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Abstract—The upcoming mobile core network, which will be
based on Virtual Network Functions (VNF), will face an increase
of data traffic on both data and control planes. This is due
to the increase of the number of connected devices and the
newly 5G supported-services like IoT, Connected Health Care etc.
Therefore dynamic and accurate scalability techniques should be
envisioned in order to answer the needs, in term of resource
provisioning, without degrading the Quality Of Service (QoS)
already offered by hardware based core networks. Although
provisioning new resources is easier as it is a matter of software
deployment, the strategy to use (when to scale and how much
to scale) remains complex. In this paper we propose scaling
techniques based on neural networks to forecast the upcoming
load. Hence scheduling the resource provisioning in a manner
that all the needed resources will be deployed and active when
the load increases. In the same way, it will scale-in the unneeded
resources when the traffic load decreases. The proposal is tested
via discrete event simulations using a traffic load dataset provided
by a Network Operator. The results show clearly the robustness of
our proposal comparing to a threshold-based scaling technique.

Keywords—5G, Scaling, Load Balancing, Mobile Core Net-
work, Prediction, Neural Network

I. INTRODUCTION

With the upcoming generation of mobile network, namely
5G, several new services and markets are expected to emerge
(i.e. IOT, Connected Health Care etc.). These new services
will lead to an explosion of the number of connected devices,
of different types and categories (i.e. watches, sensors, robots
etc.). It could reach 28 billions of devices connected to 5G by
2021, in front of 17 billion in 2016 [1].

The increase of the number of User Equipments (UE) will
be accompanied by an increase of the traffic over both the
data and the control planes of the mobile network, and over
both sides: the Radio Access Network (RAN) and the Core
Network (CN). Especially, as demonstrated in [2], the Access
and Mobility Function (AMF), the new generation component
of the Mobility Management Entity (MME), is likely to be
congested since it is the single point of access for the control
plane in the core network. As shown, the overhead causes an
increase in latency for the Network Access Stratum (NAS)
procedures, up to some requests’ rejects when certain load
thresholds are exceeded.

Following the case listed above, the requirement of low
latency for 5G networks is far from being respected, and

solutions need to be found. In this way, the 3GPP has rethought
the Core network architecture, which aims at being more
flexible and scalable. The new architecture, namely New-
Generation Core (NGC) architecture [3], addresses scalability
and flexibility by introducing more modular Network Func-
tions (NF) to compose the control plane service, which could
also relies on network virtualization via Network Function
Virtualization (NFV).

The NGC is a great step further as it splits the monolithic
component MME of the Evolved Packet Core (EPC) (4G core
network) into the AMF, the Session Management Function
(SMF) and the Unified Data Management (UDM). Indeed, this
split offers more flexible opportunities but it doesn’t tackle
yet the scalability strategies and techniques. Therefore, the
main aim of this paper is to tackle the scalability issue in the
NGC environment, with a particular focus on the AMF. As
the components of the NGC are now modular functions that
benefit from NFV, deploying or shutting off the instances of
the concerned function is more easier; but deciding when to
do it, is still a complex process. Therefore, there is a need to
define when to scale and the techniques that best fit for mobile
networking.

In this paper, we propose different new proactive scaling
techniques and strategies. These techniques are based on
machine learning and neural networks and adapted for mobile
network. As for the strategies, it allows: (i) to control the load
of each AMF in order to decrease the latency for a given
procedure, (ii) to dynamically deploy new instances (Scale
out) or shut off non used instances (Scale in) depending on the
traffic load in the mobile network and in a proactive way. The
strategies and techniques are tested and proved using discrete
event simulations and based on real mobile load data. Also,
the proposed proactive strategies and techniques are compared
to a reactive scaling technique, showing the benefits of scaling
instances in a proactive manner.

The remainder of this paper is organized as follows. Section
II lists and analyses related work on scalability solutions for
VNFs and more precisely for mobile core network compo-
nents. Section III presents the assumed architecture based on
NGC and NFV. Section IV describes the proposed solution
process from data management to neural network testing.
Model evaluation and results analysis are presented in Section



V. Finally Section VI concludes this paper and introduces our
future work.

II. RELATED WORK

As the components of the NGC are run as VNFs (using
Virutual Machine - VM or containers), the scalability issue is
now more a VM (container) deployment issue than a hardware
deployment issue. It is crucial to decide accurately when to
scale and how many instances to deploy or to shut off. Many
solutions are proposed in the literature for VNF scaling.

In [4], [5] and [6], authors have proposed scalability based
on thresholds. In this scaling categories usually two thresholds
are defined: one for scaling in (SIT) and one for scaling out
(SOT). When the load exceeds the SOT, a scale out process is
launched. On the other side, when the load goes beneath the
SIT, a scale in process is launched. This technique allows to
scale the system reactively to the evolution of the system load.
However, this technique may leads to oscillations, if the system
load goes ahead and then beneath the thresholds. These oscilla-
tions will affect the overall system performance as they trigger
much physical resources provisioning or releasing. Also, it
is worth mentioning that many iterations may be needed in
order to get the exact number of needed instances. In addition,
reactive techniques act after a load increase or decrease. Thus
the time elapsed between the scaling decision and the scaling
process may lead to a performance deterioration.

Other technique of VNF scaling is adaptive techniques.
In [7], the authors propose a mechanism that combines
Q-Learning with Gaussian Processes-based system models,
which allows to adapt to dynamic environments and improve
the scaling policy before taking any action. Indeed, this
proposal, as the authors assume, reacts better than static
threshold. However, it remains a reactive solution, and hence
inherits the same weaknesses. Also, it should be noted that
using Reinforcement learning, may take a considerable time
before staring to have the correct decisions. Indeed, this is not
acceptable in systems like 5G, due to the time constraint of
certain type of applications.

Some papers in the literature have opted for proactive
solutions like in [8]. Authors propose a solution based on time
series model in order to forecast CPU usage from a historical
dataset, and hence schedule resource provisioning pro-actively.
This technique is interesting for its pro-activity, but it does
not offer adaptation in case of traffic pattern evolution and is
not compliant with mobile networks’ requirements. Besides,
the proposed solution considers only system level information,
like CPU or memory usage, but for mobile networking in 5G,
service level information should be taken into consideration
aiming at reflecting better the global load of the core network.

III. ARCHITECTURE

In this paper, we consider using the New Generation Core
Network (NGC). This architecture is the new 5G standard
prepared by the 3GPP group. The architecture of the NGC
is illustrated in Figure 1. Our work focuses on the Access

Fig. 1: Architecture proposal for 5G

and Mobility Function (AMF) and the the Unified Data
Management (UDM), known as the MME in the EPC.

In legacy 4G core network, the procedures of an attached
UE on a certain MME should be processed only by this same
MME. Thus, scaling-in an MME means transferring all the
users’ context to another MME before shutting off the first
one. On the other hand, when scaling out, two solutions are
possible: (i) the new MME handles new UEs and hence the
deployed MMEs continue to serve the already connected UEs,
(ii) some migration procedures should be launched, for load
balancing purpose, to move some of the already attached UEs
to the recently deployed MME. This fact made scalability a
complex issue and shows that the EPC architecture is inflexible
and especially the MME as it is not stateless.

Therefore, the 3GPP group decided to split the MME
component into AMF and UDM, allowing to separates the
User Context from the Workers. In other words, the UDM is
a database allowing to store the UEs’ context and their states.
The AMF is a worker reserved only to process procedures. So
the AMF is stateless and any UE procedure can be handled
by any AMF instance. When a request arrives to an AMF
instance, the AMF loads the user context from the UDM, using
the reference interfaces noted as Nx and depicted in Figure 1,
processes the procedure and finally stores the new user context
information and status in the UDM. This approach made the
scalability of the AMF function easier and the architecture
more flexible from a deployment point of view. Nevertheless,
the decision of scaling, like how much instances to scale in/out
or when to scale, is still missing.

Based on the ETSI NFV reference architecture, the scal-
ability of a VNF is a decision taken by the NFV Orches-
trator (NFVO), using the information provided by both the
Virtual Infrastructure Manager (VIM) and the VNF Manager
(VNFM). Therefore, for the sake of simplicity, we have only
added a Service Orchestrator (SO) to the NGC architecture in
this work. As mentioned earlier, our approach aims to balance
the load between the AMF instances and to scale in/out the
AMF functions as required. So the intelligence needed to apply
this strategy is located in the SO.



IV. AMF BALANCING AND SCALING PROPOSAL

In this section, we describe the used-methodology to derive
fine grained predictions of the arriving traffic, which is later
employed by the proposed load balancing model. Thus, we
start by introducing the datasets, which were prepared for the
learning phase. Then, we describe considered neural network
models. Finally, we describe briefly the strategy used for load
balancing.

A. Mobile Dataset and Data Classification

The dataset used in our work contains real mobile data
collected by Telecom Italia Big Data Challenge [9] and hosted
on Harvard Dataverse [10]. This dataset is rich of information.
It contains two months of data collected on different Cells of
the mobile core network of Mobile Italia in Milano, with a
period of 10 minutes.

We assume in this paper that in each period of time 10%
of the whole traffic (calls, sms and Internet traffic) is control
traffic. The rest 90% of the traffic is considered as user data
traffic. In order to use the data in our contribution (training
the neural networks and testing them), the data followed some
sorting and classification processes.

First, the data is sorted following the timestamps and not the
cell ids. In other words, for each period of time (10 minutes),
we regrouped together the data of all the cells in Milano city.
Then we extracted our 10% of control traffic load with their
timestamps.

Once we have the needed data, we propose to shift from a
prediction problem into a classification one. This means that
at each time stamp, the load data will belong to a load class.
The load classes are distributed as following: the variation
between the minimum control load and the maximum control
load over the two months is split into 10 intervals. Thus the
period between each interval of load is a class. Therefore,
depending on the class, we are able to determine how much
AMF instances we need to absorb, as we know already the
capacity of our AMF (20 process per second in our case).

Then, each class is coded in order to increase the learning
factor and the accuracy of our neural networks. The coding of
the classes is simple and based on ’one-hot’ coding. In other
words, the class are coded using a word of 10 bits (as there
are 10 classes), and the first class code will be the first bit
equal ’1’ and the others equal ’0’. The second class will have
the second bit equals ’1’ and the other equal ’0’... etc.

Finally to sum up, at the end of the data processing and
classification, at each time stamp over two months, instead
of having a number of connection, a class of load is defined
where the number of connection fits in the interval of the class.

B. Neural Network Models

1) Deep Neural Network: As stated before, the scaling
decision is based on prediction of the upcoming control traffic
load using neural network models. In this contribution we have
compared the prediction performance of two types of neural
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Fig. 2: Long Short Term Memory Cell Architecture

networks (DNN and RNN) using the mobile data classification
listed above, in Section IV-A.

The DNN, or also called feed forward neural network,
is composed of several neural layers. The DNN layers are
classified as following: the input layer; the hidden layer(s);
and the output layer. Each Layer is composed of nodes. Each
node is like a neuron in our brain: Following a stimulus it may
fire an action. The stimulus is actually the data X multiplied
by a weight. Once we have stimuli, the stimuli are summed
and passed to a function called ’The activation function’. The
activation function detects the importance of the data and
decides whether the data is propagated through the network in
order to get the final outcome or vanishing it.

2) Recurrent Neural Network: The RNN is another type of
neural networks. In our contribution, only LSTM cell [11]
is used. The main difference between feed forward neural
networks (i.e. DNN) and LSTM, is that the RNN keeps state
memory of the last passed activation events in the network as
temporal contextual information [12]. Figure 2 illustrates the
structure of an LSTM cell. An LSTM cell is composed mainly
of an input and three gates: the input gate, the forget gate and
the output gate.

The input xt is squeezed between -1 and 1 using the tanh
function and can be noted as following:
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i and j respectively represent the cell and the neuron. b,
U and W respectively denote the biases, input weights and
recurrent weights into the LSTM cell. Then, the output of
the input gate (a sigmoid gate), which is between 0 and 1
(It), is multiplied element-wise by g

(t)
i in order to determine

which inputs are switched on and off. This operation is
denoted as g ◦ i. Afterwards an inner state (Ct−1), providing
an internal recurrence loop to learn the relationship between
inputs separated by time, is ultimately added to the g ◦ i.

Furthermore, the forget gate, a sigmoid function, is element-
wise multiplied by Ct−1 to determine which previous states
should be remembered and which should be forgotten, allow-
ing the LSTM cell to learn appropriate context. Finally, the
output Ot of the sigmoid gating function is multiplied by the
squeezed inner state st in order to get the LSTM cell output
expressed as following:

ht = tanh(st) ◦Ot



Fig. 3: Proposal Logic

For more details on RNN and LSTM structures and functions,
interested readers may refer to [13].

C. Load Balancing

To equilibrate the load between the AMF instances, a
control model developed and tested in a previous work [14]
will be used. The used-controller is Linear Quadratic Regulator
(LQR) [15]. The LQR aims to minimize the performance index
in order to allow the system to converge to the goal with less
controller action. So periodically, the LQR will calculate a
feedback vector allowing to determine the relative capacity of
each AMF, depending on its load. Once the relative capacities
are calculated, they are pushed to the eNodeB in order to
distribute the arrivals on the AMF instances depending on the
load of each. For more details about the load balancing process
please refer to [14].

V. MODELS EVALUATION AND RESULTS ANALYSIS

A. Simulator

In order to test the models, we developed a discrete event
simulator in Python using Simpy [16]. The simulator simulates
the behavior of UE arrivals that are buffered in the eNodeB
queue. Then, the simulated eNodeB will dispatch the arrivals
on the active AMF instances based on their relative capacity
calculated periodically as mentioned above. The dispatched
UEs will be hosted in the corresponding AMF queue and
processed following a speed of 20 requests per second. This
means that the latency chosen for a given AMF instance
is 0, 05 milliseconds. Also, a given UE procedure will be
rejected, due to the overload of the AMF instance, if the
number of requests bypasses 50 requests in the AMF queue.
In addition to the relative capacity calculation for each AMF,
the SO checks each 10 minutes the neural network model in
order to get the load class of the next period. Depending on the
predicted class, the SO determines the needed number of AMF
instances to be deployed for the next period. If the number of
instances will increase, the SO will deploy the instances 60
seconds before the next period. The 60 seconds are considered
as deployment latency. It is the needed-time to deploy an AMF
instance in the data center and to be fully operational. The

deployment latency (60 seconds) is calculated as an average
following the tests conducted in [17]. Otherwise, for scaling in
the AMF instances, the SO will order the removal of the over
provisioned AMF instances 60 seconds after the next period in
order to be sure that the load have decreased and avoid AMF
overload. Finally, as the collected arrival data has a periodicity
of 10 minutes, we distributed each period on 600 seconds in
order to get more granularity and simulate a real traffic pattern.
Therefore, the total number of arrivals of each period of 10
minutes is distributed following an inter arrival time, for each
UE, calculated based on Poisson process law.

B. Scenarios
In order to test and compare our proposals, three different

simulations were conducted. For the three simulations, we
have considered the same arrival data (one week) with an
AMF instance capacity of 20 requests per second. Also a
deployment latency is considered over all the simulations equal
to 60 seconds. The relative capacity refreshment of each AMF
is achieved by the SO each 10 milliseconds.

1) Static Threshold Simulation: The first simulation con-
sists on validating our simulator and showing the behavior
of a dynamic scalability based on a static threshold, while
using our control model to balance the load over the deployed
AMF instances. In addition to the simulation parameters listed
above, we consider a scale out threshold of 80% of load of
the overall deployed AMF capacity. The scale in procedure
is launched once less than 10% of the overall AMF instances
capacity is used. The scalability decision is checked each 2
seconds.

2) Deep Neural Network Simulation: In this simulation we
deployed a DNN composed of an input layer; 3 hidden layers
and an output layer. The hidden layer 1 is composed of 500
neurons, the hidden layer 2 is composed of 1000 neurons and
hidden layer 3 is composed of 1500 neurons. In order to train
our DNN, we extract 60% of the dataset, shuffle them, then
inject them into the DNN as batches of 500. From the 40% of
data left, we selected one week of data and injected it in the
simulator (the same data as the other simulations). So in this
simulation, the SO checks each period of time (600 seconds)
the predicted load class given by the DNN for the upcoming



(a) (b) (c)

(d) (e) (f)

Fig. 4: Evolution of AMF instances number with control traffic Requests (a) threshold-based solution (b) DNN-based solution
(c) RNN-based solution compared to the evolution of AMF instances load with AMF instances number (d) threshold-based
solution (e) DNN-based solution (f) RNN-based solution

period of 600 seconds and decides whether to scale in/out the
AMF instances.

3) Recurrent Neural Network Simulation: Finally, for this
simulation we deployed the RNN composed of one LSTM
cell. This cell is composed 256 neurons. As the DNN, 60% of
the dataset were shuffled and injected as batches of 500 in the
RNN. In order to keep the value of our data classification for
the RNN and get the best prediction accuracy, each training
data of a batch is composed of one RNN chunk of which has
the size of the word of a coded class (10). Like in the DNN
case, we selected one week of data from the 40% left in the
dataset and inject it in the simulator(the same data as the other
simulations).

C. Results Analysis

In Figure 4, we compare the number of deployed AMF
instances in terms of the evolution of the load for (a) the
threshold solution, (b) the DNN solution and (c) the RNN
solution, and also the consequences on the AMF instances load
in (d) threshold-based solution, (e) the DNN solution and (e)
the RNN solution.

The threshold-based solution deploys up to 13 instances
when the arrival rate is at the maximum rate as the RNN and
DNN solutions deploy up to 12. On the other hand, when the
load is at the minimum, the threshold-based solution deploys
down to 2 instances, the DNN solution deploys down to 4
instances and finally the RNN deploys down to 3 instances.
Although the threshold solution deploys more AMF instances

than the RNN and the DNN solution, when the load is at
its maximum, the AMF instances load is always reaching
its maximum of 50 requests per seconds and thus the AMF
instances are always overloaded. As for the DNN and RNN
based solutions the AMF instances load is around 10 requests
in the queue per seconds. This is explained by the fact that
the threshold solution is reactive. Hence, it deploys the AMF
instances after a load increase without foreseeing the time
needed to provision new resources, which leads to AMF
congestions and scaling oscillations.

On the other hand from Figure 5, we can see the con-
sequences of overloading the AMF instances by evaluating
the number of rejected requests: (a) Threshold-based solution,
(b) DNN solution and (c) RNN solution, and the duration
needed to process an attach request: (d) threshold solution,
(e) DNN solution, (f) RNN solution. Comparing to the RNN
and the DNN solutions, the number of blocked requests of
the threshold-based solution is high. Also the attach duration
of the UEs for the solution based on thresholds is always
around 2.5 seconds as for the DNN and the RNN solutions
is approximatively around 0.6 seconds. Hence, scaling in a
proactive manner allow to avoid an increase of the latency
while processing the control plane procedures.

Although the DNN is approximately similar to the RNN, it
is worth mentioning that the RNN solution is slightly better
that the DNN solution as it predicts more accurately (10%
better than the DNN solution). This is shown in Figure 4,
where we remark that when the load is at minimum, the
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Fig. 5: AMF instances number vs Blocked traffic Requests (a) threshold-based solution (b) DNN-based solution (c) RNN-
based solution compared to the evolution of the UEs attach duration (d) threshold-based solution (e) DNN-based solution (f)
RNN-based solution

RNN based solution scales in down to two whereas the DNN
solution scales in down to 3 AMF instances. Indeed, the
RNN predicts more accurately and thus, helps in reducing the
number of AMF instances to exactly what is needed in order
to absorb the actual load.

VI. CONCLUSION

In this paper we proposed a novel solution to scale dy-
namically and pro-actively the VNF elements of the 5G new
generation mobile core network. Our technique is based on
neural networks where two different models are compared:
the DNN and the RNN. Simulations, based on a real dataset
of a Network Operator, showed that our solution scales in/out
accurately the number of AMF instances depending on the
load. Indeed, the proposed solution also bypasses the latency
needed to provision new resources as it deploys in advance
the needed number of AMF instances for the upcoming load;
thus, avoiding overloading the core network and reducing the
attach duration or the request process duration. We envision,
for future work, to deploy our technique on a real platform
in order to test its advantages on the field, and also we are
willing to improve it in order to adapt when unexpected load
pattern occurs.
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