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Fractionally Spaced Equalization of Linear
Polyphase Channels and Related Blind Techniques

Based on Multichannel Linear Prediction
Constantinos B. Papadias,Member, IEEE, and Dirk T. M. Slock,Member, IEEE

Abstract—In this paper, we consider the problem of linear
equalization of polyphase channels and its blind implementation.
These channels may result from oversampling the single output
of a transmission channel or/and by receiving multiple outputs of
an antenna array. A number of recent contributions in the field of
blind channel identification have shown that polyphase channels
can be blindly identified using only second-order statistics (SOS)
of the output. In this work, we are mostly interested in the blind
linear equalizationof these channels: After some elaboration on
the specifics of the equalization problem for polyphase channels,
we show how optimal settings of various well-known types of
linear equalization structures can be obtained blindly using only
the output’s SOS by using multichannel linear prediction or
related techniques.

I. INTRODUCTION

I N DIGITAL communications, a sequence of symbols
gets modulated and transmitted over a channel. We assume

the modulation to be linear and the channel to be a linear time-
invariant system with additive white circular noise. In practice,
small degrees of nonlinearity and slow variations in time can
always be accommodated. Let be the overall impulse
response of modulation and channel. Then, the continuous-
time received signal can be written as

(1)

where is the additive noise. The signal part of this
single-input single-output (SISO) system is cyclostationary
with period , which is the symbol period. Its cycle spectrum
is the discrete set . In the presence
of stationary noise, the noisy received signal has the same
cyclostationarity properties.

If we sample the received continuous-time signal at a
rate greater than the symbol rate , the discrete-
time received signal is also cyclostationary with periodand
contains distinct cycle frequencies. On the other hand, if

were chosen to be equal to 1, the sampled signal would be
purely stationary. This manifestation of cyclostationarity as the
sampling rate exceeds the baud rate is of critical importance
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for channel identification since it results in the presence of
phase information in the cyclic second-order statistics (SOS)
of the output. It is exactly this property that allows for blind
identification of polyphase channels from SOS, as shown in
[4]–[6].

Instead of being interested in the identification of the
channel itself, in this paper, we will rather focus on the
blind acquisition of simple equalizer settings whose output
estimates the transmitted symbols in compliance with some
optimality criterion. Linear and decision-feedback equalizers
implemented through tap-delay lines have been extensively
used in order to equalize received signals in many communica-
tion systems; however, their calibration had to be based on the
use of a training sequence (a sequence of fixed symbols). Blind
equalizers that were based on implicit (e.g., decision-directed
or Bussgang-type) or explicit (cumulant-based) higher order
statistics (HOS’s) have been proposed since the 1970’s in order
to avoid the use of training signals. In this work, we will show
how second-order blind equalization can be performed in the
light of the recent results on SOS identifiability of polyphase
channels. We will also examine some further implications of
polyphase channels on linear equalization, irrespective of the
blind aspect.

The rest of the paper is organized as follows. In Section II,
we introduce the channel-equalizer model and some notation.
Section III focuses on nonblind aspects of linear zero-
forcing (ZF) equalization of polyphase channels, whereas
in Section IV, we present multichannel linear prediction
techniques for blind equalization. In Section V, we analyze
minimum-mean-square-error (MMSE) polyphase equalization
and show its connections with ZFE. Section VI shows
some simulation results, whereas Section VII presents some
conclusions. In this paper, we shall focus on the interpretations
of polyphase channels arising from oversampling. However,
apart from some discussions in Section III, most of the results
apply to any polyphase channel.

II. L INEAR FRACTIONALLY -SPACED EQUALIZATION

At this point, we introduce the notation and the basic
assumptions that will be used throughout the rest of the paper.
The continuous-time channel is assumed to be FIR with
duration of approximatively . The oversampling factor
(OF) is assumed to be , and the sampling instants for the
received signal in (1) are for integer
and . represents the symbol rate sampling
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phases of the oversampling pattern. represents the initial
sampling time instant. In principle, it suffices to introduce a
restricted to be fully general. However, we shall
take , where in order to incorporate
also an inherent delay due to transmission.is chosen as the
smallest integer such that

(2)

The channel being causal implies thatwill be non-negative.
We now introduce thepolyphase descriptionof the oversam-

pled received signal, channel impulse response, and additive
noise, respectively.

(3)

In the sequel, we will refer to the polyphase components of
such quantities asphases. The oversampled received signal
can now be represented in vector form at the symbol rate as

(4)

where are defined as

...
...

...

(5)

The subchannels are defined as

(6)

and the channel matrix is a matrix defined as

...
...

... (7)

Finally, we denote by the symbol vector

(8)

We formalize the finite duration assumption of the channel
as follows.

C1): FIR Assumption: and
for or .

In order to equalize the fractionally spaced channel, we will
use a fractionally spaced linear equalizer, whose output is the
sum of the outputs of symbol rate linear filters in each
subchannel. The channel-equalizer cascade in the case of an
oversampling factor will then look as in Fig. 1. The

Fig. 1. Polyphase representation of theT=m fractionally spaced channeland
equalizer form = 2.

equalizer output produces an estimate of the delayed
symbols with part of the delay due to the inherent delay in
the channel and part intentional for improved performance
(see further). In what follows, we shall ignore the inherent
delay .

In the frequency domain, the-transform of the channel
response at the sampling rate is given as

(9)

Similarly, the -transform of the fractionally spaced
equalizer can also be decomposed into its polyphase com-
ponents as

(10)

Although the equalizer defined by (10) is slightly noncausal,
this does not cause a problem because the discrete-time filter is
not a sampled version of an underlying continuous-time func-
tion. In fact, a particular equalizer phase follows
in cascade the corresponding channel phase
so that the cascade is causal. We assume the
equalizer phases to be causal and FIR of length:

(11)

We also denote by the vector that contains theth
sample of each one of the equalizer phases and by a

vector that contains the consecutive vectors

(12)

Finally, we introduce the following multichannel-transforms
of the channel and the equalizer:

(13)

With the delay operator (such that ),
we can represent the vectorized received signal as

(14)
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in which the signal part corresponds to a single-
input multiple-output (SIMO) system. Assuming the transmit-
ted symbols and independent noise to be stationary, the vec-
torization has turned the cyclostationary scalar signal

into a stationary vector signal . Thus far,
we have obtained multiple received signals by unraveling the
multiple phases of the oversampled continuous-time received
signal. An alternative way to arrive at the same picture is
to have several antennas. Each of the antenna signals can
then be oversampled or not [if not, then the representations at
oversampled rate as in (9) or (10) are not applicable]. Hence,
the total number of received signals is the product of the
number of antennas times the oversampling factor. The SIMO
deconvolution problem now boils down to the calculation
of the optimal equalizer coefficients

.

III. FIR ZERO-FORCING (ZF) EQUALIZATION

A. FIR Equalizability

We consider first the noise-free case. In the absence of
noise, the optimal equalizer is a zero-forcing equalizer, i.e.,
one whose cascade with the channel gives a (possibly delayed)
Dirac impulse response. The transform of the equalizer
output can be written as

(15)

In order to achieve zero-forcing equalization in the absence of
noise, we should have , where we allowed
for a certain delay . This gives the following ZF condition
for the equalizer parameters:

(16)

In the polyphase representation depicted in Fig. 1, we can
recognize the channel and the equalizer to correspond to a
cascade of an analysis filterbank followed by a synthesis
filterbank. The ZF equalization condition corresponds to the
perfect reconstruction property for the filterbank. In the filter-
bank literature [7], it is well known that perfect reconstruction
is possible with a FIR synthesis bank for a FIR analysis
bank. Equation (16) is the ZF condition in the-domain. The
counterpart of (16) in the time domain is

(17)

where denotes convolution. By expressing this convolution
as a matrix-vector product, (17) takes the form

...
...

...
.. .

. . .
. . .

. . .

(18)

or equivalently

(19)

where we define as a (block) Toeplitz matrix with
(block) rows and as first (block) row ( is the
number of rows in ).

Equation (19) is a linear system of equations
in the unknowns . For the existence of
a solution, the vector on the right-hand side of (19) needs to
be in the row space of . This can possibly happen
for very short values of . Indeed, if, e.g., after removal of
the coefficient the rows in are linearly dependent,
then suffices. In general, however, the matrix
needs to have full column rank. This imposes

(20)

on the equalizer length [2]. The matrix is a
generalized Sylvester matrix. It can be shown that for ,
it has full column rank if the following condition holds:

C2): No-Common-Zeros Condition: ,
that is, if the subchannels have no zeros in common.
The same condition was given (in a different form) by Tong
et al. in [4] and by Tugnait in [8]. Indeed, it is easy to
see that if the subchannels have a zero in common, then
this zero can be factored out, and the equalization for this
factor becomes the equalization of a SISO system for which
no FIR solution exists. It may occur that subsets of the
subchannels have a shorter length (than). In that case,
needs to be replaced by the minimum of (20) over all sets
of subchannels. On the other hand, if the rows of are
not linearly independent, then in (20) needs to be replaced
by rank , which is the effective
number of (linearly independent) channels (as remarked in
[9]). Therefore, we have the following result.

Theorem 1: Under the FIR channel assumption, a ZF FIR
equalizer can be found from (19), provided that the equalizer
length satisfies

rank
(21)

and that the channel has no zeros [condition C2)].
In the formula for in (21), we get, for the case of a

frequency flat channel , . A sufficient condition
for any channel without zeros is . However, if we
consider the channel coefficients as random with continuous
distributions, then the equalizer length condition in (20) is
necessary and sufficient with probability one. We will hence-
forth assume as in (20). For channels, the minimal
equalizer length is , which is about the same as
the channel length . However, the minimal equalizer length
decreases with the number of channels. In particular,
for channels. Assuming that the multiple channels
arise due to the use of multiple antennas only, then such an
equalizer corresponds to a purely spatial filter or beamformer.
Hence, for a given delay spread, a pure beamformer can
perform equalization if enough antennas are used, as remarked
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in [10]. The advantage of the spatio-temporal approach is that
ZF equalization can be done with fewer antennas.

Discussion: The multichannel FIR equalizability is in re-
markable contrast to the single-channel problem, in which
case

(22)

where has been factored into its minimum- and
maximum-phase factors and , respectively
(assuming has no zeros on the unit circle). Since

is IIR and causal while is IIR and
anticausal, is noncausal and doubly infinitely long. For
a given approximation error, can be truncated to be of
finite length and made causal for a judiciously chosen delay

. The length required for depends on the proximity of
the zeros of to the unit circle.

The polyphase representation of (16) is

(23)

which for is known as the Bezout identity [11].
This identity states the existence of FIR equalizers for FIR
subchannels that are coprime. Therefore, the Bezout identity
is well known in the control literature and in the filter-
bank/transmultiplexing literature. It appeared in the communi-
cations literature for the first time in [12], where it was applied
over finite fields in convolutional coding. Indeed, a rate
convolutional coder allows a -channel representation. An
FIR decoder then is, in fact, a multichannel equalizer that ZF
equalizes the filtering introduced by the encoder. The Bezout
identity was also used in image processing [13], although the
formulation there was in continuous time (or rather, space).
Fractionally spaced equalizers were introduced in the mid
1970’s [14], [15]. However, it was not until much later [16]
that it was realized that such equalizers are, in general, FIR
when the channel is FIR. The next step, after the establishment
of the existence of FIR equalizers as done by the Bezout
identity, is then the issue of the minimal FIR equalizer length
required: the subject of Theorem 1. It appears that this issue
was first addressed in [2], [9], and [16].

FIR equalizability was addressed in a different fashion in
[4], [6]. There, a packet oriented transmission mode was
considered. In the absence of noise, the packet of received
data can be written as

(24)

where . Hence, a packet
mode ZF equalizer is ,
where denotes the pseudo-inverse of

. Since , we have indeed ZF equalization,
and since is finite, the equalization is FIR. Now, every row
in can be interpreted as an FIR (MMSE) ZF equalizer
corresponding to a certain delay (that is different for every
row). However, corresponds to a time-varying equalizer
( is not block Toeplitz). The (-domain) FIR equalizers

Fig. 2. Multirate representation of fractionally spaced channel and equalizer.

discussed here are time-invariant filters corresponding to a
fixed delay.

One important issue raised by Theorem 1 is the practical
significance of the “no-common-zeros” condition C2): How
likely is it for a practical channel to satisfy this condition?
Sporadic answers to this question can be found in the liter-
ature. The occurrence of exact zeros in common is a zero
probability event as discussed in [17]. In [18], a number of
measurements of real wireless channel impulse responses has
been performed and analyzed: Often enough, the subchannels
of these impulse responses have several zeros close to each
other when oversampled in time. However, these close-to-
common zeros do not always lead to significant performance
degradation of the corresponding equalizers. On the other
hand, Ding has shown in [19] that there exist some specific
classes of realistic multipath channels that always suffer from
the problem of common zeros when oversampled in time, thus
concluding their unidentifiability from second-order statistics
(and unequalizability with FIR equalizers). However, it was
later shown in [20] that the same channels do not suffer
from this problem when oversampled in space (with the
use of uniform linear antenna arrays). Temporal and spatial
oversampling may thus lead to different conditionings with
respect to this problem.

B. Multirate Representation

The upsampled by a factor version of a discrete signal
(with ) is defined as

if mod
else

(25)

whereas the downsampled by a factor version of
is defined as

(26)

The corresponding relations in the-domain are

(27)

(28)

where (see [7]). We may now formulate the
following theorem.

Theorem 2: The fractionally spaced channel and equalizer
corresponding to an integer oversampling factor of
can be represented as in Fig. 2, where and are
defined in (9), (10), respectively.

Outline of Proof: With denoting the
channel-equalizer cascade and with , the i/o relation
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in the -domain for the setup of Fig. 2 is

(29)

since . Combining (29) with (9) and (10),
we get, after some computation,

, which concludes the proof.

Therefore, the SISO setup of Fig. 2 is an alternative to the
polyphase representation of Fig. 1. The polyphase aspect is
now contained in the upsampling and downsampling elements,
as well as in the construction of the oversampled (fractionally
spaced) channel and equalizer. The oversampling setup of
Fig. 2 has been applied advantageously to CDMA in [21].

An interesting interpretation of the ZF condition in the
light of the setup of Fig. 2 is the following. Focusing on
(29), it is clear that the transfer function
represents just a downsampled by a factorversion of
[compare with (28)]. Now let us consider the phases of

in the time domain:
. The ZF requirement then takes the form

(30)

Therefore, in order to be ZF,one onlyamong the different
symbol-rate phases of the channel-equalizer cascade needs to
be a delta function, whereas the other phases can be arbitrary.
This increase in degrees of freedom, keeping the number
of constraints fixed, is another way to explain the FIR ZF
equalizability of a polyphase channel. The ZF requirement
(30) is the oversampling equivalent of the continuous-time
Nyquist condition [22], which states that the symbol-rate
sampled version of the continuous-time equalizer (RX filter)
and channel (TX filter) cascade should be a delta function.

C. Equalizability in the Frequency Domain

Therefore, from (29), the ZF condition in the frequency
domain is [with and delay ]

(31)

is a periodic function with period , but the left-
hand side in (31) is periodic with period . Equation
(31) is the Nyquist condition for oversampling and is very
similar to the corresponding condition in continuous time. The
following interpretation can now be drawn: In order to have
(31) satisfied, there needs to be some aliasing between adjacent
frequency characteristics (otherwise, if there are
some frequency regions with no aliasing, it will be impossible
to have a nonzero sum within these regions). Let us suppose
now that is bandlimited with a bandwidth . Since the
distance between adjacent frequency pulses in (31) isand
each pulse occupies a frequency range of width, it turns
out that the condition for aliasing is

(32)

Fig. 3. Nyquist condition for the oversampled channel.

A graphical representation of the condition (32) can be found
in Fig. 3, which shows the two different situations that may
arise when (32) is satisfied or not, respectively. Now, as

, in order to have satisfy (32), it
is necessary that satisfies it as well. This leads to the
following theorem.

Theorem 3: Let denote the bandwidth of the channel
transfer function . Then, a necessary condition in order
to achieve zero ISI in the multichannel setup is that

(33)

Theorem 3 gives us some insight on whether bandwidth
limitations influence (or not) the channel estimation problem.
If the channel is bandlimited with bandwidth ,
this poses no particular problem for the determination of a ZF
equalizer (assuming infinite length) ( is desirable in
order to exploit all excess bandwidth). If , however,
no aliasing occurs even at symbol rate sampling. Since
is the -downsampled version of , we get from (28)

(34)

By replacing with in Fig. 3, it is now clear that if
, the polyphase components of the channel

will be zero simultaneously in the frequency regions that
correspond to nonoverlapping, rendering ZF equalization im-
possible. Therefore, Theorem 3 is the infinite length equivalent
of the condition C2) of no common zeros in the FIR case.
Note that Theorem 3 is only a necessary condition, however,
whereas C2) is necessary and sufficient.

D. ZF Equalization and Noise Enhancement

In this section, we will work in the frequency domain
in order to study the problem of noise enhancement of ZF
equalizers in polyphase systems. We begin with a remark: We
consider the case channels and, w.l.o.g., delay
[for infinite length (and noncausal) equalizers, the delay is
irrelevant; for causal equalizers however, the delay is crucial].
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We assume that the setting corresponds
to a ZF equalizer and, therefore, satisfies .
Now, consider another setting, namely,

, where is any stable filter of finite or
infinite length. It can be easily verified that ,
which means thatany equalizer of this form is also ZF. The
variety of filters that can be used represents a lot of degrees
of freedom to determine different ZF equalizers for a given
equalizer length. These will be all equivalent in the absence
of noise; however, one will be optimal in the presence of noise
in terms of noise enhancement. A linear equalizer with delay

is a linear estimator of the symbol in terms of the
received signal. The noise at the ZF equalizer output is the
error in estimating , and its variance is the MSE. Now, the
optimal equalizer for a given length is only a special case of
an equalizer of greater length, which can still be optimized
(due to the degrees of freedom introduced by increasing the
length), resulting in a better performing ZFE (lower MSE).
We can sum up this discussion as follows.

• For an FIR polyphase channel, an FIR ZF equalizer exists
if the FIR ZFE filter is long enough. If the ZFE filter
length is longer than the minimum required value, then
an infinity of FIR ZFE’s exist. Among these, an optimal
one exists in terms of noise enhancement (the MMSE
ZFE).

• By increasing the length of the ZFE further, the noise
enhancement can be further reduced.

We now focus on the derivation of the optimal infinite-length
ZF equalizer.

1) Optimal Infinite-Length ZF Equalizer:Considering
white noise , the variance at the ZF
equalizer output is

(35)

using Parseval’s identity. In the case of an infinite-length ZF
equalizer, we get the following optimization criterion:

subject to

(36)

which reduces to the following frequency-wise criterion (since
the constraint is frequency-wise and the cost function sums up
non-negative contributions at different frequencies)

subject to

(37)

at any frequency . Using vector notation, we get

subject to
(38)

The solution is

(39)

where denotes Hermitian transpose. This is the optimum
(MMSE) infinite-length ZF equalizer. We remark that the
MMSE ZFE consists of a cascade of the MISO filter
(the matched filter) followed by a SISO filter .
The matched filter combines the signal components in the
channels into a single signal in an optimal fashion. The SISO
filter that follows then performs the zero forcing. The minimal
noise variance (MMSE) at the ZF equalizer output is

(40)

To gain insight in the dependence of the MMSE on the
channels, we can rewrite (40) as

(41)

The first factor in the integral represents the contribution to
of the case of symbol-rate sampling . The

other factors (which are smaller than 1) represent the reduction
in MSE obtained by adding more channels. It is useful to
compare the SNR of the MMSE ZFE with the matched filter
bound (MFB), which is an upper bound on the SNR at the
output of any (unbiased) equalizer. The MFB SNR is the SNR
at the output of the matched filter. Therefore, we have

SNR

SNR (42)

For a single channel, the performance of a ZFE can be
quite suboptimal when shows significant dips. For
multiple channels, and with sufficient diversity, the chance
that the have a dip at the same frequency and, hence,
that shows a dip becomes smaller as the number
of channels increases. In fact, tends to show less
variation with frequency as increases. Ideally, if
becomes constant (allpass channel), then equality is obtained
in (42); the MMSE ZF equalizer then performs maximum
likelihood detection (equals the Viterbi equalizer). For mul-
tiple channels obtained by oversampling, it is interesting to
investigate performance in terms of oversampling factor in the
case of limited excess bandwidth. It can be shown that if the
oversampling exceeds the Nyquist sampling frequency, then

SNR (43)

where we used the fact that with is the
power spectral density of the white noise per component, and

is the Fourier transform of . Since the expression
in (43) does not depend on , we see that once the Nyquist
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sampling frequency has been exceeded, further oversampling
does not lead to a further increase in MFB.

Another interesting comparison is with the work in [23]
and [24]. In that work, an optimal receiver front end is
used, consisting of a continuous-time matched filter (matched
to the continuous-time channel impulse response) followed
by symbol-rate sampling. This approach is impractical since
it is hardly possible to know the continuous-time channel.
Therefore, the approach taken here is to oversample and
use simple antialiasing filters (which leave the noise white)
before sampling. Therefore, includes the anti-aliasing
filter (which becomes transparent if the oversampling satisfies
Nyquist). The MFB for the optimal approach in [23] and
[24] is given by (43) as well [with not including
the anti-aliasing filter]. Therefore, the oversampling approach
equals the optimal approach once the oversampling exceeds
the Nyquist sampling frequency. The MMSE ZFE SNR for
the optimal approach in [23] and [24] can be found to be

SNR

(44)

where again does not include the anti-aliasing filter. The
MMSE ZFE SNR in (44) is again inferior to the MFB in (43)
unless the sum in (44) is constant. On the other hand, the
optimal MMSE ZFE SNR in (44) is an upper bound to the
one in (42) and is again reached as the oversampling exceeds
the Nyquist frequency for the channel.

IV. ZFE AND CHANNEL ID BY

MULTICHANNEL LINEAR PREDICTION

It is well known that in the case of symbol-rate sampling,
the channel can be identified by spectral factorization if it is
minimum-phase (MP) [i.e., if its scalar channel response
has no zeros out of the unit circle]. The counterpart of spectral
factorization in the time domain is linear prediction: In the
absence of noise, the input sequence equals the innovations
process (prediction errors) if the channel is MP. This provides
an elementary SOS technique for SISO blind equalization.
However, this approach is highly restrictive as it only applies
to MP SISO channels, which are rare in practice.

On the other hand, the MP property is much less restrictive
in the SIMO case. A SIMO channel is again minimum phase
if its (vector) channel response has no zeros outside the
unit circle (no with exists for which ).
Hence, all channels that satisfy the no-common-zero condition
C2) are by definition MP (as they have no zeros at all,
much less outside the unit circle). Therefore, is typically
MP, even though none of its components is MP.
This fact has lead to frequency-domain blind SOS techniques
for SIMO channel equalization that are based on spectral
factorization [5], [25]. In this section, we will investigate
the time-domain counterpart of this approach; namely, we
will study the possibility of blind SIMO equalization and/or
channel identification (ID) based on linear prediction (LP) of
the polyphase channel output.

A. Multichannel Linear Prediction

In a first step, we are interested in identifying the channel
coefficients of the SIMO setup based on linear prediction.
Then, we will use this channel estimate in order to derive
optimal MISO equalizers. We consider the following (forward)
linear prediction problem:

Predict as a linear combination of the

components of

The predicted vector sample can be written as

(45)

where are matrices and represent the LP coeffi-
cients, and . The prediction error can then
be written as

(46)

The prediction error variance is by definition

(47)

where . The minimization of the
prediction error variance leads, therefore, to the following
optimization problem:

(48)

which gives

(49)

Equations (49) are the normal equations. By partitioning
, (49) can be written as

(50)

which gives

(51)

Equation (51) shows how both the prediction error variance
and the prediction coefficients can be computed from the SOS
of the cyclostationary received signal. We now proceed to
obtain channel estimates and optimal equalizers from these
quantities.

B. LP-Based Multichannel Identification/ZF Equalization

We will perform LP on the noise-free signal . The
input–output relation of the SIMO channel can be written in
the absence of noise as in (24). Hence, the covariance matrix

of the received signal has the following structure:

(52)
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where . The is of dimension
, and its rank is [assuming C2) and

]. Therefore, we have

full-rank
singular

(53)

When is singular, each further increase ofby 1 results
in an increase of rank by 1 and an increase of the
dimension of its nullspace by (in fact, rank

dimension
). Note that in the presence of white noise,

we have for , and hence, the noise-free
covariance matrix can always be found as .

When , has full column rank. Hence,
estimation in terms of

boils down to estimation in terms of .
Therefore, we get

(54)

Now, let us consider the prediction problem for the transmitted
symbols. We get, similarly

(55)

(56)

where now, the elements of are scalars. From (54) and
(56) for , we find

(57)

Hence, the minimum prediction error variance is

(58)

Therefore, for , the prediction error variance is
rank 1. Moreover, (58) allows us to find up to a scalar
multiple from . At this point, we consider two cases
separately.

1) Uncorrelated Input Sequence:In this case,
. Combining with (56), this gives

(59)

Since (57) is valid for all , we have

(60)

and therefore

(61)

where . Therefore, we have
the following result.

Theorem 4: When the transmitted data are uncorrelated,
the channel satisfies the no-common-zeros condition C2) and

; then, a (0 delay) ZF equalizer can be found from
linear prediction as

(62)

Note that to implement the closed-form solution (62), all we
need are the SOS . Alternatively, least-squares linear
prediction, applied to the noise-free signal (SOS), can be
modified into a total least-squares approach for the noisy
signal. Appropriate adaptive algorithms can be extrapolated
from [26].

Using (60), we could also determine the channel
up to a scalar multiple. We may note that (60), written in
the -domain, is nothing but ; hence,

. This is a relationship between two MP
filters. Although is IIR, is FIR. Note
that the singular (because is singular) vector process

is, at the same time, MA and AR. Therefore, in addition,
the linear prediction approach is robust to channel length
overdetermination. If the normal equations (50) are solved
in an order-recursive fashion (using, e.g., the multichannel
Levinson algorithm), the recursions will terminate at the
correct order , as is typical when predicting an AR process.

The channel can alternatively be found from

(63)

In the uncorrelated case, the prediction problem allows us
(in theory) to also check whether the have zeros in
common. Indeed, the common factor colors the transmitted
symbols (MA process), and hence, once becomes of rank
1, its one nonzero eigenvalue continues
to decrease as a function of since for an MA process,
is a decreasing function of .

2) Correlated Input Sequence:If the transmitted symbols
are correlated, we proceed as follows (Pisarenko-style [27, p.
500]). Linear prediction corresponds to the LDU factorization

. The prediction filters are rows of, whereas
the prediction variances are the diagonal elements of. Let us
take prediction filters corresponding to singularities inand
assume the longest one has block length. Therefore, we ob-
tain of size . We introduce a block-componentwise
transposition operator, viz.

(64)

where is the usual transposition operator. Due to the
singularities, we have

(65)
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Since for the noise-free signal, we call a set
of blockingequalizers. We find that if ,
then

dim Range (66)

In that case, we can identify the channel (up to a scalar
multiple) as the last right singular vector of . In
particular, let be of rank such
that ; then, with and ,
we can take

(67)

From (57), we can furthermore identify , and via
(56), this leads to the identification of the (Toeplitz) symbol
covariance matrix (assuming is known).

3) Arbitrary-Delay ZFE We have previously been able to
blindly obtain zero-delay ZF equalizers. As it is well known
that for most practical channels, a better performance is
achieved by equalizers that introduce some greater delay, we
are interested in blindly obtaining such solutions as well. This
is possible if instead of one-step-ahead prediction, as above,
we use -step-ahead prediction. This will allow us to avoid
the dependence on . The -step-ahead (forward)
linear prediction of the noise-free of order can
be written as

(68)

where is the prediction error filter. The use of the

optimal predictor results, indeed, in the last expression in (68)
for the prediction error, which is the part of that cannot be
predicted from or, hence, .
For , we retrieve the results of Section IV-B. Note
that we can regard as the received signal from a
truncated channel. If we now apply backward linear prediction
of sufficient order [replace by in the expression in
(20) for ] to the signal , we then obtain, as optimal
prediction error

(69)

From (69) and (68), we deduce that we can obtain a ZF
equalizer with delay (with depending on ) as

(70)

Notice that in (70), the dependence on —see (62)—has
been replaced by the dependence on . This should allow
for better conditioning of the solution in the presence of noise
in most cases. A better way to use these results should be,
perhaps, through the combination of several ZFE’s correspond-
ing to different delays such that the chance
for being small becomes small. The outputs
of these ZFE’s should be properly delayed to align them at
the same (see [28] and [29] for approaches along these
lines).

V. MMSE POLYPHASE EQUALIZATION

Minimum-mean-square-error equalizers (MMSEE’s) are
known to perform better in general than ZFE’s in the presence
of noise. When the channel has very deep spectral
nulls, then the noise enhancement introduced by a ZF equalizer
is very high (in the extreme case of channel zeroson the
unit circle, the noise enhancement introduced by the ZFE is
infinite). On the other hand, MMSEE’s avoid this problem by
compromising the noise amplification and the ISI reduction.
In this section, we are interested in (especially blind) MMSE
equalization in the context of the multichannel setup. In order
to justify the superiority of MMSE equalizers, however, we
first provide a comparison of ZF and MMSE equalizers in
terms of noise enhancement. In the following, we assume
that both the input and the noise are white of
variance , respectively.

A. Comparison of ZF and MMSE Equalization Performance

In the frequency domain, the MMSEE minimizes the fol-
lowing quantity (assuming infinite length equalizers)

(71)

which represents the SNR at the equalizer output. In the right-
hand side of (71), the first term represents the ISI and the
second term the noise contribution. It is actually due to this
second term that the MMSEE differs from the ZFE [compare
with (36)]. Now, the solution to the problem (71) is

(72)

which gives the optimal infinite-length MMSE equalizer.
Equation (72) should be compared with (39). The additive
term in the denominator of the expression appearing in (72)
protects against the infinite noise enhancement that can be
produced by a ZFE since the denominator in (72) is always
strictly positive.

It is also worth noting that in contrast with the symbol-rate
case in which the problem of infinite noise amplification of
the ZFE appears when the channel has zeros on the unit circle,
according to (39) and (72), in the multichannel case, this will
only happen when the subchannels have zeros in common on
the unit circle.

In the noiseless case, according to (72) and (39), the
optimal (infinite-length) MMSE and ZF equalizers coincide.
However, in the noisy case, the MMSE equalizer has a superior
performance since

(73)

[see (40)]. Therefore, as in the symbol-rate case, the optimal
MMSE equalizer will always be superior to the corresponding
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ZF equalizer. We now proceed to the derivation of the MMSE
equalizer.

B. Blind MMSE Polyphase Equalization
Based on Channel Estimation

The MMSE criterion is of the form

(74)

where is the sought-after equalizer setting,is the delay
(lag) that allows the equalizer to be noncausal bysamples
(and whose choice, as mentioned, may influence the equalizer
performance considerably), and is an
estimate of . The solution to the criterion (74) is the
MMSE equalizer corresponding to delay, which is given by
the closed-form solution

(75)

Notice that the form of the equalizer given in (75) is the same
as the one of the classical (symbol-rate) MMSE equalizer,
the only difference being the different composition of the
regression and equalizer vectors. In the presence of noise, the
channeli/o relationship takes the form

(76)

and therefore, the matrix is equal to

(77)

whereas the cross-correlation vector has the general form
(keeping in mind that the input is white of variance)

(78)

where the number of zeros preceding and succeeding the
channel coefficients depends on (for low or high values
of , some channel coefficients may not appear at all in,
e.g., for takes the form .
Concerning the delay , the only way to find its best value
is to evaluate for all . A
practical guideline is that the delay should be such that all
the channel coefficients appear in and preferably near the
middle. When not all channel coefficients are contained in,
performance may degrade significantly.

According to (75), (77), and (78), the MMSE equalizer
can be determined blindly if the channel has already been
identified. The following algorithm can, hence, be used for
blind MMSE equalization:

Algorithm 1—LP-Based Blind MMSEE Using Channel Es-
timation:

1) Choose the delay parameterin (74).
2) Estimate from the received data , estimate

(e.g. from the minimal eigenvalues of , and
subtract the noise contribution from using (77).

3) Compute the prediction coefficients and error vari-
ance from (50) and (51).

4) Compute an estimate of the channel impulse response
using (58) to find (up to a scalar multiple) and

(62) combined with (19) or (63) to estimate the channel.
5) Compute from (78) and (75).

The above algorithm allows for the blind computation of the
MMSE equalizer corresponding to a given delay, based on
the channel estimate given by the LP method of Section IV.
In the sequel, we are interested in alternative approaches
to compute blindly the MMSE equalizer by side stepping
the channel estimation stage (in order to improve estimation
accuracy and computational complexity). We call thesedirect
methods.

C. Direct Methods for Blind MMSE Polyphase Equalization

1) Zero-Delay MMSEE:A straightforward blind approach
to obtain the MMSE solution in the zero-delay case [
in (74)] is the following. We have from Section IV (using the
noisy signal now)

(79)

In the case of zero delay, according to (75) and (78), the
MMSE equalizer takes the form

(80)

From (79) and (80), we deduce that

(81)

Equation (81) offers an alternative for the blind computation of
the zero-delay MMSE equalizer. Now, the MMSEE is obtained
by performing first linear prediction (using the denoised SOS)
and requires only the inversion of the prediction-error
variance matrix. In [30], a similar approach has been taken,
but only is predicted from . The resulting
prediction error is . In that case, the zero-delay MMSE
ZF equalizer is also an unbiased MMSE equalizer and, hence,
is just proportional to the corresponding MMSE equalizer
[filtering and to obtain ].

2) Maximal Delay MMSE:The maximal delay for the
channel impulse response still to be contained in is

. For such a delay, the following two-step approach
can be used:

Step 1) Do blind zero delay ZF equalization. The equalizer
output will be

(82)

Step 2) Obtain as a linear combination of a Wiener
filter with as input vector,

as desired response, and the backward linear
prediction filter on the vector . Preferably,

.

For Step 1, the computation of has been discussed
before. For Step 2, consider the FIR Wiener filtering problem

(83)
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which leads to the normal equations

(84)

where represents the first vector coefficient of .
Now, consider the multichannel backward prediction problem
(on the noisy signal)

(85)

where with normal equations

(86)

From (84) and (86), we conclude that

(87)

In this expression for , all quantities can easily be
found by adaptive filtering (an estimate for also results as
a byproduct of Step 1).

3) Arbitrary-Delay Blind MMSEE:A simple approach to
blindly acquire the -delay MMSE equalizer can be obtained
by exploiting the relationship between ZF and MMSE equal-
izers. The -delay MMSEE can be written as

(88)

where represents the noiseless correlation matrix (note
that is unaffected by the additive noise). The corresponding
(MMSE) ZFE is given by

(89)

From (88) and (89), we obtain

(90)

The second equality in (90) holds because is the
projection matrix on the signal subspace (the column space of

), and belongs to the signal subspace. Equation (90)
shows that there exists a simple linear relation that allows us to
obtain an MMSEE from the corresponding ZFE forany given
delay . The merit of (90) is in that it allows the MMSEE to
be obtained directly and blindly for an arbitrary delaysince
the corresponding ZFE can be obtained by multichannel ZFE,
as per Section IV. Hence, the following algorithm can be used
for direct blind polyphase MMSE equalization.

Algorithm 2—LP-Based Direct Blind MMSE:

1) Choose the delay parameterin (74).
2) Estimate from the received data , estimate

(e.g., from the minimal eigenvalues of ), and compute
.

3) Compute from normal equations

of the type (50) and (58).
4) Use (70) to compute the ZF equalizer corresponding to

delay .
5) Use (90) to obtain the-delay MMSE equalizer.

D. Discussion

In the above, we have shown that MMSE equalization can
be blindly achieved with the help of SOS and linear prediction.
This approach has a number of advantages over other blind
equalization methods, including the following.

• Asymptotic optimality: The proposed blind equalizers
achieve asymptotically optimal Wiener (MMSE) perfor-
mance. This improves on CMA equalizers that converge
at best (i.e., even if they attain their global optima) to the
vicinity of a Wiener solution—their output MSE contains
nonvanishing bias terms w.r.t. the Wiener MSE (see [31],
[32]).

• Convergence: As a result of the above property, these
LP-based techniques do not suffer from the problem of
ill-convergence, which is typically encountered by blind
equalization methods.

• Flexibility: The proposed approach allows us to choose
the delay parameter to optimize the performance. This
is typically not the case in most blind equalization al-
gorithms that are not able to preselect the value of.
For example, the CMA may converge to solutions corre-
sponding to different ’s, depending on its initialization.

• Robustness: The proposed LP-based blind methods are
robust in that

a) they can cope with colored input signals;

b) they are insensitive to the distance of the input signal
to Gaussianity;

c) they alleviate asymptotically the effects of additive
white Gaussian noise;

d) channel order overestimation does not degrade the
performance (provided that a good delay has been
chosen).

• Data efficiency: As these LP-based methods are based on
the SOS of the channel output, they will also be more
data efficient than their HOS-based (batch) counterparts,
which need to collect more data to estimate higher order
cumulants. This may, however, not necessarily always
be the case for adaptive HOS algorithms such as the
CMA, which are gradient-type and often converge to
a local minimum at a relatively high speed (especially
when they are normalized—see [33]). It is quite con-
ceivable, however, that other SOS-based techniques such
as subspace fitting [1], [6] or maximum-likelihood [1],
[2], [34] may yield better statistical efficiency at the cost
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of higher computational complexity and possibly channel
order overestimation problems.

VI. COMPUTER SIMULATION EXAMPLES

We first derive the expression of the output SNR for the
multichannel setup that will be used in the sequel as a measure
of equalizer performance. If we denote by the (symbol
rate) impulse response of the channel-equalizer cascade, then
the equalizer output can be written as

(91)

where represents the noise at the equalizeroutput. The
output noise is the input noise filtered by the equalizer
bank

(92)

Therefore, the variance of the equalizer output is

(93)

assuming the symbol sequence to be white. Therefore, the
SNR at the equalizer output is

SNR (94)

In order to demonstrate the performance of LP-based blind
equalizers, we consider the multipath radio channel given in
[35], which has been oversampled twice . The real and
imaginary parts of the channel impulse response are shown in
Fig. 4. Fig. 5 shows an example that demonstrates the output
SNR’s (in decibels) achieved by the linear prediction-based
equalizer for different sizes of data samples. The channel of
Fig. 5 has been truncated to retain the most important
coefficients of its two phases, and we assume an SNR of 30
dB. As mentioned in Section IV, the truncation allows us to
achieve good performance with a zero-delay equalizer (
not too small). The fractionally spaced equalizer used also has
length and was computed based on the estimated sample
data covariance matrix of the received signal according to (81).
Notice the good performance of the equalizer (dashed line), as
well as how fast it approaches the ideal MMSE solution [the
solid line is (80) using the true quantities].

In order to demonstrate the dependence of the equalizer
performance on the delay parameter[see (75)], we show in
Fig. 6 the output SNR of the ideal MMSE equalizer (75) as

Fig. 4. Wireless channel impulse response.

Fig. 5. Blind LP-based equalizer performance as a function of data sample
size.

Fig. 6. MMSEE performance: Influence of the lag.
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a function of the delay for the channel of Fig. 4. We now
use the full length of the channel (no truncation, )
and plot the output SNR as a function of all the achievable
delays for a tap/phase equalizer (the maximum delay
equals ). Notice how very small and very
large values of lead to degraded performance, whereas an
important number of intermediate delays provide practically
the best achievable MMSE-type performance for the given
equalizer length.

It is also worth commenting on the comparison between
Figs. 5 and 6: in Fig. 5, the zero-delay equalizer has a satis-
factory performance because of the truncated channel
is not small. On the other hand, in Fig. 6, the low-delay
performance is poor (due to a negligible ); however, the
optimal performance is better that the one of Fig. 5 because

captures all the channel energy and is filled up with zeros
on both ends (equalizer long enough).

VII. CONCLUSION

In this work, we have focused on the linear equalization
of polyphase linear SIMO channels and have been interested
in both nonblind (equalizability) and blind (SOS-based tech-
niques) aspects. The advantages of polyphase as compared
with single-phase equalization have been pointed out, and
in particular, the use of oversampling when excess band-
width is available and second-order blind techniques based on
multichannel linear prediction for obtaining optimal equalizer
settings (of the (MMSE) ZF or the MMSE type) have been pro-
posed. These techniques present a number of advantages over
their HOS-based counterparts. We believe that such simple
blind equalization methods may be, in a number of cases, good
alternatives to more complex techniques, combining relatively
low complexity, ease of implementation, and flexibility with
good performance.
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