
1

Enabling Network Applications for

Multi-Service Programmability in a

Disaggregated RAN
Chia-Yu Chang and Navid Nikaein

Communication Systems Department, EURECOM, France

Email: firstname.lastname@eurecom.fr

Abstract

Network slicing is one of the key enablers in providing the required flexibility for realizing the

service-oriented 5G vision and achieving the desired levels of isolation and sharing spanning multiple

subnets, i.e., core network, transport network and radio access network (RAN). In this article, we highlight

the design elements of a proposed RAN runtime slicing system to enable flexible slice customization

on top of disaggregated RAN infrastructures. Moreover, a runtime software development kit (SDK)

is introduced to facilitate the development of agile control applications able to monitor, control, and

program the underlying RAN modules. Also, we highlight the chaining of single- and cross-domain

control applications to form the application plane and implement sophisticated control logics. Finally, a

prototype of the proposed RAN runtime and the runtime SDK is provided based on the OpenAirInterface

and Mosaic5G platforms to demonstrate how slicing and programmability can be achieved in two use

cases.

Index Terms

RAN slicing, 5G, Multi-service chaining, Control application, SDK, API.

I. INTRODUCTION

To realize the service-oriented vision toward fifth generation (5G), the evolving network slicing

paradigm can be adopted to create self-contained logical networks on top of shared physical and virtualized

infrastructures. According to the third generation partnership project (3GPP) TR28.801, each network slice

instance includes a set of network functions and resources spanning multiple subnets, i.e., core network

(CN) and radio access network (RAN), which are arranged and configured to form a complete logical

2

network that meets certain service level agreements (SLAs). A crucial aspect of flexibly customizing

each slice and satisfying the end-to-end (E2E) service requirements is related to the RAN domain, i.e.,

RAN slicing, delivering the RAN as-a-service on a per-use- case basis.

To control and manage multiple slice instances at the RAN domain, a multi-service execution environ-

ment is required to provide the customized virtual views on top of the same physical RAN infrastructure,

which is tailored to per-slice requirements. Such a flexible customization relies on two principles:

softwarization and virtualization, which constitute the foundations for a multi-service and multi-tenant

architecture. Softwarization decouples software from hardware and control-plane (CP) from user-plane

(UP) processing, while virtualization facilitates the instantiation of several customized network functions

over a common infrastructure.

Note that the underlying RAN infrastructure can be either a monolithic base station (BS) or disaggre-

gated, where it is decomposed into radio unit (RU) equipment, distributed unit (DU) and centralized

unit (CU), with the functional splits in-between, as with the split options defined by the 3GPP in

TR38.801. Such disaggregation not only retains the benefits of coordinated and cooperative processing

at the cloud infrastructures, but also extends resource abstraction schemes among multiple RAN nodes

and the interconnected transport networks to compose the RAN. Additionally, slice-customized functions

including CP and UP processing and control logic (CL) can be chained among disaggregated RAN entities

to reflect the slice-specific requirements, with the controlled access to a portion of resources and CP/UP

states in a virtualized form.

Several standardization bodies, such as the 3GPP, highlight the E2E network slicing notion to fulfill the

5G service-oriented vision. Particularly, the 3GPP addressed network slicing from the architecture per-

spective in TS23.501 and the corresponding RAN slicing in TR38.801. Moreover, the RAN slicing fulfills

several 5G RAN design requirements in [1] through the software-defined RAN (SD-RAN) architecture.

Stemming from the software defined networking (SDN) concept, the SD-RAN aims to decouple the CP

and UP processing and is exploited by the FlexRAN platform [2] utilizing the customized south-bound

application platform interface (API) for the flexibly programmable CP processing with different levels

of centralization. Several RAN slicing studies have been conducted. The BS hypervisor provided in [3]

isolates the slice-specific CL and shares radio resources among different slices. Additionally, the RAN

runtime presented in [4] can customize and multiplex in aspects of resource, state and processing over

a disaggregated RAN. Even with the aforementioned RAN slicing prototypes, the focus today is still on

ways to virtualize radio resource, isolate slice performance, and orchestrate the service. This work extends

the efforts of current studies and aims to provide the required software development kit (SDK) primitives

over the sliced RANs to enable flexible, customized, and plug-and-play (P&P) CL programmability.

3

Content-aware
service optimization

Infrastructure Selection &
Performance optimization

Network Provider
(e.g., Operator, Vendor)

Communication
Service Provider

(e.g., Operator, Vertical)

Digital
Service Provider

(e.g., OTT, Media,
Social, Automotive)

Network
Function/Application

Provider
(e.g., Vendor, Vertical,

3rd party)

Data Center
Service Provider

(e.g., Operator,
Cloud, IT)

Service
selection &

composition

Hardware Provider
(e.g., IC designer,

IDM)

Hardware
supportability

Facility Availability &
Compatibility Infrastructure-as-a-Service (IaaS)

→Host the service

→(e.g., Ericsson, Nokia, AmariSoft,

 OpenAirInterface)

Platform-as-a-Service (PaaS)
→Build service and open its APIs

→(e.g., RAN runtime, FlexRAN, BS hypervisor)

Software-as-a-Service (SaaS)
→ Create knowledge and consume services

→(e.g., Handover, RRM, SMA)

Fig. 1: The three as-a-service levels among different providers in the value chain.

To highlight the importance of CL programmability, the relationship between different providers

in the value chain transformation of the telecommunication industry is illustrated in Fig. 1, which is

aligned with the 3GPP proposal in TR28.801. The providers of network infrastructure, network function

and application, and communication and digital service are decoupled to allow a cost-effective and

flexible network composition. Three overlapping levels are observed. The Infrastructure-as-a-Service

(IaaS) provides the programmable physical and/or virtual infrastructures (e.g., software-defined radio

and x86-based infrastructure) to host the RAN services, ranging from commercial to open source. The

Platform-as-a-Service (PaaS) extends IaaS in support of monitoring, control, orchestration, and network

function virtualization and provides open APIs and the slice-friendly development environment. The afore-

mentioned FlexRAN, BS hypervisor and RAN runtime belong to this category. The Software-as-a-Service

(SaaS) consumes the programmable control applications, such as the radio resource management (RRM)

and spectrum management application (SMA), to provide the CLs. For instance, the programmability of

spectrum management and RRM can allocate available spectrum and specific radio resources to deliver

the mobile broadband over-the-top (OTT) digital service with certain quality of experience (QoE) levels.

To deploy P&P control applications for specific use cases, the underlying platform package and SDKs

are emphasized by several works. The network store concept introduced in [5] features the developed

network functions and applications for each slice utilizing the provided SDK. In [6], a Python-based SDK

4

RAN node

Digital Service Provider

Slice 2 Slice 3

RAN Module

Physical RAN Infrastructure

State

Sh
ar

ed

R
A

N
 n

o
d

e
 (

eN
B

/g
N

B
)

Resources

Slice 3

Control Apps

C
u

st
o

m
iz

e
d

Slice 2

Control Apps

UP processing

RAN Runtime

Virtualization managerForwarding
plane Slice dataSlice manager

Context manager

Slice 1

CP processing

Control Apps

UP processing

Slice 1 Digital Service Provider
Control

Apps

Slice SDK

Runtime SDK

Runtime SDK

Runtime SDK

Control
Apps

Slice SDK

Open Data and API
Slice-specific
Data and API

Runtime CP APIRuntime UP API

CP/UP processing

Customized
UP processing

Customized
CP processing

Shared CP/UP
processing

Slice 1

PDCP

RLC

SDAP

PDCP

RLC

RRC SDAP

CP

Sh
ar

ed
 p

ro
ce

ss
in

g
C

u
st

o
m

iz
ed

p

ro
ce

ss
in

g
C

u
st

o
m

iz
ed

D

is
tr

ib
u

te
d

 C
L

Customized
Distributed CL

Virtual Resource Virtual CapacityPhysical Resource

RRM

Monitoring MonitoringMonitoring

Spectrum
Management

Content optimization

RRM

Customized
Centralized CL

C
u

st
o

m
iz

ed

C
en

tr
al

iz
ed

 C
L

Handover

Shared CL

MAC

Sh
ar

ed

C
L

PHY

MAC

RLC RLC

PDCP PDCP

SDAPRRC

CP

UP CP UP CP UP

Inter-slice conflict
resolution

CL accommodation
(Handover, RRM)

UP

Cell-common
controllerCommon control apps

Fig. 2: The architecture of the RAN runtime slicing system (left) and an example with three slice instances
(right).

empowers network applications development exploiting several programming primitives through REST

or Python API.

In summary, this article makes the following contributions:

• Review the RAN runtime slicing system and introduce how the customized CLs are enabled by

common/dedicated control applications and the SDK (Section II);

• Provide the control application execution environment leveraging the SDK and application plane for

flexible and sophisticated CLs. (Section III);

• Build several control applications on top of OpenAirInterface and Mosaic5G platforms and present the

potentials to chain applications in two use cases (Section IV).

II. RAN RUNTIME SLICING SYSTEM

We hereby introduce how the RAN runtime provides a multi-service execution environment targeting

flexible customization and sharing at the RAN node, i.e., long-term evolution (LTE) evolved NodeB (eNB)

or new radio next generation NodeB (gNB). Then, each running slice can develop and plug its control

applications on top of the runtime SDK, interact with the RAN modules to access its resource/state, and

control the underlying behaviors, as shown in the left part of Fig. 2.

5

A. RAN runtime

First, the network slice templates [7] can be used to describe the business applications, including

the specific use case (e.g., public safety), deployed topology (e.g., geographical region), corresponding

SLA, policies (e.g., resource isolation) and requirements (e.g., E2E latency). Such template can be

further translated into the network slice description (NSD) defined by the European Telecommunications

Standards Institute (ETSI), including the related physical/virtual network functions (PNFs/VNFs) with

their dependencies, monitoring parameters, key performance indicators (KPIs), and deployment attribute

(e.g., life-cycle events). These NSDs can be utilized to orchestrate and manage the network services at

different technology domains, e.g., the RAN domain and CN domain.

The RAN runtime can allow slice owners to (a) orchestrate and manage their slices, (b) perform

customized CLs (e.g., handover decisions) and/or CP/UP processing, (c) operate on a set of virtual

resources (e.g., resource block), capacity (e.g., data rate) or latency (e.g., queuing delay), and (d) access

their CP/UP state (e.g., user identity) revealed by the RAN runtime. Such a slice owner corresponds to the

communication service provider illustrated in Fig. 1 that consumes the network provided by the operators.

The RAN runtime also enables the operators to manage the underlying RAN module, enforce slice-

specific policies, perform access control, and provide the BS-common (i.e., slice-independent) services

to users. Note that each RAN module comprises a subset of RAN functions with the associated resources

and states to perform a portion of the RAN processing over the common and/or specialized physical

RAN infrastructure (e.g., hardware accelerator).

Within the RAN runtime, four services are provided over the slice data: (1) slice manager, (2)

virtualization manager, (3) context manager, and (4) common control applications. Slice data include

both slice context (e.g., basic information to instantiate a slice service, such as its identity, user context and

slice association information) and the RAN context (e.g., CP/UP state information and module primitives),

which are used to customize and manage a slice in terms of the required resources, states, processing,

and users. Such slice data can be transferred or shared among different RAN runtime instances because

of the user and network dynamics, such as mobility and service updates [8].

Based on the slice context, the slice manager determines the CP/UP processing chain for each slice

and each traffic flow, and programs the forwarding plane to direct the input and output data paths across

the shared processing operated by the underlying RAN module and the customized processing performed

by each slice. An example with three slice instances is depicted in the right part of Fig. 2. For slice 1,

both the CP and UP processing are separated into customized processing (radio resource control [RRC],

service data adaptation protocol [SDAP], packet data convergence protocol [PDCP], radio link control

6

[RLC], medium access control [MAC] layers) and shared processing (Physical [PHY] layers), while slice

2 only customizes its SDAP functions for UP processing. By contrast, slice 3 relies on the shared CP/UP

processing without any customization. Additionally, the resulted RAN service is operated by the slice

manager in support of service continuity. For example, a slice that performs the customized UP processing

can opt in for a shared processing to reduce its operational expense, which causes changes in the chained

PNFs/VNFs. Finally, the slice manager is responsible for taking actions based on predefined policy rules

when any conflict occurs at the slice or user level.

The virtualization manager provides the required level of isolation and sharing among slices. Specif-

ically, it partitions resources and states, maps physical resources and states to and from the virtualized

ones, and reveals virtual resources and states to a slice, which are decoupled from the physical ones.

Hence, the slice-specific control application can execute its customized CLs over its virtualized network

view. Take the three different radio resource abstraction types in Fig. 2 as examples. Slice 1 requests the

physical resource blocks without any abstraction; slice 2 gets the virtual resource blocks that may not

be mapped one-to-one toward the physical ones; and slice 3 receives the virtualized capacity (e.g., the

aggregated throughput).

The context manager performs the CRUD operations (i.e., create, read, update, and delete) on both

the slice and RAN contexts. To create a slice context, it first performs slice admission control based on

its required processing, resources, and states. Upon admission control, the RAN context is used by the

context manager to (a) register slice-specific life-cycle primitives to the slice manager, and (b) make a

request of resources and/or performance to the virtualization manager. Afterwards, a slice can start to

consume the services provided by the RAN runtime.

The common control applications provide a shared CL for multiple slices. It can accommodate the

customized control decisions from different slice-specific control applications, resolve their conflicts,

and enforce a feasible policy for the underlying RAN node. For instance, the two customized RRM

applications of slices 1 and 2 in the right part in Fig. 2 will leverage the inter-slice conflict resolution

and CL accommodation to provide their specific CLs through the cell-common controller. Hence, the

customized CLs of each slice can be applied, which will be further elaborated in Section III.

Based on the aforementioned services provided by the RAN runtime, customized slice service can be

initiated leveraging the exposed runtime SDK and runtime CP/UP API (cf. Fig. 2). The former is in the

north-bound toward each instantiated slice, and each slice is connected to the RAN runtime through the

communication channel as a separated process, whether it is local or remote. This allows each slice to

span its own execution environment, either at the host or guest level, leveraging operating system and

virtualization technologies, such as container or virtual machine. The latter is in the south-bound toward

7

LEGEND

gNB-CU gNB-DU

Slice 1

SDAP PDCP

SDAP
function

PDCP
function

OutputInput
Flow input (slice 1)
Flow input (slice 2)
Flow input (slice 3)

Slice 1

OutputInput RLC
function

RLC MAC

Low PHY
function

OutputInput

Fronthaul, F2 interface
(e.g., Split option 7-1)

Midhaul, F1 interface
(e.g., Split option 2)

RAN module

RAN
runtime

Slice-specific
processing

High PHY
function

MAC
function

Forwarding
(output)

Forwarding
(Input)

Forwarding
(Output)

Forwarding
(Input)

Forwarding
(Output)

Forwarding
(Input)

Centralized
control
application

Slice 1 centralized control app
(e.g., Dynamic functional split)

Digital Service Provider control app
(e.g., Load balance for slice 2 and 3)

Slice SDK

Slice 2

SDAP

Slice SDK

Distributed app
(Priority handle)

Runtime SDK

Control Logic

I/O data path

NG interface
toward CN

Uu interface
toward user

Xn interface
toward other gNBs

Slice 1
Slice 1 Distributed app

(Monitoring)
Distributed app

(RRM)

Fig. 3: An example of multi-service chaining and forwarding in a disaggregated RAN.

the underlying RAN module to enable each slice to control and manage its service by requesting radio

resources, applying CLs, and accessing states. As for the runtime UP API, the protocol data units (PDUs)

of the corresponding network layer are exchanged, possibly including some extra headers for flow-based

match-action processing [9].

Finally, the dedicated control application can be either distributed or centralized, relying on (a) the

runtime SDK to access the slice-specific resources, states, and processing, and/or (b) the data and API

that are either slice-specific or open through the slice SDK. Such data may contain an abstracted network

view, which will be further elaborated on in Section III. These centralized applications can be developed

and deployed by the digital service provider that consumes the data and API from one or more network

slices. For instance, the content optimization application in Fig. 2 can utilize the exposed RAN information

from different slices to dynamically adjust the video bit rate.

B. Slicing in disaggregated RAN

Following the RAN evolution, a disaggregated RAN example is presented in Fig. 3 with the three-tier

RAN nodes (gNB-CU, gNB-DU, RU) following the 1:m:n relationship. Hence, the slice service chain

can be split between RU/gNB-DU (i.e., fronthaul with F2 interface [10]) and gNB-DU/gNB-CU (i.e.,

midhaul with F1 interface1 identified in 3GPP TS38.470). Note that several other interfaces are identified

1 It is surveyed as V1 interface for the LTE system in 3GPP TR37.876.

8

in 3GPP TS38.401: NG, Xn, and Uu interfaces are between the gNB and CN, another gNB, and the user

equipment, respectively. The overall service function chain of each slice can be composed horizontally

between RAN nodes (gNB-CU/gNB-DU/RU) and/or vertically when customized CP/UP processing is

required tailored to service requirements. For instance, slice 1 customizes its SDAP, PDCP, RLC, and

MAC, and slice 2 customizes its SDAP processing.

Based on the virtualized slice-specific view exposed from disaggregated RAN nodes, the control

applications are facilitated to monitor underlying RAN information and to compose the CLs. Take slice

1 as an example. The RRM application at gNB-CU can manage the radio resource, the priority handling

application at gNB-DU can dynamically prioritize the channels and users over its customized MAC

processing, and the monitoring application at RU can provide real-time RAN information (e.g., the channel

quality indicator [CQI]). Moreover, the centralized application of slice 1 can update the functional split

between the customized processing at gNB-CU and gNB-DU via transporting the slice 1 data among

multiple RAN runtime instances. Additionally, the application of a digital service provider can plug and

play its CLs to the customized processing (slices 2) and shared processing (slice 3) leveraging the slice

SDK.

III. FLEXIBLE AND PROGRAMMABLE RAN CONTROL

The RAN monitoring and control are performed by chaining dedicated and/or shared control appli-

cations, allowing a slice to flexibly (a) process CP/UP states to create and share knowledge and (b)

apply actions to the underlying RAN modules. Specifically, in Fig. 4, two components are highlighted

to support slice-specific control application developments and deployments: (1) Runtime SDK and slice

SDK and (2) cross-domain control application chaining.

A. SDKs

Generally, an SDK provides a software development environment to simplify the design, development,

testing and update of applications. It abstracts the underlying network by means of technology-agnostic

and technology-dependent APIs and includes a group of libraries to provide specific functions and methods

to be accessed through one or more API calls. Within the architecture depicted in Fig. 4, a two-level

abstraction view of the underlying RAN entities is provided through both runtime SDK and slice SDK.

First, the runtime SDK can expose both high- and low-level APIs. The high-level APIs rely on the RAN

runtime services mentioned in Section II-A to allow for (1) creating/updating/destroying a virtual BS

instance on top of RAN modules, (2) collecting monitoring metrics and KPIs for analytic purposes, and

(3) retrieving/allocating the virtualized state and resource corresponding to a slice-specific network view.

9

E1
 in

te
rf

ac
e*

F1
-C

 in
te

rf
ac

e

F1
-C

 interface

F1-U F2-U

F2-C

E1
in

terface

NG-U
NG-C

LEGEND

Control Plane

User Plane

App Plane

C
P

 p
ro

to
co

l

C
P

 p
ro

to
co

l

*The E1 interface in identified between the CP and UP of a gNB-CU by the 3GPP in TS38.460

Fig. 4: The SDK and application plane for flexible and programmable RAN control.

In contrast, the low-level APIs utilize the aforementioned runtime CP/UP APIs to access the instantaneous

network state information for a specific slice (e.g., the BS configuration and relevant user information),

and to modify the CP/UP processing of the underlying RAN modules (e.g., the user measurement

configuration). Moreover, the second-level abstraction is enabled by the specific slice SDK to facilitate

the extensibility and coordination among control applications spanning different technology domains

(e.g., RAN and CN) and administrative domains (e.g., communication and digital services providers),

corresponding to open or slice-specific data and APIs, as shown in Fig. 2. Such a slice SDK can also

expose context-aware semantic information [11] to facilitate the reasoning of actionable knowledge from

heterogeneous information sources and foster interoperability among a variety of applications.

10

More specifically, we elaborate the following capabilities provided by the runtime SDK to enrich the

advanced functionalities of control applications:

1) Authentication, authorization and management: Before utilizing any API calls, the application needs

to be authenticated. Moreover, the slice-customized application must be authorized by the RAN runtime

when accessing the slice-specific state information. Hence, it must provide its credential (or granted

access token) and the identities of the target users and BSs for authorization. However, no authorization

is needed when accessing the public BS information, such as a globally unique cell identity. Besides,

a slice management operation can handle the life-cycle management of a network slice. It can also

dynamically upgrade or downgrade the overall slice to a new profile, involving the related adaptations

in terms of quality of service (QoS) control, PNF/VNF configuration, and so forth.

2) Metrics monitoring: This provides APIs for monitoring slice-related metrics and KPIs over multiple

granularities according to the exposure level (e.g., resource, network function and application, slice, and

service levels) and enables P&P applications for runtime control and adaptation. Furthermore, monitoring

metrics of the corresponding cell/slice/user can be retrieved after authorization.

3) Control and delegation: The SDK allows the application of the control decisions over a cell/slice/user,

depending on the slice-specific virtual network view and the VNF implementation. For example, two

schedulers can have different parameter sets based on their functionalities and slice requirements. More-

over, the control delegation enables delegating the decision to others (e.g., the distributed application or

RAN runtime), effectively reprogramming the underlying RAN modules.

4) Network graph database: This provides the graph-based primitives (e.g., split or merge) to operate

on the network information, which can efficiently model, traverse and correlate more complex and

dynamic relations between densely deployed RAN nodes. Moreover, it can naturally support the multi-

tenant application through graph partitioning into subgraphs for multiple substrates (e.g., multi-domain

or multi-service). Hence, each application can perform its graph-based operations (e.g., shortest path)

that take node relationships in time series into account in its abstracted network view.

For instance, the network graph shown in Fig. 5 depicts three slices in a disaggregated RAN deployment.

The disaggregated RU (i.e., RU1 to RU3), DU (i.e., DU1, DU2), and CU (i.e., CU1) are virtualized for

three different services to serve five users (i.e., u1 to u5). For instance, RU1 is virtualized for slice 1 and

slice 2 as RU1,1 and RU1,2, respectively. The edges between the vertices can represent their relations

and be used for different applications. For example, the edges between a user and a virtualized RU, as in

u1 ↔ RU1,2, can represent the measured CQI or traffic metrics. Such a subgraph can be utilized as input

for handover or traffic-steering applications. Additionally, the edges between disaggregated RAN entities,

as in CU1,1 ↔ DU1,1 ↔ RU1,1, capture their association and the applied functional splits for multi-

11

RU3,3

RU2,2

RU3,1

RU1,2

RU1,1 RU2,3

u2

u5 u4

u3

RU1

RU3

RU2

The edges between the virtualized RUs
within the same physical RU represent

their relations (e.g., resource
preemption, processing multiplexing)

The edges between physical BSs
represent their relations in terms of
cooperation policy (e.g., spectrum

sharing) or constraint (e.g., muting).

DU1,1

DU2,2

The edges between the virtualized RU and the users
represent the measured air-interface condition,

traffic metrics, and statistics information
of both the uplink and downlink directions.

CU1,1

CU1,2

CU1,3The edges between an RU and a DU,
and between a DU and a CU,

represent their association of the
same slice to build up a customized

or shared processing chain.

DU2,3

DU2

CU1

The edge between virtual DUs/CUs
within the same physical DU/CU

show their relations such as
resource allocation priority.

u1

DU1

LEGEND
: User equipment

: Virtualized RU

: Virtualized DU/CU

: Virtualized RAN node within in the same physical RAN node

: Slice 1

: Slice 2

: Slice 3

Fig. 5: An example of a network graph in a disaggregated RAN deployment.

service chaining and placement application. Furthermore, the edges between virtualized instances within

the same physical RAN node, as in RU2,2 ↔ RU2,3 and DU2,2 ↔ DU2,3, show their relations in terms

of sharing (e.g., multiplexing) and priority (e.g., preemption) that can be used for resource management,

while the edges between different physical entities, as in RU2 ↔ RU3, depict the policy of cooperation

(e.g., spectrum sharing) or constraint (e.g., exclusive muting) that can be combined with other graphs

(topology graphs, for example) for dynamic radio spectrum management. In summary, the graph database

can naturally represent complex relations and be partitioned or combined for control applications among

multiple substrates.

12

Application
registry

App3 App2 App1

App1 channel

App1 channel

Establish connection

Request capability list

Establish connection

Request capability list

Request results from list

Response results

Notification(new status)

Response capability list

Response capability list

Fig. 6: The protocol flow for communications between control applications.

B. Single- and cross-domain application chaining

To produce sophisticated CLs in a multi-service environment, various dedicated/shared control appli-

cations can be chained together, as shown in Fig. 4, forming the application plane. Such chaining enables

the automation and extendibility of the network control operations and improves the decision-making

process across different slices based on common monitoring information. Specifically, three categories of

applications can be chained: (a) non-real-time applications that enforce CLs when possible or when being

instructed by higher layers, (b) soft-real-time applications that require an average delay guarantee within

a tolerance when performing CLs, and (c) hard-real-time applications that require a delay guarantee when

applying CLs, which otherwise cause a performance degradation.

Moreover, the communication between control applications can produce several benefits: it can (1)

structure an application as a collection of loosely coupled micro-services [12], (2) synchronize applica-

tions’ status when cooperation is needed, and (3) allow the implementation of a common interface for

different applications. An example is shown in Fig. 6 with three applications, i.e., App1, App2, App3.

Both App2 and App3 first register for the communication channel toward App1 and request the capability

list from App1. Then, App3 asks for the latest results from the list, and thus App1 responds with the

results and notifies App2 of the new status.

An example with three slice instances is provided in Fig. 4. For slice 1, the user’s subscription

information (e.g., user classes) can be utilized to allocate its carrier frequency and radio bandwidth

13

through the SMA and to control its radio resource through the RRM application in a single administrative

domain (i.e., the same communication service provider). A cross-domain example is also shown in which

the digital service provider can offer both a customized video-on-demand (VOD) playback application

and a soft-real-time video adaptive bit rate (ABR) control based on the monitored CQI from one or

more slices (e.g., slices 2 and 3). Note that such an application plane can span several disaggregated

RAN nodes, e.g., slice 2 can monitor the CQI at RU and the observed time difference at gNB-CU for

augmented reality content delivery and crowd detection applications.

IV. PROOF OF CONCEPTS

To explore the potential of chaining control applications over the application plane, we implemented an

LTE-based prototype of RAN runtime slicing system based on the OpenAirInterface [13] and Mosaic5G

[14] platforms. We created remote slices using an asynchronous communication channel toward the RAN

runtime, embedded its control applications, and operated on virtualized resources and states based on

the provided runtime SDK. In following, we present the results for two use cases: (a) RAN-aware video

optimization and (b) Subscription-aware RAN resource provisioning.

A. RAN-aware video optimization

We adapt the video bitrate based on instantaneous RAN information (i.e., the CQI), relying on the

chaining of the monitoring and ABR applications, following the steps shown in Fig. 7. Hence, video

segments of different qualities were provided based on the requested rate mapped from the CQI value to

maintain the video QoE [15]. We first measure the maximum user good-put corresponding to different

CQI values in both the downlink and uplink directions shown on the top of Fig. 8. Afterwards, two

experiments were conducted to compare the cases with and without RAN-aware video optimization, i.e.,

labeled ABR and Fix respectively, when varying the CQI from 4 to 15. The former showed that the video

quality2 can be adapted from WQVGA, WVGA, WSVGA, HD to FHD, when the user channel quality

is improved with fewer dropped video frames. However, the latter used fixed HD video quality irrelevant

to the CQI fluctuation. We can observe that a large amount of dropped frames and zero buffer length

when the average CQI is 4 and an inferior video quality when the CQI is 15. The results revealed that

the QoE can be significantly improved when chaining monitoring and ABR applications that belong to

two different administrative domains.

14

Adaptive bitrate (ABR) AppMonitoring App

Scheduling

RAN

runtime
Knowledge

 base

Video flow segment
1 ... N

User 1

User 2

(Step 2)
RAN info

(Step 3)
Current link rate

fluctuation

(Step 4)
Request video info

Available
video info

User1 req. rate

User2 req. rate

(Step 5)
Video

segment

Dynamic Adaptive
Streaming over

HTTP (DASH)
server

Base
Station

User 1

User 2

Full high definition (FHD): 1920x1080

High definition (HD): 1280x720

Wide quarter VGA (WQVGA): 480x270

Wide super VGA (WSVGA): 1024x576

Wide VGA (WVGA): 768x432

Cross-domain application plane
(Monitor app belongs to Control service provider, ABR app belongs to Digital service provider)

Fig. 7: The process flow of RAN-aware video optimization use case.

WQVGA

480x270
(16:9),30fps

WVGA

768x432
(16:9),30fps

WSVGA

1024x576
(16:9),30fps

HD
1280x720(16:9),30fps

FHD
1920x1080
(16:9),30fps

Average CQI is 4 Average CQI is 7 Average CQI is 9 Average CQI is 11 Average CQI is 15

Acronym

WQVGA : Wide Quarter Video Graphics Array WVGA : Wide Video Graphics Array
WSVGA : Wide Super Video Graphics Array HD : High Definition FHD : Full High Definition

Fig. 8: The measured maximum good-put of corresponding CQI values (top) and experiment results
consisting downlink bandwidth, video bitrate, buffer length and dropped frames (bottom).

15

User subscription App

RRM app

RAN

runtime

User 1

User 2

(Step 2) User
subscription

info

(Step 3)
Radio resource

provisioning

User
subscription

Database

User1 info

User2 info

Base
Station

Time

Fr
eq

u
en

cy User 2 resource

User 1 resource

Time

U
se

r
2

D
at

a
ra

te

Time

U
se

r
1

d
at

a
ra

te
Single-domain application plane

(Both user subscription and RRM Apps belong to Control service provider)

Fig. 9: The process flow of a subscription-aware RAN resource provisioning use case.

Fig. 10: From left to right, the measured QoE for five user classes: Super, Platinum, Gold, Silver and
Bronze.

B. Subscription-aware RAN resource provisioning

We then chained slice subscription and RRM applications within a single administrative domain to

provision different radio resources for different user classes, following the steps depicted in Fig. 9. These

five user classes have different pre-defined policy profiles that determine the amount of radio resources

a user can consume in the downlink and uplink directions. To quantify the overall QoE of different user

classes, the neprf application3 was installed on the commercial-off-the-shelf user equipment connecting

to the OpenAirInterface BS, as shown in Fig. 10. The super user got the best score, considering bit rates,

delay and jitter, web browsing and video streaming performance rate. The Platinum users score was close

2 https://wikipedia.org/wiki/Graphics display resolution [accessed on July-13-2018] 3 https://www.nperf.com/en/ [accessed

on 13-Jul-2018]

https://wikipedia.org/wiki/ Graphics_display_resolution
https://www.nperf.com/en/

16

to the super user’s, while there were performance drops for the gold and silver users in web browsing

and bit rate. The bronze users suffered from significant drops in the bit rate, web browsing, and video

streaming. Summing up, chaining both user subscription and RRM applications can provision RAN radio

resource in real-time.

V. CONCLUSIONS

In this article, we proposed the RAN runtime slicing system to enable a slice-friendly development

environment and provided the runtime SDK for the development of control applications. To enable

flexible CL programmability, we proposed the two-level abstraction concept, relying on several SDK

capabilities and the application plane to chain shared/dedicated control applications. Finally, two use

cases were presented over the proposed runtime SDK and RAN runtime to provide sophisticated and

customized CLs when chaining control applications.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s Horizon 2020 framework program under

grant No. 671639 (COHERENT), No. 762057 (5G-PICTURE) and No. 761913 (SliceNet).

REFERENCES

[1] P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S. E. El Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G Radio

Access Network Architecture: Design Guidelines and Key Considerations,” IEEE Communications Magazine, vol. 54,

no. 11, pp. 24–32, Nov. 2016.

[2] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis, “FlexRAN: A Flexible and Programmable

Platform for Software-Defined Radio Access Networks,” in Proceedings of the 12th International on Conference on

Emerging Networking EXperiments and Technologies (CoNEXT ’16). ACM, 2016, pp. 427–441.

[3] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN Slicing for a Flexible and Cost-Effective Multi-Service

Mobile Network Architecture,” in Proceedings of the 23rd Annual International Conference on Mobile Computing and

Networking (MobiCom ’17). ACM, 2017, pp. 127–140.

[4] C.-Y. Chang and N. Nikaein, “RAN Runtime Slicing System for Flexible and Dynamic Service Execution Environment,”

IEEE Access, vol. 6, pp. 34 018–34 042, Jun. 2018.

[5] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D. Stavropoulos, I. Alyafawi, Z. Zhao, T. Braun, and T. Korakis, “Network

Store: Exploring Slicing in Future 5G Networks,” in Proceedings of the 10th International Workshop on Mobility in the

Evolving Internet Architecture (MobiArch ’15). ACM, 2015, pp. 8–13.

[6] R. Riggio, M. K. Marina, J. Schulz-Zander, S. Kuklinski, and T. Rasheed, “Programming Abstractions for Software-Defined

Wireless Networks,” IEEE Transactions on Network and Service Management, vol. 12, no. 2, pp. 146–162, Jun. 2015.

[7] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network Slices toward 5G Communications: Slicing the

LTE Network,” IEEE Communications Magazine, vol. 55, no. 8, pp. 146–154, Aug. 2017.

17

[8] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar, “FlexCRAN: A Flexible Functional Split Framework

over Ethernet Fronthaul in Cloud-RAN,” in 2017 IEEE International Conference on Communications (ICC), May 2017,

pp. 1–7.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding

Metamorphosis: Fast Programmable Match-action Processing in Hardware for SDN,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 99–110, Aug. 2013.

[10] A. Sutton, “5G Network Architecture,” Journal of The Institute of Telecommunications Professionals, vol. 12, no. 1, pp.

9–15, 2018.

[11] A. Al-Saadi, R. Setchi, and Y. Hicks, “Semantic Reasoning in Cognitive Networks for Heterogeneous Wireless Mesh

Systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 3, pp. 374–389, Sep. 2017.

[12] N. Dmitry and S.-S. Manfred, “On Micro-services Architecture,” International Journal of Open Information Technologies,

vol. 2, no. 9, pp. 24–27, 2014.

[13] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “OpenAirInterface: A flexible platform

for 5G research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, Oct. 2014.

[14] N. Nikaein, C.-Y. Chang, and K. Alexandris, “Mosaic5G: Agile and flexible service platforms for 5G research,” ACM

SIGCOMM Computer Communication Review, vol. 47, no. 3, Jul. 2018.

[15] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “piStream: Physical Layer Informed Adaptive Video Streaming Over LTE,” in

Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom ’15). ACM,

2015, pp. 413–425.

18

Chia-Yu Chang received the B.S and M.S. degrees from National Taiwan University, Taiwan, in 2008 and 2010, respectively. He

is currently pursuing the Ph.D. degree with Communication Systems Department, EURECOM, France. Between 2010 and 2015,

he was in MediaTek Inc., Taiwan, as a senior engineer for the design of 3G/4G cellular communication system architecture and

algorithm design. He participates in several collaborative research projects related to the 5G communication system architecture

and protocol design in EU Horizon 2020 framework programs. His research interests include design for communication system

architecture, wireless network virtualization, and cross-layer algorithm.

Navid Nikaein received the Ph.D. degree (docteur ès sciences) in communication systems from the Swiss Federal Institute

of Technology EPFL in 2003. He is currently a Tenured Associate Professor with the Communication Systems Department,

EURECOM, France. He is also leading a group focusing on 4G-5G experimental system research related to radio access and

core networks with a blend of communication, cloud computing, and data analysis. Broadly, his research contributions are

in the areas of wireless access layer techniques, networking protocols and architectures, service-oriented RAN/CN following

SDN, NFV, MEC design principles, and wireless network prototyping and emulation/simulation platforms. He has a proven

track record in collaborative research projects related to 4G-5G and beyond in the context of European FP6, FP7, and H2020

framework programs, and served as a Project Manager, a Technical Coordinator, and a Work Package Leader. He is also leading

the development of the radio access layer of OpenAirInterface and its evolution towards 5G as well as coordinating the Mosaic5G

initiative whose goal is to provide software-based 4G/5G service delivery platforms.

	Introduction
	RAN runtime slicing system
	RAN runtime
	Slicing in disaggregated RAN

	Flexible and programmable RAN control
	SDKs
	Authentication, authorization and management
	Metrics monitoring
	Control and delegation
	Network graph database

	Single- and cross-domain application chaining

	Proof of Concepts
	RAN-aware video optimization
	Subscription-aware RAN resource provisioning

	Conclusions
	References
	Biographies
	Chia-Yu Chang
	Navid Nikaein

