs to place as
input. In the experiments presented in this section, it is implied
that this input is provided by executing the first step of TRAP.
This improves the performance of these schemes compared to
a random or policy-unaware decision for the number of VMs
to place. As our results show, though, our two-step heuristic
still brings about significant performance gains.

In our comparison, our metric for the quality of a solu-
tion is the ratio of the objective function value of the solution
returned by the algorithm in question to the respective value
of the (exact) optimal solution returned by CPLEX. This is
expressed as a percentage and is denoted as optimality. CPLEX
corresponds to an optimality of 100%.

Fig. 4 presents a comparison of TRAP (purple curve, cross
points) with our grouping genetic algorithm (green curve, “x”

Fig. 4. Performance of different placement schemes for the same policy and
increasing numbers of available PMs.

points), random (blue curve, “*” points), and first-fit place-
ment (yellow curve, square points) in terms of optimality as a
function of the number of available PMs.

To obtain these results we ran the five schemes under the
same configuration, which corresponds to the same policy (in
this case, wc = wa = 0.5), the same number of PMs, each
with available capacity selected uniformly at random and rang-
ing from 2 to 15 vCPUs, p = 700 vCPUs to distribute, and
the same capacity constraint. Each point is the mean of 50
iterations for the same configuration except for PM capacities
which vary, presented with 95% confidence intervals.

As can be seen from Fig. 4, TRAP approximates well the
optimal solution. In particular our heuristic gives objective
function values that are very close to the ones returned by
CPLEX. GA is also remarkably close to the optimal solution,
but is consistently outperformed by our heuristic and at the
same time comes with significant processing overhead, as we
shall show.

Random and FF placement, on the other hand, result in solu-
tions that are increasingly far from the optimal as the number
of available PMs increases, which is due to the fact that they
do not take into account the main objectives and the respec-
tive policy. With an increase in the number of available PMs,
the solution space also expands and these algorithms fail to
“explore” it effectively. Random tends to result in solutions
which utilize increasing numbers of PMs thus driving cost up,
while FF tends to consolidate VMs in the least number of
PMs, which reduces availability.

Then, we carry out an experiment where we fix the number
of available PMs and measure how each of the candidate algo-
rithms approaches the optimal solution for different policies.
Fig. 5 confirms that our heuristic tops the candidate schemes
in terms of optimality. Importantly, policy-unaware schemes
cannot perform consistently across the spectrum of avail-
able policies. For configurations with many available PMs,
such as the one in this experiment, and when only avail-
ability is critical (wc → 0), Random may have acceptable
performance since it will tend to distribute VMs uniformly
across PMs. This advantage quickly diminishes as we move
towards more cost-centered policies. Conversely, FF performs
near-optimally when availability is not a concern and cost

Fig. 5. Performance of different placement schemes for the same configu-
ration (number of available PMs) as a function of the applied policy (criteria
weights).

Fig. 6. Comparison between our two-step heuristic (TRAP) and our GA in
terms of the cost objective for different policies (lower is better).

minimization is what mainly matters (wc > 0.7), since it
aims to pack VMs in as few PMs as possible. On the other
hand, our two-step heuristic and our genetic algorithm, which
incorporate policies in their design, address successfully the
cost-availability tradeoff, producing solutions near the optimal
for all weight combinations.

If we delve further into the performance of these two algo-
rithms and consider the two objectives separately, we notice
that TRAP achieves better performance in terms of both
cost and availability at the same time, compared with the
genetic algorithm. Fig. 6 presents the (normalized) value of
the cost component for different policies. As optimizing for
cost becomes more important, the performance improvement
of TRAP compared to the GA grows. The solutions derived
using this scheme also improve on availability, especially when
the applied policy seeks for a balance between the two objec-
tives, as Fig. 7 indicates. The gains in terms of optimality
that our heuristic brings about compared to our GA can be
attributed, to an extent, to the fact that the latter creates the
original pool of solutions by randomly assigning VMs to PMs.
In some cases, apart from slower convergence, this may affect
the quality of the solutions produced by the GA.

Although both our heuristic and our GA approximate well
the optimal solution, they come with different processing over-
heads. To quantify their running time performance, we carried
out an experiment where we fixed the policy to wc = wa = 0.5

Fig. 7. Comparison between our two-step heuristic (TRAP) and our GA in
terms of the availability objective for different policies (higher is better).

and measured the execution time of the CPLEX solver, the
TRAP algorithm, and the GA. Regarding the GA, and as in
our previous experiments, we configure the size of the solu-
tion pool to S = 70 and the number of generations to G = 20.
These numbers were selected experimentally and represent a
good compromise between execution time and the quality of
the derived solutions. For reasons of a fair comparison, the
execution time reported for the GA also includes the time it
takes to determine the number of VMs to launch, for which we
apply the first step of our heuristic; the GA then proceeds by
selecting their appropriate placement. Our experiments were
performed on an Intel i7 machine with 8 CPU cores and 8 GB
of RAM, running Ubuntu 14.04.

Fig. 8 verifies that our TRAP scales well as the number of
PMs grows. Even for 600 PMs, it produces a solution which
is close to the optimal in the order of few minutes. The GA
scales poorly for such problem instances, which is justified
by its higher computational complexity (see Section VI). Its
running time performance could be improved by reducing the
number of generations or the solution pool size, but this would
come at the expense of the quality of solutions it produces,
which are already suboptimal to the ones of TRAP. Note that
for more than 600 PMs, it was not tractable to derive the
exact optimal solution using CPLEX, since its execution time
increases dramatically when the number of variables and/or
constraints of the model increases.

VIII. CONCLUSION

This article presented our study on the problem of jointly
allocating compute resources to virtual instances and their
placement on an NFVI for the provision of CDN-as-a-Service.
Our focus was on simultaneously addressing the conflicting
requirements for improved service availability and reduced
management cost. To this end, we proposed a multi-objective
optimization formulation of the problem, as well as efficient
heuristic algorithms to solve it. We demonstrated quantitatively
how our algorithms optimally address the cost-availability
tradeoff. By comparing our scheme to simple baseline algo-
rithms that are often used as benchmarks in related work, we
demonstrated that in order to address more effectively both
objectives, a flexible scheme which incorporates their relative
importance in its design is necessary. Our approach can prove

Fig. 8. Execution time as a function of the number of available PMs for
different algorithms.

beneficial for the operator of such a system in order to appro-
priately dimension a virtualized CDN service, implementing
resource allocation policies that reflect customer (i.e., content
provider) preferences, and assisting in the establishment and
enforcement of specific service-level agreements. The heuris-
tic algorithms we devised run efficiently, without sacrificing
on solution quality. We have shown experimentally that they
can derive near-optimal solutions in the order of few minutes
for large problem instances, where exact solutions by means
of solvers such as CPLEX are intractable to get. Finally, we
explore alternative strategies to tackle our problem by propos-
ing a genetic algorithm suitable for our model, inspired by the
related state-of-the-art. Our heuristics were shown to outper-
form the genetic algorithm, both in terms of optimality and
efficiency.

Although the proposed scheme allows deriving a near opti-
mal solution to place vCDN resources over a telco or federated
cloud, it requires a special focus when fixing the weight val-
ues, which mainly rely on the vCDN service type to deploy.
For example, for a vCDN that delivers highly-popular content,
higher reliability may be required by the content provider, and
thus wa should be significantly higher than wc . For deploy-
ments which deliver less popular content or which involve
short service duration, on the other hand, the customer might
be less interested in high availability guarantees. In these cases,
the operator might select a cost-centered policy with a high
value for wc to reduce operational cost and possibly to be able
to provide a more affordable offer to the customer. Therefore,
the service type has critical impact on the selected deployment
policy.

Our work on the subject is ongoing and focuses on cases
which our model and algorithms cannot currently address. One
direction is adapting our cost functions to consider whether
cloud hosts are already active hosting virtual instances; it
could be argued that favoring such PMs in the placement pro-
cess would lead to more significant energy savings. Another
line of research studies extensions of our design towards edge
computing. The main challenges therein lay in the inherent
scarcity of edge resources, and the heterogeneity naturally

introduced in the underlying physical infrastructure both in
terms of operating cost and reliability. On the other hand,
edge computing offers the potential for lower latency and
thus improved user experience while saving on the operator’s
backhaul network capacity. These new features require modi-
fications both at our model and our algorithms. In view of the
upcoming 5th Generation (5G) mobile networks, these modi-
fications will need to account for more dynamic environments
with the appropriate architectural support [33], where VNF
components may need to be shifted across (edge and other)
hosts following shifts in user demand or the conditions in the
NFVI. Finally, extensions to account for failure recovery costs
are a topic for future study.

REFERENCES

[1] Network Functions Virtualisation (NFV); Management and
Orchestration, ETSI Standard GS NFV-MAN 001, Dec. 2014.

[2] Network Functions Virtualisation (NFV); Use Cases, ETSI Standard
GS NFV 001, Oct. 2013.

[3] B. Frank et al., “Collaboration opportunities for content delivery and
network infrastructures,” ACM SIGCOMM Ebook Recent Adv. Netw.,
vol. 1, pp. 305–377, Aug. 2013.

[4] N. Herbaut, D. Négru, Y. Chen, P. A. Frangoudis, and A. Ksentini,
“Content delivery networks as a virtual network function: A win-win
ISP-CDN collaboration,” in Proc. IEEE Globecom, 2016, pp. 1–6.

[5] P. A. Frangoudis, L. Yala, and A. Ksentini, “CDN-as-a-service provision
over a telecom operator’s cloud,” IEEE Trans. Netw. Service Manag.,
vol. 14, no. 3, pp. 702–716, Sep. 2017.

[6] Network Functions Virtualisation (NFV); Resiliency Requirements, ETSI
Standard GS NFV-REL 001, Jan. 2015.

[7] L. Yala, P. A. Frangoudis, and A. Ksentini, “QoE-aware computing
resource allocation for CDN-as-a-service provision,” in Proc. IEEE
Globecom, 2016, pp. 1–6.

[8] L. Yala, P. A. Frangoudis, G. Lucarelli, and A. Ksentini, “Balancing
between cost and availability for CDNaaS resource placement,” in Proc.
IEEE Globecom, 2017, pp. 1–7.

[9] J. Xu and J. A. Fortes, “Multi-objective virtual machine
placement in virtualized data center environments,” in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun. (GreenCom), 2010,
pp. 179–188.

[10] J. Dong et al., “Energy-saving virtual machine placement in cloud data
centers,” in Proc. IEEE/ACM CCGrid, 2013, pp. 618–624.

[11] N. Quang-Hung, N. T. Son, and N. Thoai, “Energy-saving vir-
tual machine scheduling in cloud computing with fixed interval
constraints,” in Transactions on Large-Scale Data- and Knowledge-
Centered Systems XXXI (LNCS 10140), A. Hameurlain, J. Küng,
R. Wagner, T. Dang, and N. Thoai, Eds. Heidelberg, Germany: Springer,
2017.

[12] D. Gmach, J. Rolia, and L. Cherkasova, “Resource and virtualization
costs up in the cloud: Models and design choices,” in Proc. IEEE/IFIP
DSN, 2011, pp. 395–402.

[13] Z. Á. Mann, “Allocation of virtual machines in cloud data centers—A
survey of problem models and optimization algorithms,” ACM Comput.
Surveys, vol. 48, no. 1, p. 11, 2015.

[14] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” in Proc. IFIP/IEEE IM, 2007,
pp. 119–128.

[15] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning
for the cloud using online bin packing,” IEEE Trans. Comput., vol. 63,
no. 11, pp. 2647–2660, Nov. 2014.

[16] X. Li and C. Qian, “A survey of network function placement,” in
Proc. 13th IEEE Annu. Consum. Commun. Netw. Conf. (CCNC), 2016,
pp. 948–953.

[17] R. Mijumbi et al., “Design and evaluation of algorithms for mapping
and scheduling of virtual network functions,” in Proc. 1st IEEE Conf.
Netw. Softw. (NetSoft), 2015, pp. 1–9.

[18] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. C. M. B. Duarte, “Orchestrating virtualized network func-
tions,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4, pp. 725–739,
Dec. 2016.

[19] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing resource
allocation for virtualized network functions in a cloud center using
genetic algorithms,” IEEE Trans. Netw. Service Manag., vol. 14, no. 2,
pp. 343–356, Jun. 2017.

[20] M. Mitchell, An Introduction to Genetic Algorithms, 5th ed. Cambridge,
MA, USA: MIT Press, 1999.

[21] S. Yang, P. Wieder, and R. Yahyapour, “Reliable virtual machine place-
ment in distributed clouds,” in Proc. 8th Int. Workshop Resilient Netw.
Design Model. (RNDM), 2016, pp. 267–273.

[22] T. Ecarot, D. Zeghlache, and C. Brandily, “Consumer-and-provider-
oriented efficient IaaS resource allocation,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. Workshops (IPDPSW), 2017, pp. 77–85.

[23] M. Casazza, P. Fouilhoux, M. Bouet, and S. Secci, “Securing virtual
network function placement with high availability guarantees,” in Proc.
IFIP Netw., 2017, pp. 1–9.

[24] L. Qu, C. Assi, K. B. Shaban, and M. Khabbaz, “Reliability-aware ser-
vice provisioning in NFV-enabled enterprise datacenter networks,” in
Proc. 12th Int. Conf. Netw. Service Manag. (CNSM), 2016, pp. 153–159.

[25] M. Callau-Zori, L. Samoila, A.-C. Orgerie, and G. Pierre, “An
experiment-driven energy consumption model for virtual machine
management systems,” IRISA, Rennes, France, Res. Rep. RR-8844,
Jan. 2016.

[26] H. Ouarnoughi, J. Boukhobza, F. Singhoff, and S. Rubini, “A cost
model for virtual machine storage in cloud IaaS context,” in Proc. 24th
Euromicro Int. Conf. Parallel Distrib. Netw. Based Process. (PDP),
2016, pp. 664–671.

[27] A. Israel and D. Raz, “Cost aware fault recovery in clouds,” in Proc.
IFIP/IEEE IM, 2013, pp. 9–17.

[28] OpenStack—Open Source Cloud Computing Software. Accessed: Oct. 4,
2018. [Online]. Available: https://www.openstack.org/

[29] R. T. Marler and J. S. Arora, “Function-transformation methods for
multi-objective optimization,” Eng. Optim., vol. 37, no. 6, pp. 551–570,
2005.

[30] N. Halman, H. Kellerer, and V. A. Strusevich, “Approximation schemes
for non-separable non-linear boolean programming problems under
nested knapsack constraints,” Eur. J. Oper. Res., vol. 270, no. 2,
pp. 435–447, 2018.

[31] G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic knapsack prob-
lems,” in Combinatorial Optimization (Mathematical Programming
Studies), vol. 12, M. W. Padberg, Ed. Heidelberg, Germany: Springer,
1980.

[32] A. Billionnet and F. Calmels, “Linear programming for the 0–1 quadratic
knapsack problem,” Eur. J. Oper. Res., vol. 92, no. 2, pp. 310–325, 1996.

[33] G. Bianchi et al., “Superfluidity: A flexible functional architecture for
5G networks,” Trans. Emerg. Telecommun. Technol., vol. 27, no. 9,
pp. 1178–1186, 2016.

Louiza Yala received the M.Sc. degree in network-
ing from the University of Bejaia, Algeria, in 2014
and the M.Sc. degree in technologies for information
processing and systems analysis from the University
of Technology of Compiègne, France, in 2015. She
is currently pursuing the Ph.D. degree with the
University of Rennes 1, France, and a member of the
IRISA/INRIA Team Dionysos. Her research interests
include network virtualization, Internet multimedia,
content delivery networks, and QoE.

Pantelis A. Frangoudis received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science from the
Department of Informatics, Athens University of
Economics and Business, Greece, in 2003, 2005, and
2012. From 2012 to 2017, he was with the Team
Dionysos, IRISA/INRIA/University of Rennes 1,
Rennes, France, which he joined under an ERCIM
Post-Doctoral Fellowship from 2012 to 2013. He
is currently a Researcher with the Communication
Systems Department, EURECOM, Sophia Antipolis,
France. His research interests include mobile and

wireless networking, Internet multimedia, network security, future Internet
architectures, cloud computing, and QoE monitoring and management.

Giorgio Lucarelli received the Ph.D. degree in com-
puter science from the Department of Informatics,
Athens University of Economics and Business,
Greece, in 2009. From 2010 to 2017, he held
several post-doctoral research positions with dif-
ferent universities in France, specifically with the
University Paris-Dauphine, the University Pierre et
Marie Curie, and the University of Grenoble-Alpes.
Since 2018, he has been an Associate Professor
with the University of Lorraine, France. His research
interests include the design and analysis of algo-

rithms, scheduling, optimization in graphs, and online algorithms.

Adlen Ksentini received the Ph.D. degree in com-
puter science from the University of Cergy-Pontoise
in 2005, with a dissertation on QoS provisioning in
IEEE 802.11-based networks. From 2006 to 2016, he
was with the University of Rennes 1 as an Assistant
Professor and was a member of the Dionysos Team
with INRIA, Rennes. Since 2016, he has been
an Assistant Professor with the Communication
Systems Department, EURECOM. He has been
involved in several national and European projects
on QoS and QoE support in future wireless, net-

work virtualization, cloud networking, mobile networks, and more recently
on network slicing and 5G in the context of H2020 projects 5G!Pagoda and
5GTransformer. He has co-authored over 100 technical journal and inter-
national conference papers. He was a recipient of the Best Paper Award
from IEEE IWCMC 2016, IEEE ICC 2012, ACM MSWiM 2005, and the
2017 IEEE Comsoc Fred W. Ellersick Prize (Best IEEE Communications
Magazine’s Paper). He has given several tutorials in IEEE international confer-
ences, IEEE Globecom 2015, IEEEE CCNC 2017, IEEE ICC 2017, IEEE/IFIP
IM 2017. He has been acting as the TPC Symposium Chair for IEEE ICC
2016/2017, IEEE GLOBECOM 2017, IEEE Cloudnet 2017, and IEEE 5G
Forum 2018. He has been acting as a Guest Editor of the IEEE JOURNAL OF

SELECTED AREA ON COMMUNICATION Series on Network Softwarization,
the IEEE WIRELESS COMMUNICATIONS, IEEE Communications Magazine,
and two issues of ComSoc MMTC Letters. He has been on the Technical
Program Committees of major IEEE ComSoc conferences, including ICC,
GLOBECOM, ICME, WCNC, and PIMRC. He is currently the Director of
the IEEE ComSoc EMEA region and the Vice-Chair of the IEEE ComSoc
Technical Committee on Software. He is a COMSOC Distinguished Lecturer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

