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Abstract

In this paper, we address the problem of speaker-based segmentation, which is the ®rst necessary step for several

indexing tasks. It aims to extract homogeneous segments containing the longest possible utterances produced by a

single speaker. In our context, no assumption is made about prior knowledge of the speaker or speech signal char-

acteristics (neither speaker model, nor speech model). However, we assume that people do not speak simultaneously

and that we have no real-time constraints. We review existing techniques and propose a new segmentation method,

which combines two di�erent segmentation techniques. This method, called DISTBIC, is organized into two passes:

®rst the most likely speaker turns are detected, and then they are validated or discarded. The advantage of our algo-

rithm is its e�ciency in detecting speaker turns even close to one another (i.e., separated by a few seconds). Ó 2000

Elsevier Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel beschreibt Sprecher basierte Segmentierung, den ersten Schritt beim Indexieren von Sprechern. Das

Ziel besteht darin, m�oglichst lange homogene Segmente zu extrahieren, die Laute eines einzelnen Sprechers enthalten.

Wir legen zugrunde, daû keinerlei Sprachcharakteristik des Sprechers bekannt ist (weder Sprechermodel noch

Sprachmodel). Auûerdem wird die Annahme gemacht, daû immer nur ein Sprecher zur Zeit spricht und daû keine

Echtzeitanforderungen vorhanden sind. Wir stellen existierende Segmentierungtechniken vor und schlagen eine neue

Methode vor, welche zwei gebr�auchliche Methoden kombiniert. Unsere Methode (DISTBIC) ist in zwei Phasen auf-

geteilt: erst werden die wahrscheinlichsten Sprecherwechsel gefunden, die dann entweder validiert oder verworfen

werden. Der Vorteil unseres Algorithmuses liegt in seiner E�zienz Sprecherwechsel aufzu®nden, besonders wenn sie

sehr nahe beieinander liegen (d.h. Abst�ande von wenigen Sekunden). Ó 2000 Elsevier Science B.V. All rights reserved.

R�esum�e

Dans cet article, nous nous int�eressons au probl�eme de la segmentation en locuteurs, �etape pr�eliminaire n�ecessaire �a
plusieurs tâches d'indexation. Le but de la segmentation en locuteurs est d'extraire des segments homog�enes ne con-

tenant les paroles que d'un seul locuteur et aussi longs que possible. Dans notre contexte, nous faisons l'hypoth�ese

qu'aucune connaissance a priori des locuteurs ou des caract�eristiques du signal n'est �a notre disposition (pas de mod�ele

de locuteur, pas de mod�ele de parole). Nous supposons n�eanmoins que les personnes ne parlent pas simultan�ement et

que nous n'avons pas de contrainte de temps r�eel. Nous pr�esentons les techniques de segmentation existantes et nous
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proposons une nouvelle m�ethode qui combine les avantages de deux techniques de segmentation. Cette nouvelle

m�ethode de segmentation, appel�ee DISTBIC, s'op�ere en deux passes: les changements de locuteurs les plus probables

sont tout d'abord d�etect�es et ils sont ensuite valid�es ou annul�es au cours de la deuxi�eme passe. L'avantage de notre

algorithme est son e�cacit�e �a d�etecter des changements de locuteurs proches les uns des autres (i.e. espac�es de quelques

secondes). Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

With the ever increasing number of TV chan-
nels and broadcasting radio stations and thanks to
the currently available huge storage means, many
hours of TV and radio broadcasts are collected
every year by information national heritage insti-
tutions, like the Institut National de l'Audiovisuel
(INA) in France or the BBC archives in the UK.
For example, INA possesses 45 years of TV ar-
chives consisting of 300,000 hours of national TV
programs and 60 years of radio archives consisting
of 400,000 hours of radio programs. Moreover,
due to systematic digitalization of information,
multimedia databases are on a rocketing increase.

Besides the storage and architecture problems
underlying the design of such databases, another
crucial problem is information retrieval: how to
formulate a query in a convenient way and how to
e�ciently and quickly ®nd the searched informa-
tion whatever it could be: text, drawings, image,
video, audio, music or speech. Pre-indexing is
necessary to facilitate and speed-up any kind of
query.

Clearly, access to audio documents is much
more di�cult than access to text; although text
retrieval must cope with some variability of spell-
ing by proposing di�erent approximated solutions
to the user, it is still easier to detect a name or a
string of words in a text than to recognize a
speaker or to spot a word within an audio re-
cording, or to recognize a spoken sentence in a
large lexicon. Also, listening to an audio recording
takes much more time than reading a text. Con-
sequently, it is essential to be able to directly access
the signi®cant segments rather than listening to the
whole audio recording to retrieve pertinent infor-
mation.

Audio document indexing associates with each
audio document a ®le describing its structure in

terms of retrieval keys. Phoneme strings can be
keys for retrieval of a word or a sentence in a
speech ®le (word- and sentence-spotting). Topic
spotting plays an essential role in document ®l-
tering and understanding. Another key could be
speaker identity. The presence of a given speaker
in a conversation could be detected if this speak-
er's voice characteristics have been a priori en-
rolled. Automatic analysis of conversations
recordings requires segmentation into segments
containing only one speaker and segment cluster-
ing into one-speaker sets.

In this paper, we mainly address the speci®c
problem of audio database segmentation with
respect to speakers which is an essential initial
step towards full indexing. To stay close to the
application, no assumption is made about prior
knowledge of the speaker or speech signal char-
acteristics. However, we assume that people do
not speak simultaneously. Additionally, since the
construction of an index ®le is an o�-line process,
we have no real-time constraints. The problem of
speaker-based segmentation and indexing is
stated in Section 2. Possible application ®elds are
described in Section 2.2. The hypotheses made for
this work are discussed: they place our work in
the perspective of approaches followed by other
authors. Section 3 presents a brief description of
the pioneering indexing tool of BBN for appli-
cation in air tra�c control. Section 4 deals with
the segmentation operation which is central in
this paper and makes a short review of di�erent
proposed techniques including the inspiring
technique used by Chen and Gopalakrishnan
(1998) at IBM. At this point, a new original
technique DISTBIC is proposed using a two-pass
approach. Since no prior knowledge about
speakers is used, our solution turns out to be
close to a general change detection algorithm.
However, the application to sequences of feature
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vectors extracted from the speech waveform and
containing speaker information puts speci®c
tunings forward and keeps the general principle
in the background. Di�erent criteria are presented
as well as the complete algorithm for speaker
turn detection. The role of computational e�ort
required is not crucial while the completeness of
the segmentation, whatever the speaker interven-
tion lengths are, is essential. Improving this
completeness is the aim of the proposed algo-
rithm. The results of DISTBIC are reported in
Section 6. We conclude and describe perspectives
towards the complete realization of an indexing
tool in Section 7.

2. The indexing problem

2.1. Description of the problem

Audio speaker indexing consists of the analysis
of a speaker sequence. In other words, the ques-
tion is to know who is speaking and when. Asso-
ciating speech segments to the same speaker is as
important as speaker identi®cation: this informa-
tion allows the understanding of the structure of a
conversation between several persons. Most of the
time, no a priori knowledge is available on the
content of the recording: neither the number of
di�erent speakers nor their identities. As a conse-
quence, no speaker models can be built in advance
(except in speci®c applications like detection of a
presenter who regularly appears in broadcasts, but
this case is not addressed in this paper). TV/radio
recordings also contain music: jingles but also
frequently music superposed on a spoken part.
Therefore, musical segments must be segregated
from speech segments. Background music may
seriously degrade the segmentation. Among all
the problems, the major di�culty comes from
overlapping speech: the problem has not yet been
really studied and all publications on indexing
(including this one) hypothesize no occurrence of
such events.

A simple and somewhat naive idea is to use the
silences between speaker utterances to segment a
recording. This solution gives acceptable results
only for recordings of cooperative speakers ac-

cepting a discipline in their elocution mode pro-
vided the level of noise is low.

2.2. Applications

Indexing could be used for example to create a
database where all speech is indexed with respect
to its author or as a preliminary step in tran-
scription tasks (Gauvain et al., 1998; Woodland
et al., 1997), in automatic grouping of speech
messages (Reynolds et al., 1998) or in speaker
tracking (Rosenberg et al., 1998).

An interesting application of speaker segmen-
tation/indexing is in speaker adaptation. When an
audio recording must be transcribed i.e. that the
sequence of uttered words is recognized o�-line
and printed, a major problem is the error rate due
to the use of generic speech unit models obtained
from training on a huge multi-speaker database
which is assumed to represent the world of
speakers. Enhanced recognition rates are obtained
if the recording is segmented in speaker homoge-
neous chunks or at least in speaker classes (the
most trivial solution is to use male and female
speaker models) and then speaker-adapted models
can be used for enhanced recognition.

Politically correct behavior imposes on candi-
dates that campaign to the Chamber of Repre-
sentatives or for President, to use equal time for
their public TV or radio addresses. The respective
duration of the use of broadcasting media is
checked manually (in France by the Conseil
Sup�erieur de l'Audiovisuel): automatic segmenting
of the debates could ease this task.

3. A pioneering application

The aim of the pioneering work at BBN (Gish
et al., 1991) is to automatically retrieve instruc-
tions given to pilots among recorded dialogs be-
tween pilots and air tra�c controllers to improve
air tra�c at Dallas-Fort Worth airport. Air tra�c
controllers may all use the same radio-channel so
that several of them are engaged in the dialog.
Segmentation and indexing constitute the ®rst step
of this study. Next steps are: reconstitution of a
dialog between one pilot and one controller, ¯ight
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identi®cation from the dialog, understanding the
dialog. The underlying hypotheses were:
· the number of speakers is unknown,
· no a priori knowledge on the speaker is avail-

able,
· no real-time processing is required,
· use is made of di�erences between the channel

qualities respectively used by pilots and control-
lers,

· pilots are considered as a single class and must
not be segregated.

The segmentation applies to the Mel-cepstrum
representation of the signal. A brute force ap-
proach compares 200 ms segments so that speaker
turns are not actually detected. In a second step,
segments are labelled into three classes by using
the energy variation (MAD: median absolute de-
viation) which gives acceptable results even if au-
tomatic gain control is applied on the signal: noise,
speech with high con®dence or unreliable class. A
mixture of two Gaussians (GMM) is then trained
on high con®dence segments and used in a new
step to re®ne speech±silence segmentation. Then
contiguous segments having the same label are
merged, regardless whether they may correspond
to di�erent speakers. In a next step, segments are
clustered into two classes (controllers and pilots)
by using the maximum likelihood ratio as a crite-
rion to decide whether two contiguous segments
belong to the same class or not: even at the end of
this process, several di�erent controllers or
speakers can be mixed in a same segment if not
separated by noise segments. Then in arbitrary
intervals (expected to contain only one controller
and several pilots), segments are clustered into
classes using the maximum likelihood ratio, and
Gaussian mixtures of two terms are trained (pilots-
controllers). Pilots are seen as a single class and
controller segregation is obtained by using the
Kullback±Leibler criterion to choose the di�erent
controller models built on the intervals. The whole
process can be iterated to progressively re®ne the
segmentation/indexing.

The BBN system addresses all the major prob-
lems encountered in a segmenting/indexing appli-
cation. However, its goal is very speci®c since one
may take advantage of the di�erent qualities of the
channels for segmenting. An access tool for mul-

timedia databases cannot rely on the hypothesis
that di�erent speakers are using di�erent tele-
communication media. Further research is there-
fore necessary, in particular for the segmentation
which cannot simply be based on checks at every
200 ms window.

4. Segmentation

Segmentation may use di�erent features of the
discourse:
· silence detection,
· speaker turn detection,
· frame identi®cation requiring classes of models:

speakers, contents (music, speech, noise; . . .).
This approach requires training material for
building the models and cannot be used for
general segmentation without a priori knowl-
edge; it is useful in a second step to re®ne
segmentation with models trained on clustered
segments.

4.1. Silence detection

The principle of segmentation with respect to
speakers based on silence detection relies on the
assumption, not always veri®ed, that utterances
of di�erent people are separated by signi®cant
silences.

To detect inter-speaker silences, Nishida and
Ariki (1998, 1999) use the average power of the
speech signal. If the power value is below a given
threshold, then the signal is identi®ed as silence.
The authors do not give any details about how
they choose the threshold. It may be tuned for
each recording.

Montaci�e and Caraty (1998) use an energy
histogram over 15 s. If it is Gaussian (tests over l
and r), the interval is assumed homogeneous and
can be labelled silence or non-silence. Otherwise, it
is assumed bimodal, and means and standard de-
viations are derived by clustering. From this clus-
tering, a threshold is computed from means and
standard deviations and used in a 4-states au-
tomaton for decision.

In the previously described air tra�c control
problem (Gish et al., 1991), BBN proposed a
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solution based on energy variability (MAD: me-
dian absolute deviation): energy varies more
quickly in speech than in noise. However, this
criterion left a large number of classi®cations
undecidable.

4.2. Speaker turn detection

Segmentation based on speaker turn detection
uses a di�erent policy. The aim is to segment audio
recordings into homogeneous segments containing
one speaker only. It is mainly used in automatic
transcription of news, together with speaker ad-
aptation and speech recognition. The principle
behind speaker turn detection is to measure a
dissimilarity value between two consecutive parts
of the parameterized signal (called windows), as-
suming that each of these parts is related to one
speaker only or to noise (silence).

The objective of the CMU team (Siegler et al.,
1997) is to segment an audio recording into
classes such as read speech, spontaneous speech,
telephonic speech, speech with musical back-
ground, speech with background noise, speech of
non-native speakers. Mean and covariance of
two adjacent windows under Gaussian hypothe-
ses are estimated and the Kullback±Leibler dis-
tance between the two distributions is computed.
A turn between the windows is assumed if the
distance reaches a maximum when the two
windows are slid along the time axis. The
problem is how to detect maxima of the distance
because a transition between speech and silence
is not similar to a transition between two
speakers.

The same principle is proposed by researchers
at IBM (Beigi and Maes, 1998) for detecting
speaker, channel, and environment changes. The
data contained in two adjacent sliding windows is
clustered into three classes by K-means algorithm:
silence, speech and speaker-dependent speech.
Using the relative distance between the clusters, a
new ``distance'' is computed and acoustic changes
correspond to maxima of this distance. Two
drawbacks of this method are:
· a lack of robustness since the three clusters re-

sult from an unsupervised algorithm (K-means)

which does not guarantee signi®cance of the
cluster centers,

· the implicit assumption that feature vectors cor-
responding to speech can be split in two classes:
speaker-dependent feature vectors and common
speech feature vectors.

Another approach by people at IBM based on
Bayesian Information Criterion (BIC) inspired our
contribution. The remaining part of this section is
entirely devoted to this method.

4.2.1. The BIC procedure
Dissimilarity measurement between two adja-

cent windows is based on the comparison of their
parametric statistical models. This comparison is
performed using the BIC (Chen and Gopala-
krishnan, 1998) (also known as Akaike or Rissa-
nen criterion (Rissanen, 1989) or Minimum
Description Length (MDL)).

4.2.1.1. Model selection criterion. The BIC criteri-
on is a maximum likelihood criterion penalized by
the model complexity, i.e., the number of model
parameters. Let us denote the sequence of data to
model X � fx1; . . . ; xNX g and M a parametric
model. The likelihood L�X ;M� is maximized for
this model. If m represents the number of param-
eters, the BIC criterion for M is de®ned as

BIC�M� � log L�X ;M� ÿ k
m
2

log NX : �1�

The ®rst term accounts for the quality of the
match between the model and the data while the
second one is a penalty for model complexity with
k allowing the tuning of the balance between the
two terms (the theoretical value of k is 1). In
coding theory, the BIC expression (1) with k equal
to 1 represents the shortest code length with which
long sequences of data can be encoded relative to a
model M (see (Rissanen, 1989)).

The BIC permits the selection of a model out of
a set of models for the same data: this model will
match the data while keeping low complexity.

Besides, the BIC criterion can also be viewed as
a general change detection algorithm since it does
not take into account any prior knowledge on
speakers.
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4.2.1.2. Use of the BIC for one speaker turn
detection. We assume that X is generated by a
multi-dimensional Gaussian process and we con-
sider the following hypothesis test for speaker turn
at time i:
· H0: �x1; . . . ; xNX � � N�lX ;RX �: the sequence has

been uttered by a single speaker and thus is as-
sumed to be represented by a single multi-di-
mensional Gaussian process,

· H1: �x1; . . . ; xi� � N�lX1
;RX1
� and �xi�1; . . . ; xNX �

�N�lX2
;RX2
�: the sequence has been uttered by

two di�erent speakers. Two multi-dimensional
Gaussian processes justify the production,

where l and R, respectively the mean and full co-
variance matrix, are the parameters of the models.

The maximum likelihood ratio between hy-
pothesis H0 (no speaker turn) and H1 (speaker turn
at time i) is then de®ned by

R�i� � NX

2
log RXj j ÿ NX1

2
log RX1

�� ��ÿ NX2

2
log RX2

�� ��;
�2�

where RX , RX1
and RX2

are respectively the co-
variance matrices of the complete sequence, of the
subset fx1; . . . ; xig, and of the subset fxi�1; . . . ; xNX g,
and NX , NX1

and NX2
, are respectively the number

of acoustic vectors in the complete sequence, in
the subset fx1; . . . ; xig, and in the subset
fxi�1; . . . ; xNX g. Then speaker turn point is esti-
mated via maximum likelihood ratio criterion as

bt � arg max
i

R�i�: �3�

The variations of the BIC value between the two
models (one Gaussian versus two di�erent Gaus-
sians) is then given by

DBIC�i� � ÿR�i� � kP ; �4�
where the penalty is given by P � 1

2
�p � 1

2
p�p � 1��

� log NX , p being the dimension of the acoustic
space. The symmetry of the covariance matrix is
taken into account.

A negative value of DBIC�i� indicates that the
two multi-dimensional Gaussian models best ®t
the data X , which means that a speaker turn oc-
curs at time i such that

fmax
i

DBIC�i�g < 0: �5�

According to Chen and Gopalakrishnan (1998), an
advantage of the BIC procedure is to avoid the use
of any threshold as in most of the previously de-
scribed methods. Threshold estimation is a critical
point in most of segmentation processes and is
usually left to the user's inspiration. Actually, the
role of k is equivalent to the de®nition of a
threshold.

4.2.1.3. Detection of multiple speaker turns with
BIC. The computation of BIC values is e�ciently
implemented in three steps, as described in (Trit-
schler, 1998):
1. A ®rst pass is performed to determine the ap-

proximate location of the turns. The DBIC val-
ue is computed between two adjacent windows
�a; b� and �b; c�, where the boundaries a and c
are ®xed, and where b takes its values in �a; c�
and is increased at each iteration by a certain
resolution step. The distance d�a; c� is increased
when no negative value is found for DBIC.
When a negative value is found, the turn be-
comes the new value for a.

2. The second pass uses the same method for re®n-
ing the results of the ®rst pass: the exploration
intervals �a; c� are chosen much smaller, and
centered around the points previously selected
as candidates.

3. The third pass validates the results of the sec-
ond pass. If fs1; . . . ; sNg is the set of speaker
turn candidates found in step 2, a DBIC value
is computed for each pair of windows �siÿ1; si�
�si; si�1�. If the value is negative, a speaker turn
is identi®ed at time i. Otherwise, the point si is
discarded from the candidate set, so that the
DBIC value is now computed for the new pair
of windows �siÿ1; si�1� �si�1; si�2� (with the old in-
dexes), as shown in Fig. 1.

This method, which consists in merging segments
as long as positive values for BIC are found, is
necessary for a correct estimation of the Gaussian
parameters, since the model accuracy highly de-
pends on the amount of available information.
Thus, the reliability of the results is a function of
the length of the sequence of acoustic vectors used
for computation.

A direct consequence is that the use of the BIC
algorithm alone for the speaker segmentation is
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not adapted for small size segments. Indeed, the
algorithm cannot detect two speaker turns closer
to one another than the second pass window du-
ration, which is of about 2 s.

Another problem comes from the tuning of the
penalty factor k, which showed to be dependent
on the type of analyzed data. In Chen's work
(Chen and Gopalakrishnan, 1998), k is set to 1
but in our experiments the empirical factor k took
its values between 1.0 and 2.0 (see Section
6.3.2.1).

We will therefore use a more robust technique
based on distance computation for the ®rst pass
that generates longer segments which can be used
with the BIC algorithm for re®nement in a second
pass.

5. DISTBIC: a new two-pass segmentation

technique

The method proposed in this paper is based
on a two-step analysis: a ®rst pass uses a dis-
tance computation to determine the turn candi-
dates and a second pass uses the BIC (in fact,
the third pass of BIC) to validate or discard
these candidates. Our segmentation technique
shows less dependence on the average segment
size.

5.1. First pass: detection of speaker turn candidate
points

The ®rst pass of our segmentation technique
relies on a distance-based segmentation de®ned
from the likelihoods of adjacent windows. The
concatenation of two windows is considered as a
third one. In each window, the data is assumed to
result from a single multi-dimensional Gaussian
process, as shown in Fig. 2.

We are faced with the problem of deciding
whether the data in the large window ®ts better
with a single multi-dimensional Gaussian or
whether a two-window representation justi®es the
data better. The length of the windows is the result
of a trade-o� between the number of frames inside
the windows required for signi®cant statistical es-
timation and the speaker homogeneity. A typical
length of each window is 2 s. The windows are slid
by steps of 100 ms for which the criterion is

Fig. 2. Acoustic segment models.

Fig. 1. Principle of the BIC ®nal pass.
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computed (see Fig. 3). The resolution of speaker
turns is thus 100 ms (see Section 6.3.2.1).

Six criteria will be tested but the segmentation
procedure is similar in all cases: Generalized
Likelihood ratio, 4 similarity measures based on
covariances and the Kullback±Leibler criterion.
We describe these criteria in the next section.

5.1.1. Criteria
5.1.1.1. The Generalized Likelihood Ratio. The
Generalized Likelihood Ratio (GLR) is used by
Gish and Schmidt (1994) and Gish et al. (1991) for
speaker identi®cation. The main features are out-
lined here. Let us consider the hypothesis test:
· H0: segments have been uttered by the same

speaker. Then, the union of the two segments
is produced by a unique multi-dimensional
Gaussian process.

· H1: segments are uttered by several speakers.
Then, they are assumed to be generated by dif-
ferent multi-dimensional Gaussian processes.

The likelihood ratio associated with this test is

R � L�z; l; R�
L�x; l1; R1�L�y; l2; R2� ; �6�

where L�X ;N�lX ;RX �� represents the likelihood of
the sequence of acoustic vectors X given the multi-
dimensional Gaussian process N�lX ;RX �. To
obtain a distance between two segments, the
log-value of this ratio is considered:

dR � ÿ log R: �7�

5.1.1.2. The Kullback±Leibler distance. The Kull-
back±Leibler distance (KL) (or divergence) mea-
sures the distance between two distributions,

KL�X ; Y � � EX h�log P �X � ÿ log P�Y ��i; �8�
where EX h�i denotes the expectation computed
with the density P of X (see (Siegler et al., 1997)).

A symmetrical measure is obtained as

KL2�X ; Y � � KL�X ; Y � �KL�Y ;X �: �9�
For Gaussian variables X and Y, KL2 can be
written

KL2�X ; Y � � r2
X

r2
Y
� r2

Y

r2
X

� �lX ÿ lY �2
1

r2
X

�
� 1

r2
Y

�
ÿ 1; �10�

Fig. 3. Sliding windows.

118 P. Delacourt, C.J. Wellekens / Speech Communication 32 (2000) 111±126



and becomes for Gaussian vectors

KL2�X ; Y � � 1

2
�lY ÿ lX �T�Rÿ1

X � Rÿ1
Y ��lY ÿ lX �

� 1

2
tr �R1=2

X Rÿ1=2
Y ��R1=2

X Rÿ1=2
Y �T

� �
� 1

2
tr �Rÿ1=2

X R1=2
Y ��Rÿ1=2

X R1=2
Y �T

� �
ÿ p;

�11�
where tr denotes the trace of a matrix and with the
same notation as before, p is the dimension of the
feature vectors.

5.1.1.3. Similarity measures. All the similarity
measures presented in this section are described in
more details in (Bimbot et al., 1995). They rely on
the hypothesis that two segments X and Y of a
parameterized signal should have similar covari-
ance matrices, respectively RX and RY , if they are
generated by the same speaker. More formally, to
measure how similar two speaker segments X and
Y are, we consider the matrix C � RX Rÿ1

Y . If both
segments arise from the same speaker then
RX � RY , so that C is the identity matrix.

The ®rst similarity measure is de®ned as

lG�X ; Y �

� aÿ log g � 1

p
�lX ÿ lY �Rÿ1

X �lX ÿ lY �T ÿ 1;

�12�
where a is the arithmetic mean of the eigenvalues
ki of C and g is the geometric mean. Clearly, if
RX � RY (i.e., X � Y ), then lG � 0, otherwise
lG > 0.

A second similarity measure is deduced from
the previous one. It is based on the fact that mean
vectors can be a�ected by the transmission channel
and should not be taken into account for the sec-
ond measure,

lGC�X ; Y � � aÿ log g ÿ 1: �13�
The third similarity measure is a sphericity test for
the matrix C

lSC�X ; Y � � log
a
g
: �14�

The last similarity measure lDC is based on the
absolute deviation of the eigenvalues of C when
compared to 1,

lDC�X ; Y � �
1

p

Xp

i�1

jki ÿ 1j: �15�

All these similarity measures do not satisfy the
symmetry property of a distance. Therefore, they
are made symmetrical as follows:

lS�X ; Y � � l�X ; Y � � l�Y ;X �; �16�
where l represents lG, lGC, lSC or respectively lDC.

For all distance measures described in this
section, a high value indicates a turn of speaker,
whereas low values signify that the two
portions of signal correspond to the same
speaker.

5.1.2. Speaker turn detection
The criterion (``distance'') is computed for a

pair of adjacent windows of the same size (about
2 s), and the windows are then shifted by a ®xed
step (about 0.1 s) along the whole parameterized
speech signal. This process (see Fig. 3) gives the
graph of distance as output with respect to time
which is smoothed by a low-pass ®ltering opera-
tion. Then, all the ``signi®cant'' local maxima are
searched. A local maximum is regarded as signi®-
cant when the di�erences between its value and
those of the minima surrounding it are above a
certain threshold (calculated as a fraction of the
graph variance), and when there is no higher local
maximum in its vicinity. Thus, the selection of the
local maxima is not done considering the absolute
value of the peaks, but rather by considering the
``form factor'' of the peaks. To be more formal, if
r and l respectively denote the standard deviation
and the mean of the distances along the plot, a
peak is signi®cant if

jd�max� ÿ d�min
r
�j > ar

and

jd�max� ÿ d�min
l
�j > ar; �17�

where a is real, and minr and minl are respectively
the right and left minima around the peak max.
This is illustrated in Fig. 4.

P. Delacourt, C.J. Wellekens / Speech Communication 32 (2000) 111±126 119



In addition, we impose some minimal duration
between two maxima: if two maxima are too close,
the lowest one is discarded. Clearly, this constraint
gives the lowest bound for short duration segments
(typically, 1 s). This type of detection meets the
following requirements:
· It does not depend on the type of speech data

(TV news, phone conversations, studio).
· In this step, the emphasis is placed on minimiz-

ing missed detections (not detecting an actual
turn) resulting in a high number of false alarms
(detecting speaker turns although they do not
exist). This number will be reduced by merging
contiguous segments during the second pass by
means of the BIC criterion.

5.2. Second pass: BIC re®nement

The second pass is the exact copy of the third
pass of the BIC analysis presented in Section 4.2.1
(see Fig. 1). A DBIC value is computed for each
turn candidate to validate the result of the ®rst
pass. The value of the empirical factor k has to be
tuned in order to reduce the number of false
alarms without increasing the number of new
missed detections. The use of the BIC is now much
more appropriate as the length of the considered
segments is large enough for a good parameter
estimation.

6. Experiments and results

In order to fully evaluate the DISTBIC seg-
mentation technique, we ®rst perform several tests
on the possible con®gurations that form this
technique. For example, the most accurate dis-
tance measure is ®rst determined by these pre-tests.
Once this optimal DISTBIC procedure is consti-
tuted, we compare it with the BIC procedure in
Section 6.3.2. Finally, a more thorough analysis of
DISTBIC results is conducted on TV news in
Section 6.3.3.

6.1. Data and parameterization

Di�erent types of speech data have been used to
compare both segmentation techniques BIC and
DISTBIC:
· 2 conversations arti®cially created by concate-

nating sentences of 2 s on an average from the
TIMIT database (clean speech, short segments,
60 speaker turns).

· 2 conversations created by concatenating sen-
tences of 1±3 s from a French language database
provided by Centre National d'Etudes des
T�el�ecommunnications (CNET) (clean speech,
short segments, 45 speaker turns).

· 3 TV news broadcasts extracted from the dat-
abase provided by Institut National de l'Audio-
visuel (INA) in French language (segments of

Fig. 4. Distance plot: characterization of a speaker turn.
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any length, prepared and spontaneous speech,
85 speaker turns, 30 minutes).

· 3 phone conversations extracted from
SWITCHBOARD database (Godfrey et al.,
1992) (segments of any length, spontaneous
speech, 120 speaker turns, 30 minutes).

Concerning the arti®cially created conversations,
the inter-speaker silences have been reduced so
that they sound like those of a real conversation.
More precisely, resulting inter-speaker silences are
intentionally too short to be detected by our al-
gorithm. Each segment of a speaker is followed by
a segment of another speaker.

For additional tests on DISTBIC (Section
6.3.3), we used French TV news broadcasts to
assess our algorithm and to analyze the nature of
the observed errors:
· 4 French TV news broadcasts collected in our

lab, referred to as jt (segments of any length,
spontaneous and prepared speech, 830 speaker
turns, 135 minutes).

We used 12 Mel-cepstral coe�cients since they
have proved in most papers to be very e�cient for
speaker recognition. They are computed with a
32 ms analysis window, shifted by 10 ms (the
sample frequency of our audio signals is of 8 kHz).
We also experimented using the same set of feature
vectors completed with the D-coe�cients (®rst
derivatives). The use of D-coe�cients deteriorates
the performances of both passes: the peaks of the
distance graph are smoothed away thus making
the detection of the speaker turns more di�cult. In
addition, the BIC is sensitive to the dimension of
the feature vectors.

6.2. Assessment methods

A good segmentation should provide the cor-
rect speaker turns and therefore segments should
contain a single speaker. We distinguish two types
of errors related to speaker turn detection. A false
alarm (FA) occurs when a speaker turn is detected
although it does not exist. A missed detection
(MD) occurs when the process does not detect an
existing speaker turn. In our context, a missed
detection is more severe than a false alarm. Indeed,
a missed detection may damage the grouping step:
a ``corrupted'' segment (containing two or more

speakers) will contaminate the cluster it is attached
to. By contrast, false alarms may be resolved
during the grouping step: if the utterances of a
given speaker have been split in several segments,
then they are likely to be grouped in the same
cluster during the grouping step. We can then de-
®ne the false alarm rate (FAR),

FAR � 100

� number of FA

number of actual speaker turns� number of FA
%:

�18�
A high value of FAR signi®es that the speech
signal has been over-segmented. The missed de-
tection rate (MDR) is de®ned by

MDR � 100� number of MD

number of actual speaker turns
%:

�19�
A high value of MDR means under-segmentation.

Since a missed detection is more severe than a
false alarm, as seen above, our system is tuned to
get low values of FAR and MDR but with
MDR < FAR, which is not the traditional EER
(equal error rate) objective.

A reference segmentation is required for using
this kind of error de®nitions. However, since the
human ear detects speaker turns with a limited
accuracy, this reference segmentation (when it
exists) should manage some tolerance. This is due
for instance to breaths or sighs before utterances.
It results that if speaker-based hand-segmentation
is performed by several people on real conversa-
tions, it may result in di�erent references. But for
synthetic signals, speaker turns are obviously
known by construction. One can account for this
tolerance by de®ning accuracy windows around
reference and detected speaker turns. A detected
speaker turn is a false alarm if no reference
speaker turn is found in the surrounding window.
On the contrary, the absence of a speaker turn
candidate in a window around a reference speaker
turn corresponds to a missed detection (see also
(Liu and Kubala, 1999)). However, real perfor-
mance evaluation should use speaking rate-
dependent accuracy windows and might not be
independent of the semantic context of the
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conversation. So that the ultimate test is per-
formed by listening to the segments in isolation
and deciding upon the quality of their ending
point detection.

6.3. Results

6.3.1. Choice of the distance measure
Fig. 5 shows the distance graphs obtained with

the di�erent distance measures detailed in Section
5.1.1. We use a speech ®le from TIMIT to pro-
duce these graphs. The vertical lines indicate the
localization of the real speaker turns and the stars
(�) represent the speaker turns resulting from the
distance-based segmentation. We ®rst point out
the ability of our segmentation technique to de-
tect speaker turns, even when they are close to
one another. Although the KL distance and the
GLR are the most computationally costly, they
produce the best results: one can distinguish eas-
ily the peaks corresponding to the speaker turns.
The lG measure may be a good compromise since
its computational cost is lower than with the KL
and the GLR distances and it provides similar
results.

With audio ®les containing spontaneous speech,
we recommend the use of the measure derived
from the GLR, as it is done in the following, since
it proves to be the most e�cient one, showing high
and narrow peaks at speaker turn, and low am-
plitude variation within single speaker segments.

6.3.2. Comparison of the BIC and DISTBIC
segmentation techniques

In order to evaluate our segmentation tech-
nique, we compare it with the BIC procedure,
described in Section 4.2.1. For both techniques, we
mention the FAR and the MDR. For the DIST-
BIC technique, we distinguish the distance-based
segmentation (®rst pass) and the BIC re®nement
(second pass).

6.3.2.1. Parameters. Since both segmentation
techniques are based on local signal properties
only, it is not surprising that the tuning of pa-
rameters will play an essential role in the seg-
mentation by allowing over-segmentation to
justify slight intra-speaker local variations. The

ultimate solution will take trained speaker models
into account and will be implemented in a later
stage. By now, parameters are adjusted to meet
our constraints of low FAR and MDR with
MDR < FAR.

Parameters have been tuned on the test sets.
Table 1 gives the parameter values for the BIC
algorithm:
· k is the penalty weight for the BIC criterion (see

Eq. (1)),
· win1 is the duration (in seconds) of the window

d�a; c� and res1 is the resolution step described
in step 1, Section 4.2.1.3,

· likewise, win2 is the duration (in seconds) of the
window d�a; c� and res2 is the resolution step de-
scribed in step 2, Section 4.2.1.3.

Table 2 reports the parameter values for the
DISTBIC algorithm:
· k is the penalty weight for the BIC criterion (see

Eq. (1)),
· a is the coe�cient de®ned in Eq. (17) (see also

Fig. 4),
· win is the duration (in seconds) of a window and

shift is the window shift between two iterations
(see Section 5.1 and Fig. 3).

Concerning window duration (win, win1 and
win2), as seen in Section 5.1, it results from a
trade-o� between:
· a short duration to assume that windows con-

tain utterances of a single speaker,
· a long duration to have a good estimation of

speaker models,
res1, res2 and shift give the accuracy of the speaker
turn location.

For high values of k, more D-BICs are positive
since P > 0 (see Eq. (4)), so that fewer speaker
turns will be detected.

It is quite easy to justify (Eq. (17)) that large
values of a also reduce the number of detected
speaker turns.

One can also notice that parameters are not
in¯uenced by the language: parameters of both
segmentation techniques used with American and
French synthetic conversations (TIMIT and
CNET) are similar. This is also true for real con-
versations (see Tables 1 and 2). The small di�er-
ences are probably due to the recording
conditions.
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6.3.2.2. Computational cost. Concerning the com-
putational cost, our algorithm (as well as the BIC
algorithm) uses two passes so that a real-time

processing is not possible. However, the comput-
ing time required to ®nd speaker turns only cor-
responds to a few percents of the recording

Fig. 5. Distance-based segmentation with several distances. From left to right and from top to bottom: the KL, the GLR, the lG, the

lGC , the lDC and the lSC criteria.
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playback duration (a few minutes for a 45-minute
audio document). BIC is faster than DISTBIC but
this di�erence is irrelevant for the considered ap-
plications (speaker-based indexing).

BIC < DISTBIC� recording playback: �20�

6.3.2.3. Performance comparison. Table 3 reports
performances of the BIC procedure applied on
di�erent types of data described in 6.1 and Table 4
reports performances of the two passes of the
DISTBIC segmentation technique applied on the
same data. The MDR respectively with the BIC
procedure (15.7%) and with the second pass of our
segmentation algorithm (13.5%) applied on the TV
broadcast news (INA) are almost equal. Similar
results are observed on the FAR: respectively
18.3% with the BIC procedure and 18.5% with our
algorithm. That means that both segmentation
techniques are equivalent with conversations con-
taining long speech segments. One can notice the
signi®cant reduction of the FAR between the ®rst

and the second pass of our algorithm: from 37.4%
to 18.5%. The distance-based segmentation seems
to be more sensitive to environment changes or
speaker intonations related to the semantic con-
tent.

Telephone conversations (referred to as
SWITCHBOARD in Tables 3 and 4) also contain
long segments but of made of spontaneous speech.
That means that the conversation is scattered with
small words like `Yeah' or `Hum-hum'. When
these small words are uttered while the other per-
son is speaking, our hypothesis that people do not
speak simultaneously is not respected. The seg-
mentation process is degraded by these small
words since they are too small to be detected
correctly. Also depending on the context of the
segmentation, they may not be relevant. On the
contrary, if the accuracy level required for a
transcription task is very high, then it becomes
necessary to detect these small words correctly.
In our context, we decide not to take them into
account.

The distance-based segmentation, as seen
above, is sensitive to environment changes. It de-
tects one of both boundaries of the small words.
That explains the high value of the FAR with the
®rst pass of our segmentation algorithm: 39.0%.
This value remains higher with the second pass
(25.9%) than with the BIC procedure (20.3%). On
the contrary, the MDR of both segmentation
techniques are comparable: 29.1% with DISTBIC
and 30.6% with BIC.

Concerning the conversations containing short
segments (referred to as TIMIT and CNET in the
tables), the DISTBIC method shows better results
than the BIC procedure: for these two types of
conversations the MDR with our technique is half

Table 3

FAR and MDR with the BIC procedure

BIC

FAR MDR

TIMIT 31.5 30.5

CNET 14.3 50.0

INA 18.3 15.7

SWITCHBOARD 20.3 30.6

Table 4

FAR and MDR respectively with the ®rst and the second pass

of the DISTBIC method

First pass Second pass

FAR MDR FAR MDR

TIMIT 40.3 14.3 28.2 15.6

CNET 18.2 16.7 16.9 21.4

INA 37.4 9.03 18.5 13.5

SWITCH-

BOARD

39.0 29.1 25.9 29.1

Table 2

Parameter values of the DISTBIC method for the di�erent

speech data

DISTBIC k win shift a

TIMIT 1.2 1.96 s 0.7 s 15 %

CNET 1.0 1.96 s 0.7 s 15 %

INA 1.8 2 s 0.1 s 50 %

SWITCHBOARD 1.5 2 s 0.1 s 50%

Table 1

Parameter values of the BIC procedure for the di�erent speech

data

BIC k win1 res1 win2 res2

TIMIT 1.3 3 s 0.6 s 2 s 0.2 s

CNET 1.3 3 s 0.6 s 2 s 0.2 s

INA 2.0 3 s 0.6 s 1.8 s 0.15 s

SWITCHBOARD 2.0 3 s 0.6 s 1.8 s 0.15 s
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(15.6% for TIMIT and 21.4% for CNET) that with
the BIC procedure (30.5% for TIMIT and 50.0%
for CNET) with comparable values of FAR
(28.2% for TIMIT and 16.9% for CNET with
DISTBIC versus 31.5% for TIMIT and 14.3% for
CNET with BIC). The CNET conversations are
made of shorter segments than the TIMIT con-
versations: that explains the higher value of MDR
and also shows the limit of segment length for our
segmentation technique.

The di�erence of performance between syn-
thetic (TIMIT and CNET) and real conversations
(SWITCHBOARD and INA) for both segmenta-
tion algorithms is explained by the di�erence of the
actual length of speaker segments in the conver-
sations. In the ideal case, during the last pass(es) of
both segmentation algorithms, speaker models
(the multi-dimensional Gaussians) are estimated
on the actual length. Thus, the longer the actual
speaker segments are, the better (more reliable and
more robust) the speaker model estimation is and
also, the better the resulting segmentation will be.

The di�erence of performance between the two
types of conversations may also be explained by the
recording conditions. Indeed, when speakers use
di�erent communication channels, turn detection is
made easier by the discrimination enhanced by the
channels characteristics, like in the BBN experi-
ments. On the contrary, in synthetic conversations
(like TIMIT and CNET), turn detection only relies
on di�erences between speakers. In other words,
for real conversations, segmentation algorithms
detect changes of speaker together with recording
conditions and for our synthetic conversations,
algorithms only detect speaker changes.

Our experiments show that the DISTBIC seg-
mentation technique is more accurate than the
BIC procedure in the presence of short segments,
although both techniques are equivalent when
applied to conversations containing long segments,
except for SWITCHBOARD which shows a
higher FAR.

6.3.3. Qualitative analysis of the error occurrences
We conducted further experiments with the

DISTBIC technique applied to TV broadcast news
jt collected in our lab in order to study the error
occurrences. The parameters of the segmentation

were not retuned. We used parameters tuned in
earlier tests on the INA database because data are
of the same nature. Results are reported in Table 5.
In order to assess our segmentation technique more
accurately, we consider the shift rate (SR) de®ned as

SR � 100� number of shifts

number of actual speaker turns
%:

�21�
A shift denotes a speaker turn which has been
shifted by less than 1 s (it corresponds to a false
alarm and a missed detection which are very
close). As a consequence of the speaker turn shift,
one of the segments contains few data from the
contiguous speaker. But it will not a�ect the
grouping step provided the ratio between odd data
to the current segment is low.

Most of the missed detections are due to short
sentences, especially during interviews. Questions
of journalists are in general very short. In fact,
parameters have been set for long segments, so
that short segments are poorly detected. Two main
reasons explain the high value of the FAR. The
®rst reason is speech translations: foreigners are
interviewed and their speeches are translated in
parallel (once again, our hypothesis is not re-
spected). The second reason for a high value of
FAR is environment changes during reports. Most
of the reports are built as follows: events dealt with
in the report are commented by a journalist but the
sound track corresponding to the events is not
completely removed. A change in the sound track
corresponding to the events often causes a false
alarm within the journalist comment.

7. Conclusion and further work

We proposed a segmentation technique com-
posed of a distance-based algorithm followed
by a BIC-based algorithm. This segmentation

Table 5

jt: FAR, MDR and SR respectively with the ®rst and the sec-

ond pass of the DISTBIC method

First pass Second pass

FAR MDR SR FAR MDR SR

jt 59.0 8.9 8.4 23.7 9.4 8.4
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technique proved to be as accurate as the BIC
procedure in the case of conversations containing
long segments and to give better results than the
BIC procedure when applied to conversations
containing short segments. Our experiments
showed that parameters mainly depend on the
length of speech segments contained in the con-
versation. A problem still remains: parameters can
be tuned to detect short segments rather than long
segments but not both lengths simultaneously. For
that reason, preference is given to over-segmenta-
tion. Indeed, this segmentation algorithm is one of
the parts of a speaker-based indexing system and
the next step will consist in grouping similar seg-
ments to form the complete indexing process (i.e.,
the recognition of the sequence of speakers en-
gaged in a conversation). For other applications
like speaker tracking, over-segmentation can be
dealt with as explained in (Bonastre et al., 2000).
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