
Meta-Mappings for Schema Mapping Reuse

Paolo Atzeni§ Luigi Bellomarini± Paolo Papotti∞ Riccardo Torlone§
§ Università Roma Tre ± Banca d’Italia ∞ EURECOM

{atzeni,torlone}@dia.uniroma3.it luigi.bellomarini@bancaditalia.it papotti@eurecom.fr

ABSTRACT
The definition of mappings between heterogeneous schemas
is a critical activity of any database application. Exist-
ing tools provide high level interfaces for the discovery of
correspondences between elements of schemas, but schema
mappings need to be manually specified every time from
scratch, even if the problem at hand is similar to one that
has already been addressed. Schema mappings are pre-
cisely defined over a pair of schemas and cannot directly
be reused on different scenarios. We tackle this challenge
by generalizing schema mappings as meta-mappings: for-
malisms that describe transformations between generic data
structures called meta-schemas. We formally characterize
schema mapping reuse and explain how meta-mappings are
suitable to capture enterprise knowledge from previously de-
fined schema mappings. We develop the techniques to infer
meta-mappings from existing mappings, to organize them
into a searchable repository, and to leverage the repository
to propose to the users mappings suitable for their needs.
We study effectiveness and efficiency in an extensive evalu-
ation over real-world scenarios, and show that our system
can infer, store, and search millions of meta-mappings in
seconds.

PVLDB Reference Format:
P. Atzeni, L. Bellomarini, P. Papotti, R. Torlone. Meta-Mappings
for Schema Mapping Reuse. PVLDB, 12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/TBD

1. INTRODUCTION
Schema mappings are widely used as a principled and

practical tool for data exchange and data integration. Al-
though there are systems supporting data architects in the
creation of mappings [12, 10], designing them is still a time-
consuming task.

Given the overwhelming amount of “enterprise knowledge”
stored in traditional data warehouses and in data-lakes [14,
18], reuse is an opportunity of increasing importance [1]. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 45th International Conference on Very Large Data Bases,
August 2019, Los Angeles, California.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
Copyright 2018 VLDB Endowment 2150-8097/18/10... $ 10.00.
DOI: https://doi.org/TBD

particular, data management scenarios, such as data trans-
formations, are often defined over schemas that are different
in structure but share semantics. A great opportunity to
reduce the effort in the design step is therefore to reuse ex-
isting schema mappings. Unfortunately, there is no obvious
approach for schema mapping reuse. Consider the following
example inspired from a real use case.

Figure 1: The business register at a central bank,
G, and three data providers.

Example 1. A central bank maintains a register with bal-
ance data from all companies in the country (Figure 1). This
register has schema G, with relation Balance storing, for
each company, its gains, zone of operation, and economic
sector. External providers send data to the bank in different
forms. Provider A adopts a schema SA, with a relation RA
for companies (firms), with gains, area of operation, and eco-
nomic sector, whose code in RA refers to relation Activity.
Provider B adopts a schema SB, with a relation RB for com-
panies (enterprises), their gains, sector, capital, and area,
whose code in RB refers to relation Location. Data is moved
from SA and SB into G, by using two schema mappings:

σA: RA(f, g, a, s),Activity(s, d) → Balance(f, g, a, d).

σB: RB(e, g, s, c, a),Location(a, d) → Balance(e, g, d, s).

The example shows a data exchange scenario where the
differences in the mappings are due to the structural differ-

1

ences between SA and SB , which are, on the other hand, se-
mantically very similar. Moreover, every new data provider
(e.g., SC in the Figure) would require the manual design of
a new, ad-hoc mapping, even if there is clear analogy with
the already defined mappings.

So, what is the right way to reuse σA and σB and avoid
the definition of a new mapping for SC?

Ideally, we would like to collect all the available mappings
in a repository; then, for any new pair of schemas (e.g., SC
and G in the Figure), we would like to query such repository
to find and retrieve a suitable mapping.

Unfortunately, this form of direct reuse is challenging be-
cause of the nature of schema mappings. A mapping char-
acterizes exchange and integration scenarios as a constraint,
and captures the semantics for a pair of schemas at a level
of detail that enables both logical reasoning and efficient
execution. Yet a simple variation in a schema, such as a
different relation or attribute name or a different number of
attributes, makes it not applicable. For example, σA and σB
cannot be directly re-used on SC . To be reusable, a map-
ping should be described in a way that is independent of its
specificities, but, at the same time, harnesses the essence of
the constraint so as to work for similar schemas. Although
there is little hope to re-use a schema mapping in its original
form, there is a solution to extract a more general specifica-
tion that is sound w.r.t. the original semantics.

Example 2. Consider a “generic” mapping ΣA, obtained
from σA by replacing names of the relations and attributes
with variables. It could be informally described as follows:

ΣA: for each relation r with key f and attributes g, a, s

for each relation r′ with key s and attribute d

with a fk constraint from s of r to s of r′

there exists a relation r′′ with key f and attributes g, a, d.

If instantiated on SA, the generic mapping ΣA expresses
a mapping to G that is the same as σA. It seems a valid
compromise between precision, i.e., a transformation that
expresses the semantics of the original mapping, and gener-
ality, as it can be applicable over related schemas. However,
ΣA falls short of the latter requirement, as it is not appli-
cable on SB . Indeed, there are no constraints on attribute
names g and a, and so they could be bound to any of Gains,
Sector and Capital, incorrectly trying to map Capital into
the target. The same problem applies with the generic map-
ping naively derived from σB .

Example 3. Consider a more elaborated generic map-
ping that uses constants to identify attributes:

ΣHB : for each relation r with key e and attributes g, s, c, a

for each relation r′ with key a and attribute d

with a fk constraint from a of r to a of r′

where g = Gains, s 6= Gains, s 6= Capital,

c 6= Gains, c 6= Sector

there exists a relation r′′ with key e and attributes g, d, s.

This generic mapping is precise enough to correctly de-
scribe both σA and σB and can be re-used with other schemas.

The example shows that there is a combination of at-
tributes, identified by constraints on their names and role,
that form a correct and useful generic mapping. Once pin-
pointed, generic mappings can be stored in a repository, so
that it is possible to retrieve them for a new scenario. In
our example, given SC and G, the generic mapping ΣHB can

be retrieved from the repository and immediately applied.
However, three main challenges make reuse hard:

- We need a clear characterization of what it means for a
generic mapping to correctly describe and capture the se-
mantics of an original schema mapping.

- A generic mapping is characterized by a combination of
constraints (e.g., the ones on attribute names and roles)
and so, for a given original mapping, there is a combina-
torial blowup of possible generic mappings. We need a
mechanism to generate and store all of them.

- For a new scenario (e.g., new schemas), there is an over-
whelming number of generic mappings that potentially ap-
ply, with different levels of “suitability”. We need efficient
tools to search through and choose among them.

Figure 2: The architecture of GAIA.

In this work, we address the above challenges with GAIA,
our system for mapping reuse. GAIA supports two tasks,
as shown in Figure 2: (1) infer a generic mapping, meta-
mapping, from one (or more) input schema mappings, and
store it in a repository; (2) given a source and a target
schema, return a ranking of suitable meta-mappings from
the repository.

The system is based on the following contributions:

• The notion of fitness: a semantics to precisely characterize
and check when a meta-mapping is suitable for a reuse
scenario (Section 3).
• A necessary and sufficient condition for the fitness of a

meta-mapping, which we use to provide an algorithm to
infer meta-mappings from schema mappings with an ap-
proach that extends previous efforts for the definition of
schema mappings by example (Section 3).
• A retrieval method that, given a pair of schemas and a

repository of meta-mappings, efficiently finds the most suit-
able meta-mapping and instantiates it. In particular, we
introduce a feature-based metric, the coverage, that quan-
tifies how suitable a meta-mapping is for a new scenario
(Section 4). In fact, we use coverage to rank alternative
meta-mappings as well as to index them to speed up the
retrieval (Section 5).

We provide a full-scale evaluation of the algorithms in
our system with more than 20,000 real-world data transfor-
mations over 40,000 schemas. The results show that our
solution is effective in practice and the optimizations enable
an interactive use of the system (Section 6).

2. BACKGROUND AND GOAL
In this section we recall the notion of schema mapping [13]

and introduce that of meta-mapping. While the former no-
tion is used to model specific data transformations, the latter

2

introduces an abstraction over mappings [20, 26] and allows
us to model generic mappings between schemas. Building
on these notions, we also clarify the goals of this paper.

2.1 Schema mappings
Let S (the source) and T (the target) be two relational

schemas and let Inst(S) and Inst(T) denote the set of all
possible instances of S and T, respectively. A (schema)
mapping M for S and T is a binary relation over their in-
stances, that is, M ⊆ Inst(S)× Inst(T) [8].

Without loss of generality, we consider mappings expressed
by a single source-to-target tuple-generating-dependency (st-
tgd) σ of the form: ∀x(φ(x) → ∃yψ(x,y)) where x and y
are two disjoint sets of variables, φ(x) (the left-hand-side,
LHS) is a conjunction of atoms involving relations in S and
ψ(x,y) (the right-hand-side, RHS) is a conjunction of atoms
involving relations in T. The dependency represents a map-
ping M in the sense that (I, J) ∈ M if and only if (I, J)
satisfies σ. Given I and σ, if (I, J) satisfies σ then J is
called a solution of I under σ. We can compute a suitable
J in polynomial time by applying the chase procedure to
I using σ [13]: the result may have labeled nulls denoting
unknown values and is called the universal solution, since
it has a homomorphism to any possible solution J ′, that is,
a mapping h of the nulls into constants and nulls such that
h(J) = J ′.

Example 4. Consider the schemas SA, SB and G of
Figure 1, which we recall in Figure 3 with all the mappings
that will be discussed throughout the paper. A mapping be-
tween SA and G is the st-tgd (where we omit quantifiers for
the sake of readability):

σA : RA(f, g, z, s),Activity(s, d)→ Balance(f, g, z, d).

Intuitively, the application of the chase to the instance of SA
using σA enforces this dependency by generating one tuple
in the target for each pair of tuples in the source for which
there is a binding to the LHS of the dependency. The result
is a relation with the first two tuples in relation Balance in
Figure 1.

A mapping from SB to G is represented by the s-t tgd:

σB : RB(e, g, s, c, a),Location(a, d)→ Balance(e, g, d, s).

The result of the chase is a relation with the third and fourth
tuple of relation Balance.

Specifying a mapping through st-tgds is a consolidated
practice, as they offer a clear mechanism to define a rela-
tionship between the source and the target schema. Since
we consider one dependency at a time, in the following we
blur the distinction between mapping and dependency and
simply refer to “the mapping”. Moreover, we will call a set
of mappings H = {σ1, . . . , σn} a transformation scenario.

2.2 Meta-mappings
A meta-mapping describes generic mappings between re-

lational schemas and is defined as a mapping over the cata-
log of a relational database [26]. Specifically, in a relational
meta-mapping, source and target are both defined over the
following schema, called (relational) dictionary : Rel(name),
Att(name, in), Key(name, in), FKey(name, in, refer) (for the
sake of simplicity, we consider here a simplified version of
the relational model). An instance S of the dictionary is

called m-schema and describes relations, attributes and con-
straints of a (standard) relational schema S.

Example 5. Figure 3 shows also the m-schemas of the
schemas in the running example (recalled in Example 4).

We assume, hereinafter, that, given a schema, its corre-
sponding m-schema is also given, and vice versa.

A meta-mapping is expressed by means of an st-tgd over
dictionaries that describes how the elements of a source m-
schema map to the elements of a target m-schema.

Example 6. Mapping σA of Example 4 can be expressed,
at the dictionary level, by meta-mapping ΣA in Figure 3.
This st-tgd describes a generic transformation that takes two
source relations R and S (whichever they be) linked by a
foreign key F and generates a target relation T obtained
by joining R and S on F and taking the key K1 and the
attributes A1 and A2 from relation R and the attribute A3

from S.

Similarly to schema mappings, given a source m-schema
S and a meta-mapping M , we compute a target m-schema
T by applying the chase procedure to S using M .

Example 7. Chasing m-schema SA with ΣA, both in Fig-
ure 3, generates the following target m-schema where ⊥R is
a labelled null denoting a placeholder for a relation name.

Rel
name
⊥R

Key
name in
Firm ⊥R

Att
name in
Gains ⊥R
Zone ⊥R

Description ⊥R

This m-schema describes the relational schema:

R(Firm,Gains,Zone,Description)

A meta-mapping operates at schema level rather than at
data level and thus provides a means for describing generic
transformations. There are subtleties that could arise from
the application of the chase in presence of existential quan-
tifications in meta-mappings producing duplications of re-
lations in the result. This is avoided by assuming that,
for each existentially quantified variable, there is a target
egd [13] constraint ensuring that whenever two relations in
the target have the same structure, then they coincide.

2.3 From meta-mappings to mappings
Given a source schema S and a meta-mapping Σ, it is

not only possible to generate a target schema by using the
chase, as shown in Example 7, but that it is also possible to
automatically obtain a schema mapping σ that represents
the specialization of Σ for S and T [26]. The “Schema to
Data Exchange Transformation” (S-D transformation) gen-
erates from S and Σ a complete schema mapping made of S,
a target schema T (result of chasing the source m-schema
with the meta-mapping) and s-t tgd σ between S and T.
The variable correspondences in the tgd σ are derived from
the provenance information computed during the chase step,
in the same fashion of the provenance computed over the in-
stance when chasing schema mappings [11].

3

Schemas

SA = {RA(Firm,Gains,Zone,Sector),Activity(Code,Description),RA.Sector 7→ Activity.Code}
G = {Balance(Company,Gains,Zone,Sector)}
SB = {RB (Enterprise,Gains,Sector ,Capital,Area),Location(Code,Name),RB .Area 7→ Location.Code}}

Mappings

σA : RA(f , g, z , s),Activity(s, d) → Balance(f , g, z , d). σB : RB (e, g, s, c, a),Location(a,n) → Balance(e, g,n, s).

Meta-schemas

SA

Rel
name
RA

Activity

Key
name in
Firm RA
Code Activity

Att
name in
Gains RA
Zone RA

Description Activity

FKey
name in refer
Sector RA Activity

SB

Rel
name
RB

Location

Key
name in

Enterprise RB
Code Location

Att
name in
Gains RB
Sector RB
Capital RB
Name Location

FKey
name in refer
Area RB Location

G
Rel
name

Balance

Key
name in

Company Balance

Att
name in
Gains Balance
Zone Balance
Sector Balance

Meta-mappings

ΣA : Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),FKey(F,R, S),Rel(S),Key(K2, S),Att(A3, S) → Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A3, T)
qS(x) = Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),Att(A3, R), FKey(F,R, S),Rel(S),Key(K2, S),Att(A4, S)
qT (x) = Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A4, T)

ΣB : qS(x) → qT (x,y)

ΣPB : qS(x), A1 =Gains,A2 =Sector ,A3 =Capital → qT (x,y)

ΣNB : qS(x), A1 6=Sector ,A1 6=Capital,A2 6=Gains,A2 6=Capital,A3 6=Gains,A3 6=Sector → qT (x,y)

ΣHB : qS(x), A1 =Gains,A2 6=Gains,A2 6=Capital,A3 6=Gains,A3 6=Sector → qT (x,y)

Figure 3: Schemas, m-schemas, mappings, and meta-mappings discussed along the paper.

Example 8. Consider again the scenario in Figure 3. If
we apply the S-D transformation to schema SA and meta-
mapping ΣA, we obtain the target m-schema of Example 7
and the following mapping from SA to ⊥R:

σ : RA(f, g, z, s),Activity(s, d)→ ⊥R(f, g, z, d).

Thus, we get back, up to a renaming of the target relation,
mapping σA in Figure 3 from which meta-mapping ΣA orig-
inates.

2.4 Problem statement
While previous work focused on generating a schema map-

ping from a given meta-mapping [26], here we tackle the
more general problem of mapping reuse, which consists of:
(i) generating a repository of fitting meta-mappings from a
set of user-defined schema mappings, and (ii) given a new
pair of source and target schemas, generating a suitable
mapping for them from the repository of meta-mappings.
For example, in the scenario of Figure 3, given SA and G,
the goal is to reuse meta-mapping ΣB , which has been in-
ferred from σB .

3. FROM MAPPINGS TO META-MAPPINGS
In this section we describe how a schema mapping σ is

generalized into a meta-mapping Σ. We start by introduc-
ing the notion of fitness, which formalizes the relationship
between a meta-mapping and the mappings it generalizes.
We then discuss how we infer fitting meta-mappings.

3.1 Fitness of meta-mappings
An important property of a meta-mapping is the ability to

generate a mapping that is suitable for a given pair of source
and target schemas, as formalized by property of fitness.

As a preliminary notion, we say that there is a matching
between two m-schemas if there is an isomorphism between
their tuples that preserves the identity on constants.

Definition 1. Let S and T be a pair of schemas and S
and T be the m-schemas of S and T, respectively. A meta-
mapping Σ fits S and T if there is a matching between the
universal solution of S under Σ and T. By extension, a
meta-mapping Σ fits a mapping σ if it fits its source and
target schemas.

Example 9. To test if the meta-mapping ΣA of our run-
ning example fits the mapping σA between SA and G (both
in Figure 3), we compute the universal solution of SA under
ΣA by chasing SA using ΣA. The result is the following:

T
Rel
name
⊥B

Key
name in
Firm ⊥B

Att
name in
Gains ⊥B
Zone ⊥B

Description ⊥B

It is now easy to see that there is a isomorphism i between
T and G (in Figure 3), which maps labelled null ⊥B to Bal-
ance, Description to Sector, and the other constants with the
identity. It follows that, indeed, ΣA fits σA according to i.

For simplicity, we define the matching using the identity
on costants. However, the definition can be expanded with a
Boolean operator based on more relatexd notions of similar-
ity, such as those used in schema matching [7]. Notice that
our approach does not make any assumption on identity (or
similarity) of attribute names, as shown in the example with
the isomorphism connecting Description and Sector.

3.2 Canonical meta-mappings
We now consider a basic way to derive a fitting meta-

mapping from a mapping σ, which we call canonical. It is

4

built by “projecting”, in its source and target m-schemas,
the correspondences between attributes expressed by σ.

The projection of σ on its m-schemas S and T is a pair of
m-schemas, denoted by Sσ and Tσ, obtained from S and T
by equating, for each variable x that occurs in both the LHS
and the RHS of σ, all the attributes in S and T on which x
occurs, using the same distinct labelled constant.

Example 10. The projections of σA in Figure 3 on its
source and target m-schemas are the following.

S
σA
A

Rel
name
RA

Activity

Key
name in
cf RA

Code Activity

Att
name in
Gains RA
Zone RA
cd Activity

FKey
name in refer
Sector RA Activity

GσA
Rel
name

Balance

Key
name in
cf Balance

Att
name in
Gains Balance
Zone Balance
cd Balance

For instance, constant cf describes the fact that the σA maps
the key of relation RA to the key of Balance.

Given a tuple (a1, . . . , ak) in the instance I of a schema
R(A1, . . . , Ak), we call the atom R(a1, . . . , ak) a fact of I.

Definition 2. The canonical meta-mapping Σ for a map-
ping σ from S to T contains an st-tgd ∀x(qS(x)→ ∃yqT (x,y)),
where: (i) qS(x) is the conjunction of all the facts in Sσ, with
each value in Sσ replaced by the same universally quantified
variable in x and (ii) qT (x,y) is the conjunction of all the
facts of Tσ with each value in Tσ not occuring in S replaced
with the same existentially quantified variable in y.

Example 11. Consider again the mapping σA in Fig-
ure 3. From the projections of σA on its source and target
m-schemas, presented in Example 10, we obtain precisely the
canonical-meta mapping ΣA (also in Figure 3). In Example
9 we have shown that, indeed, ΣA fits σA.

For a given pair of m-schemas, the canonical meta-mapping
always exists and can be determined in linear time by apply-
ing Definition 2 in a constructive way. It can be observed
that our notion extends that of canonical GLAV schema
mappings [3], defined at data level.

Unfortunately, a canonical meta-mapping does not neces-
sarily fit the mapping it originates from.

Example 12. Let us consider the mapping σB in Fig-
ure 3 that we recall next for convenience.

σB : RB(e, g, s, c, a),L(a, d)→ B(e, g , d , s).

The projection of σB to SB (the source) and G (the target)
are the following m-schemas.

S
σB
B

Rel
name
RB

Location

Key
name in
ce RB

Code Location

Att
name in
Gains RB
Sector RB
Capital RB
cd Location

FKey
name in refer
Area RB Location

GσB
Rel
name

Balance

Key
name in
ce Balance

Att
name in
Gains Balance
Sector Balance
cd Balance

The canonical meta-mapping ΣB for σB is then as follows.

ΣB : Rel(R),Key(K1, R),Att(A1, R),Att(A2, R),Att(A3, R),
FKey(F,R, S),Rel(S),Key(K2, S),Att(A4, S) →

Rel(T),Key(K1, T),Att(A1, T),Att(A2, T),Att(A4, T).

This meta-mapping does not fit σB since the chase of SB

using ΣB is the following:

T
Rel
name
⊥B

Key
name in
Firm ⊥B

Att
name in
Gains ⊥B
Sector ⊥B
Capital ⊥B
Name ⊥B

It is easy to see that this m-schema does not match with G.

The example above shows that canonical mappings may
fail to identify structural ambiguities, such as, in our ex-
ample, the multiple non-key attributes (A1, A2, A3) related
to the same relation (R), which can bind to any of the at-
tributes Gains, Sector and Capital, eventually copying Capital
into the target, which is not desired.

We formalize this intuition by introducing the notion of
(potentially) ambiguous variables and studying its connec-
tions to the fitness of a meta-mapping.

As a preliminary notion, we say that the position τ(q(x), x)
of a variable x in a conjunctive formula q(x) is the set of pairs
{(a1, p1), . . . , (an, pn)}, where ai is the predicate of an atom
in q(x) containing x, and pi is the relative position of x in
ai. For example, given: q(x) : Rel(R),Key(K,R),Att(A,R)
we have: τ(q(x), R) = {(Rel, 1), (Key, 2), (Att, 2)}.

Definition 3. Two distinct variables xi and xj are po-
tentially ambiguous in a conjunctive formula q(x) if τ(q(x), xi)∩
τ(q(x), xj) 6= ∅.

The above notion (which can be generalized to the case of
multiple variables by considering them pairwise) applied to
the premise qS of a canonical meta-mapping, captures the
“structural ambiguity” of the two variables, that is, their
presence in the same position in homonym atoms. However,
additional facts are generated in the target only if the am-
biguity is actually “activated” by a homomorphism in some
chase step, as captured by the next definition.

We first recall that: (i) a homomorphism from a con-
junctive formula q(x) to an instance I is a mapping of the
variables x into constants and variables, such that for every
atom P (x1, . . . , xn) of q(x), the fact P (h(x1), . . . , h(xn)) is
in I and that (ii) a homomorphism h from q(x) to I extends
to another homomorphism h′ from q′(y) to J , if for every
variable x in the intersection of x and y, h(x) = h′(x).

Definition 4. Two distinct variables xi, xj are ambigu-
ous in a canonical meta-mapping Σ : qS → qT if: (1) they
are potentially ambiguous in qS, (2) there exists a homomor-
phism h that maps some atom α whose predicate occurs in
τ(qS , xi) ∩ τ(qS , xj), into the same fact, and (3) one of the
following holds: (a) xi and xj are not potentially ambiguous
in qT ; (b) h extends to a homomorphism h′ that maps α into
different facts.

Example 13. Variables A1, A2, A3 of ΣB in Figure 3 are
ambiguous since: (i) they are pairwise potentially ambigu-
ous in qS (τ(qS , A1) ∩ τ(qS , A2) ∩ τ(qS , A3) = {(Att, 1)});
(ii) they are not pairwise potentially ambiguous in qT (A3

does not appear in the conclusion). By contrast, variables
A1, A2 of ΣA in Figure 3 are not ambiguous since they are
potentially ambiguous in qS and qT .

5

Condition (b) of Definition 4 covers the subtle cases in which
xi and xj are potentially ambiguous in both qS and qT
(hence condition (a) does not hold), yet the atoms of the
target in which xi and xj appear contain terms bound to
different values by an extended homomorphism.

We are now ready to give an effective characterization of
fitness for a meta-mapping.

Theorem 1. A canonical meta-mapping Σ fits its map-
ping σ if and only if it does not contain ambiguous variables.

3.3 Enforcing fitness
Let us now come to the problem of transforming a non-

fitting canonical meta-mapping into a fitting meta-mapping.
To this aim, taking inspiration from Theorem 1, which

provides a necessary and sufficient condition to guarantee
fitness, we introduce, in canonical meta-mappings, constraints
that avoid the presence of ambiguous variables. Specifically,
given a canonical meta-mapping ∀x(qS(x) → ∃yqT (x,y)),
we consider meta-mappings of the form:

∀x(qS(x), γ(x)→ ∃yqT (x,y))

where γ(x) is a conjunction of constraints of the form: (i) xi =
ci or (ii) xi 6= ci, in which xi is a variable and ci is a con-
stant.

We consider in particular mappings involving equality and
inequality constraints, which we call explicit mappings. We
denote them as positive, negative or hybrid if they involve
equalities only, inequalities only or both, respectively.

Example 14. Let qS(x) and qT (x,y) be the LHS and the
RHS of the meta-mapping ΣB in Example 8, respectively.
Possible extensions of ΣB with constraints are reported be-
low. They belong to different classes: positive (ΣPB), negative
(ΣNB), and hybrid (ΣHB). All of them fit σB.

ΣPB : qS(x), A1 = Gains, A2 = Sector, A3 = Capital → qT (x,y)

ΣNB : qS(x), A1 6= Sector, A1 6= Capital, A2 6= Gains,
A2 6= Capital, A3 6= Gains, A3 6= Sector → qT (x,y)

ΣHB : qS(x), A1 = Gains, A2 6= Gains, A2 6= Capital,
A3 6= Gains, A3 6= Sector → qT (x,y)

The presence of constants in explicit mappings guaran-
tees a form of semantic compliance of the meta-mapping
with the scenario at hand. For instance, the meta-mappings
in Example 14 are likely to be more suitable in application
domains involving Gains and Capital rather than those in-
volving Students and Courses. Negative mappings cover
more cases but tend to be too general, while positive map-
pings are more restrictive but better capture a specific ap-
plication domain. Therefore, to exploit the advantages of
both, it is useful to produce also hybrid mappings, which
involve both equality and inequality constraints.

Note that, using the above constraints, there is the risk
of generating a large number of different fitting variants out
of a single non-fitting meta-mapping. Nevertheless, in Sec-
tion 6, we show that the presence of variants with different
constraints increases the chances to find relevant solutions.

In the next subsection we show how to turn a non-fitting
canonical meta-mapping into a fitting meta-mapping by adding
the constraints above. Unfortunately, this process unavoid-
ably requires to detect all the ambiguities, a process with
inherent exponential complexity.

Theorem 2. The problem of finding a fitting meta-mapping
for a given canonical meta-mapping and a pair of source and
target schemas is Πp

2-hard.

3.4 Meta-mapping inference
We are now ready to present a technique to infer fitting

meta-mappings from mappings: Algorithm 1 takes as in-
put a transformation scenario H and returns a set meta-
mappings that fit all the mappings in H .

Algorithm 1 Meta-mapping inference.

1: procedure infer
2: Input: a trasformation scenario H = (σ1, . . . , σn)

where σi is a mapping between Si (whose m-schema is
Si) and Ti, (whose m-schema is Ti)

3: Output: a set of meta-mappings Q fitting H
4: Q ← ∅
5: for σi in H do
6: (Sσii ,T

σi
i)← project-mapping(σi, Si,Ti)

7: Σi ← canonical-meta-mapping(Sσii ,T
σi
i)

8: Ri ← repair(Σi, S
σi
i ,T

σi
i)

9: for Σ in Ri do
10: if Σ fits every σ in H then Q ← Q ∪ {Σ}
11: return Q

For each schema mapping σi in the scenario, we consider
its m-schemas Si and Ti and project σi on them (line 6). We
then build from Sσii and Tσii the canonical meta-mapping
Σi (line 7), which may not fit σi. We then “repair” it by
adding explicit mappings, as discussed in Section 3.3, and
produce a set Ri of meta-mappings, all fitting σi (line 8), as
described in detail by Algorithm 2 and discussed next.

As a final step of the main algorithm, we select, among the
generated meta-mappings, those that fit not only the map-
ping from which they originate, but all the other mappings
in the original scenario H (line 9 and 10).

Algorithm 2 describes how to repair a non-fitting canoni-
cal meta-mapping Σ = qS → qT by adding explicit mappings
to Σ. First, we compute the set HS of all the possible ho-
momorphisms from qS to source m-schema Sσ and the set
HT of all the possible homomorphisms from qT to target
m-schema Tσ (HT) (lines 4-5). Then, we isolate the set
HE of homomorphisms of HS that extend to some homo-
morphism in HT (line 6). Lines 7-8 store in Γ and Λ the
n-uples of potentially ambiguous variables in qS and qT re-
spectively, according to Definition 3. The subsequent loop
checks whether n-uples of potentially ambiguous variables
are indeed ambiguous. The analysis is limited to extend-
ing homomorphisms since the others do not produce any
tuples in the result. Whenever a homomorphism activates
the potential ambiguity in the LHS (lines 11-12), if such
ambiguity is not present in the RHS (line 13), or is present
but for some extension h′, the potentially ambiguous vari-
ables participate in atoms that are mapped by h′ to different
facts (lines 14-15), then the n-uple of ambiguous variables
is stored in A . Finally, we exploit the extended homomor-
phisms in HE to fix the ambiguous variables. We isolate
only the homomorphisms that have different values for the
variables in an ambiguous n-uple (line 18) and, for each of
such homomorphisms, we build several repairs by introduc-
ing a conjunction of constrains γ1, . . . , γn (line 21) for each
n-uple of ambiguous variables that appear in both qS and
qT . Each constraint γi can be (line 22): (i) an equality that

6

Algorithm 2 Meta-mapping repair.

1: procedure explicit repair
2: Input: a meta-mapping Σ and a pair of m-schemas S and T
3: Output: a set R of meta-mappings fitting σ
4: R,A ← ∅
5: HS ← generate all the homomorphisms from qS to Sσ

6: HT ← generate all the homomorphisms from qT to Tσ

7: HE ← {h ∈HS s.t. h extends to some h′ ∈HT }
8: Γ← {(x1, . . . , xn) of qS s.t.

⋂n
i=1 τ(qS , xi) 6= ∅}, with x1 6= x2 6= . . . 6= xn . set of pot. ambiguos var. in qS

9: Λ← {(x1, . . . , xn) of qT s.t.
⋂n
i=1 τ(qT , xi) 6= ∅}, with x1 6= x2 6= . . . 6= xn . set of pot. ambiguos var. in qT

10: for h ∈HE do . here we detect ambiguous var.
11: for (x1, . . . , xn) ∈ Γ do
12: if a(h(k1), . . . , h(x1), . . . , h(km)) = . . . = a(h(w1), . . . , h(xn), . . . , h(wm))
13: for some (a, ·) ∈

⋂n
i=1 τ(qS , xi) . ambiguity in the LHS

14: and ((x1, . . . , xn) /∈ Λ
15: or a(h′(k1), . . . , h′(x1), . . . , h′(kn)) 6= . . . 6= a(h′(w1), . . . , h′(xn), . . . , h′(wn))
16: for some (a, ·) ∈

⋂n
i=1 τ(qT , xi)) and h′ extension of h) . w/o corresp. ambiguity in the RHS

17: then A ← A ∪ {(x1, . . . , xn)}
18: for h ∈HE do . here we fix the ambiguities
19: if h(x1) 6= . . . 6= h(xn), for all (x1, . . . , xn) ∈ A s.t. xi appears in both qS and qT
20: then
21: add ∀x(qS(x), γ → ∃yqT (x,y)) to R:
22: where γ =

∧
(x1,...,xn)∈A (γ1, . . . , γn)

23: and γi is either xi = h(xi) or
∧
i,j=1...n, i6=j xi 6= h(xj).

24: return R

binds the ambiguous variable xi to the value h(xi) assigned
by h; (ii) a conjunction of inequalities of the form xi 6= h(xj)
for any possible ambiguous variable xj other than xi. We
consider all the possible ways of building each γi. Cases in
which all the γi’s have equalities are positive repairs; cases
with only inequalities are negative repairs; otherwise we have
hybrid repairs.

Example 15. Assume we want to repair the canonical
meta-mapping ΣB in Example 8. Among the homomor-
phisms in HE, there are:

h1 : {(A1,Gains), (A2, Sector), (A3,Capital), . . .}
h2 : {(A1,Gains), (A2,Gains), (A3,Gains), . . .}

The potentially ambiguous variables in qS and qT are Γ =
{(A1, A2, A3)} and Λ = {(A1, A2)}, respectively. The three
Att atoms of the LHS with the potentially ambiguous vari-
ables are all mapped by h2 to the same fact; moreover, since
(A1, A2, A3) is not in Λ, the variables are ambiguous. To
repair the meta-mapping, we identify all the extending ho-
momorphisms hi, s.t. hi(A1) 6= hi(A2) 6= hi(A3). Among
them, the homomorphism h1 above, from which we generate
the mappings ΣPB, ΣNB and ΣHB in Figure 3.

In the worst case our technique requires exponential time,
as an unavoidable consequence of the hardness of the under-
lying problem of finding a fitting template mapping (Theo-
rem 2). We now state the correctness of our procedures.

Theorem 3. Given a canonical meta-mapping Σ defined
on m-schemas Sσ and Tσ, a (positive or negative) meta-
mapping ΣR that fits σ always exists and Algorithm 2 always
terminates and determines such repair.

4. MAPPING REUSE

We now introduce our solution to mapping reuse, given
a new pair of schemas and a repository of meta-mappings.
We start defining the approach (Section 4.1) and we then
discuss how to implement it in an efficient and robust way
(Section 4.2).

4.1 A general approach to reuse
Assume that we have inferred, from a set of mappings H ,

a repository of meta-mappings Q using Algorithm 1 and we
need to find a mapping for a new pair of source and target
schemas, S and T.

We can reuse the knowledge in the mappings H using Q
as follows:. For each meta-mapping Σ in Q

1. we generate, from S and Σ, a target schema TΣ and a
mapping σ from S to TΣ using the S-D transformation,
and

2. if Σ fits σ as a mapping between S and T, we suggest
σ as a possible solution.

Example 16. Consider the possible reuse of the mapping
σB between SB and G in Figure 3 for generating a mapping
between SA and G. As discussed in Example 15, the meta-
mappings that can be inferred from σB include ΣPB, ΣNB and
ΣHB , reported in Figure 3. Consider now ΣHB .

The application of the S-D transformation to SA and ΣHB
produce the following target m-schema T and corresponding
mapping σ:

T
Rel
name
⊥B

Key
name in
Firm ⊥B

Att
name in
Gains ⊥B
Zone ⊥B

Description ⊥B

σ : RA(f, g, z, s),Activity(s, d)→ ⊥R(f, g, z, d).

7

SA,G SB ,G SC ,G SA,G
′ SD,SE

ΣA X × × X ×
ΣB X × × X ×
ΣPB × X × × ×
ΣNB X X X X ×
ΣHB X X X X ×
ΣOB × X × × ×

Figure 4: Usability of meta-mappings.

To test whether ΣHB fits σ as a mapping between SA and G
we need to check the isomorfism between the m-schemas of
T and G, with the latter reported here for convenience:

G
Rel
name

Balance

Key
name in

Company Balance

Att
name in
Gains Balance
Zone Balance
Sector Balance

it is easy to see that there is an isomorphism between the
tuples of G and T. We then return σ between SA and G to
the user as a possible solution.

Consider now Figure 4, where the columns denote meta-
mappings and the rows pairs of source and target schemas.
The table shows with a X if it is possible to generate, using
the process described above, a suitable mapping between a
pair of schemas from a given meta-mapping. Besides the
pair of schemas and meta-mappings we have already intro-
duced, we now discuss more scenarios to better explain how
our definition of mapping reuse works in practice.

New target schema. Consider the case when we have a
new target schema, such as a modified version of G: G =
{Balance(Company ,Gains,Area,Sector)}, where one attribute
label has been changed from “Zone” to “Area”. Meta-
mapping ΣHB can still be applied on SA producing the fol-
lowing target m-schema T = {Balance(Firm,Gains,Zone,
Description)}. Notice that with this m-schema, there are
two possible isomorphisms with G: one maps “Zone” to
“Area” and “Description” to “Sector” (correct), and a sec-
ond one maps “Zone” to “Sector” and “Description” to
“Area” (incorrect). In these cases, we expose to the users
both resulting mappings and let them decide.

No reusable meta-mappings. Consider now a new sce-
nario one, which is not structurally related to the bank sce-
narios and it is defined as follows:

SD = {R1 (A1 ,A2 ,A3),R2 (A1 ,A4),R1 .A1 7→ R2 .A1 }
SE = {R3 (A5 ,A1 ,A3))}

No matter what are the labels for the attribute and the
relations, there is no meta-mapping in our examples that
consider the case where the foreign key is defined over two
keys. As no meta-mapping with this structure has been
defined yet, the search would result empty result for this
pair of schemas.

Overfitting meta-mappings. Finally, in addition to the
meta-mappings that we have already introduced, we con-
sider a meta-mapping that fully specify the attribute names,
ΣOB , which is defined as follows:

ΣOB : qS(x), R = RB , A1 = Gains,A2 = Sector ,
A3 = Capital ,K1 = Enterprise,F = Area,

S = Location,K2 = Code,A4 = Description → qT (x,y)

where qS(x) and qT (x,y) are those in Figure 3. Interest-
ingly, the hybrid meta-mappings ΣHB appears to be the most

usable, since it is not applicable only to the pair SD and SE ,
which belong to a different scenario. On the other extreme,
the meta-mapping ΣO applies only to SB and G. In fact,
it is clearly overfitting, in the sense that it is built from an
exact correspondence to schema elements of σB and works
only for this case.

The examples show that the mechanism for inferring meta-
mappings illustrated in this section provides a powerful tool
for mapping reuse.

4.2 Efficient top-k search
The approach above for the retrieval of reusable mappings

is Boolean: a mapping either fits or not. However, it returns
empty results when a meta-mapping needs only minor ad-
justments to fit the schemas. For instance, a meta-mapping
that leads to only one isomorphism is preferable to another
that is needs the user to verify multiple possible matchings.
This behavior can be due to structural properties or to con-
stants in the meta-mapping matching the source schema. It
is clear that a ranking of the “best” meta-mappings for a
specific scenario is indeed desirable, as it can guide the user
selection.

Unfortunately, this is very expensive in terms of execution
time with a large number of meta-mappings in the reposi-
tory. The retrieval of a suitable mappings illustrated above
requires to scan through all the stored meta-mappings and
test both their fitness and their target schema isomorphisms
for the given pair of schemas. While the scan of the entire
repository is linear in the number of meta-mappings, both
the fitness (based on the chase procedure) and the isomor-
phism tests have PTIME complexity.

To overcome the limitations above, we adopt a machine
learning (ML) approach that, given a source and target
schema pair, ranks as top results the meta-mappings that
lead to fitting mappings for them. This solution not only
enables efficient retrieval, but it also effectively ranks meta-
mappings that are not fitting according to the amount of
change needed to make them usable for the given input
schemas. The approach is based on three phases:

• a feature engineering phase, in which features are identi-
fied to describe meta-mappings and schemas: number of
relations, number and kind of joins, number and kind of
constraints, constant values;
• a supervised training phase, in which a set of schemas and

meta-mapping pairs labeled as fitting/non fitting are used
to learn a distance metric (coverage) that scores the fitness
of a meta-mapping for a pair of schemas;
• a test phase, where the distance metric is applied on an

input pair of source and target schema and ranks the meta-
mappings that best fit the given scenario.

As the fitness prediction for a pair of schemas and a meta-
mapping takes constant time, the test phase takes linear
time in the worst case, thus addressing problem (1). The
distance metric enables top-k ranking of the most reusable
meta-mappings, thus addressing problem (2). Furthermore,
a distance metric allows the use of efficient data structures
for fast retrieval of top ranked mappings. We exploit this
property to design a solution based on a k-d index that op-
erates in LOGTIME. We detail our solution in the next Sec-
tion.

5. A REPOSITORY OF META-MAPPINGS

8

We start by describing the features that we identified to
describe meta-mappings and schemas (Section 5.1). Then,
we introduce the notion of coverage, a distance metric be-
tween meta-mappings specifically designed for the rank-by-
reusability task (Section 5.2). Finally, we describe the opti-
mizations to speed up the search over the repository (Sec-
tion 5.3).

5.1 The features
We structure our features according to two categories.

Structural features vary from simple, such as the num-
ber of atoms in a meta-mapping (or relations in a schema),
to more complex, such as the number of unique pairs of
atoms in a meta-mapping with at least one common vari-
able (or number of relations in a schema with a homonym
attribute). Some of them specifically refer to the LHS or the
RHS of the meta-mapping, interpreted as the source and tar-
get schemas, respectively, when applied to schemas. In the
Appendix, Figure ?? reports the list of structural features.
Domain features represent the domain of interest of a
specific meta-mapping or schema. We consider the set of all
the constant names (of attributes, relations, etc.) used in
the meta-mapping or in the schema.

5.2 The Coverage distance-metric
Although fitness is a solid indicator of the reusability of a

meta-mapping w.r.t. a specific scenario, it is hardly appli-
cable for repository search because of the polynomial com-
plexity and the binary nature of its test.

We therefore introduce the notion of coverage, a distance-
based metric that enables comparison between meta-mappings
as well as between meta-mappings and schemas. The first
comparison is used to organize and index the meta-mappings
in the repository by contrasting their LHS and RHS. The
second comparison is used to to set side by side the LHS
and the RHS of a meta-mapping with a source and a tar-
get schema, respectively. In the following, we discuss the
case of comparing the LHS of a meta-mapping with a source
schema, as the other cases are similar.

Coverage is based on the notions of structural and domain
distance, for structural and domain features, respectively.

Structural distance measures the distance along a struc-
tural feature fΣ of the LHS of a meta-mapping, and the
corresponding one fS for the source schema. It is defined as
a [0, 1]-normalized distance:

dfΣ,fS =
| fΣ − fS |

max(fΣ, fS)
.

Domain distance measures the distance along a domain
feature, i.e., it scores how likely the LHS of a meta-mapping
and a source schema deal with the same domain based on
the presence of shared constants. A constant is shared if an
atom of the meta-mapping is bound to a constant and the
same constant is as an element in the schema. For example,
given A1 = Gains and atom Att(A1, R) in meta-mapping
Σ, there is a shared constant with a schema S if S has an
attribute named Gains. The same applies to relation names,
keys, and so on. More specifically, we adopt the Jaccard
distance of the sets of constants:

δΣ,S = 1− | constants(Σ) ∩ constants(S) |
| constants(Σ) ∪ constants(S) | .

We can now define our coverage metric χ.

χ =

∏n
i=1(1− dfiΣ,fiS)× (1− δM,S)∏n

i=1(1− dfiΣ,fiS)× (1− δM,S) + δM,S ×
∏n
i=1(dfiΣ,f

i
S

)

For every pair of features to compare, we interpret 1-
distance (namely, the score) as the probability that two
mappings cover each other in the sense that they are suit-
able for the same schemas, or that a meta-mapping covers
a schema in the sense that it is suitable for it. If for a
pairs of features we have a 0.5 score, then such feature is
not informative for the coverage, i.e., it does not add any-
thing to the a random baseline. A lower score indicates that
the meta-mapping is less likely to cover the schema, while a
higher score indicates that the meta-mapping is more likely
to cover the schema. The coverage is actually built as the
Graham combination [17] of the scores for all features.

Classifier Training. The supervised training to learn
our metric consists in the application to every score of a
parametric scaling formula, which adjusts the positive or
negative contribution of the score by altering the definition
range.

At bootstrap, all scores s are in the range [0, 1] and we
scale them in the new range [a, b] by replacing s with a+s×
(b−a). Assuming that a score of 0.5 is information neutral,
we tune a and b for each feature as follows: (i) [0.5, 0.5]
neutral, (ii) [0.5, > 0.5] the score has only a positive effect,
(iii) [< 0.5, 0.5] the scores has only a negative effect, (iv)
[<0.5, >0.5] the score has both positive and negative effects.

In our model, parameters can be learned in many ways
with typical ML techniques. In particular, we train a logistic
classifier [9] with a training set consisting of pairs 〈X, Y 〉,
where X is the vector of scores for each sample and Y the
target variable denoting whether we are in a fitting situation
(hence the value one), or in a non-fitting situation (value
zero). For each sample, the following formula applies:

logit(p) = Xβ

where logit(p) = y = ln p
1−p , with p being the fitness proba-

bility and β the vector of b parameters in the feature scaling.
Solving with respect to β, for each feature we obtain the
logarithmic odds, i.e., the marginal relevance of a specific

feature f , from which we can derive b = e
βf

1+e
βf

. The same

is done to calculate a. Values for a and b for each feature
are the values for the parameters in χ. We experimentally
show that effective configurations can be identified with very
limited training data.

Notice that the estimated parameters could be directly
used in the so-trained logistic classifier for fitness estima-
tion. However, we adopt the distance metric for ranking, as
the input schemas can be compared with the meta-mappings
in the repository and the system is able to return the top-
k meta-mappings by directly using the coverage. More-
over, coverage enables the optimization techniques to effi-
ciently retrieve from the repository the most covering meta-
mappings, as we discuss next.

5.3 Searching meta-mappings
To avoid the exhaustive comparison of the input schema(s)

with all the meta-mappings in the repository, we build a
meta-mapping index. For each meta-mapping added to the
repository, we compute the vector of the values of the struc-
tural features fs. Such vector positions the meta-mapping

9

Table 1: Transformations and schemas statistics.
Dataset Total # Avg Total Avg #

st-tgds # rels # atts atoms

Chamber 20,000 5 900 32
CDP 1 23 800 15
Stock 1,300 34 900 40

as a point of a multi-dimensional space, which we index by
means of a k-d tree [6], a space-partitioning data structure
that is built in O(n log n) and enables to retrieve points
in a multidimensional space in O(log n). A k-d tree hinges
on a distance function. In our case, we use 1 − χS , where
χS is the coverage between two meta-mappings as defined
in Section 5.2, with only structural features.

With the meta-mapping index in place, given an input
schema, we: (a) calculate the schema features and build
the respective vector; (b) look up such vector in the meta-
mapping index to obtain all meta-mappings that are close
to the input; (c) calculate the coverage only for these meta-
mappings.

We remark the connection between the search operation
and the inference mechanism. Our search and ranking tech-
niques can be applied also to a repository of schema map-
pings rather than to a repository of meta-mappings. While
this is simpler to implement (as fitting is trivial), it is less
useful in practice. Schema mappings specify a transforma-
tion for a specific pair of source and target schemas, while
our inferred meta-mappings capture transformations that
are independent to some parts of the schemas.

6. EXPERIMENTAL EVALUATION
We evaluate our system, GAIA, on real-world transforma-

tion scenarios, as detailed in Section 6.1. In Section 6.2, we
report on the efficiency of GAIA in terms of inference and
search time. In Section 6.3, we show the effectiveness of the
coverage in ranking results. Finally, in Sections 6.4 and 6.5,
we report on the quality of the returned transformations in
large scale experiments with real mapping scenarios.

6.1 Experimental setup
We implemented GAIA in PL/SQL 11.2 and used Ora-

cle DBMS 11g. All experiments were conducted on Oracle
Linux, Intel Core i7@2.60GHz, 16GB RAM.
Datasets and Transformations. We use a real-world sce-
nario crafted from the data transformations that are peri-
odically done to store data coming from several sources into
the Central National Balance Sheet (CNBS) database, a na-
tional archive of financial information of about 40,000 enter-
prises. The schema of CNBS is composed of 5 relations with
roughly 800 attributes in total. Source data come from three
different providers, detailed in the second column of Table 1.
The Chamber of Commerce provides data for 20,000 com-
panies (dataset Chamber). While the schemas of these
datasets are similar to one another, the differences require
one mapping per company with an average of 32 (self) joins
in the LHS of the transformations involving relations with
up to 30 attributes. Data for 20,000 more companies are
collected by a commercial data provider (CDP) in a single
database and then imported into CNBS. The CDP schema
is different both in structure and names from the schemas
in Chamber and requires one mapping involving 15 joins

Figure 5: Inference and search execution times.

in the LHS. Finally, data for further 1,300 companies is im-
ported from the stock exchange (Stock) into CNBS, with
each company requiring a mapping with 40 joins on average.

Transformation scenarios. For the inference of the meta-
mappings, we consider two configurations: single, where a
meta-mapping is inferred from one mapping, and multiple,
where the inference is from a group of mappings. A group
contains transformations defined for companies in the same
business sector. After testing different numbers of mappings
in the group, we observed that the results stabilized with
10 schema mappings and did not improve significantly with
larger numbers, therefore we always consider 10 mappings
for the multiple configuration.

6.2 Inference and search times
In Figure 5(a), we report the times for computing the in-

ference of meta-mappings. We run the test inferring the
meta-mappings from the original mappings with an increas-
ing number of ambiguous variables (x-axis: 2-10), hence re-
quiring the evaluation of an exponentially growing number
of homomorphisms. When given 20,000 mappings and 10
ambiguous variables, about 21 millions meta-mappings are
stored in the repository. For a large number of variables, it
take about a minute for 10 ambiguous variables.

We then evaluate the search time for the three use cases
on the same repository, as reported in Figure 5(b). For each
test, we average the response times of 25 randomly selected
tests. From the results, we observe low latency (in the order
of seconds) even for large repositories generated from more
than 20,000 input mappings with millions of meta-mappings
in the repository. Search times confirm the logarithmic be-
haviour of the search using the index over meta-mappings.

6.3 Coverage and fitness
We show with a set of meta-mappings labelled as fit/unfit

that the coverage can effectively rank at the top the fitting
meta-mappings for a given scenario.

Consider again the 4 mappings (σA, σB , σC , σD) and a
repository with the 5 meta-mappings (ΣA,ΣB ,Σ

P
B ,Σ

N
B ,Σ

H
B)

described in the previous examples (Figure 4). For each
pair of source and target schemas (σx), we retrieve from the
repository the list of meta-mappings (ΣY , . . . ,ΣZ) ranked
according to their coverage for the given scenario. We com-
pute the feature scores for this experiment by using the 20
examples in the training set (we discuss later the impact of
the number of training examples on feature scores).For every pair of (source, target) schemas in the origi-
nal mapping scenario, Table 2 reports the number of fitting
meta-mapping in the repository and the precision in the top-
k results ranked according to their coverage (with k= 1, 2,

10

Table 2: Precision@k according to coverage.
Scenario # of fitting m-m k=1 k=2 k=3 k=4

σA 4/5 1.0 0.75 0.75 0.75
σB 3/5 1.0 1.0 1.0 0.75
σC 2/5 1.0 1.0 0.67 0.5
σD 0/5 0 0 0 0

Figure 6: Search precision and capability.

3, 4). The results show that the coverage rank at the top the
fitting meta-mappings, when they are in the repository for
the given scenario. In particular, the results are perfect for
σB and σC . For σA, for k = 1 a fitting meta-mapping has
the highest score, but three meta-mappings follow it in the
ranking with the same score. Since among these three there
is one that is not fitting, the accuracy is then 0.75 for k=2,
3, 4. Indeed, it is not possible to distinguish ΣPB , ΣNB and
ΣHB with our features only. The non fitting meta-mapping
can be distinguished with expensive homomorphism checks,
but we believe the trade-off offered by our features in terms
of accuracy is overall positive given their very low execution
time. Finally, for σD there are no fitting meta-mappings
in the corpus. This explain why the precision is always 0,
this reflects the quality of the corpus w.r.t. σD and not the
quality of the coverage as ranking mechanism. However, it
is important to notice that the coverage also gives a nor-
malized measure of fitness. This is crucial for two reasons.
First, it is effective in identifying meta-mappings that are
close to being fit for a given scenario. While ΣPB is not fit
for σA, its coverage is 0.49, as a single change in a constant
would make it fit. All the meta-mappings in the repository
are not fitting for σD and their coverage is always lower
than 0.39. Second, the score enables a different application
from ranking, where we make binary decision on the fitness
based on a threshold. In the experiment, by manually set-
ting a threshold value (t=0.48) to classify fitting and not
fitting meta-mappings, the coverage correctly labels all the
meta-mappings except one for a precision of 0.95 in the clas-
sification. We use this threshold value to make binary deci-
sion in a more specific experiment to evaluate the impact of
training over the features in our model (see Appendix ??).

The experiments with labeled scenarios show that cov-
erage is an effective measure to rank meta-mappings. As
labeling fitness for meta-mappings is an expensive exercise,
in the following large-scale experiments we use the coverage
to evaluate the quality of the retrieved meta-mappings.

6.4 Search precision
For each mapping σ on a source S and a target T, the

repository stores a set of new meta-mappings Q, inferred
from σ. We measure with the precision the ability of the

system to return the meta-mappings in Q when queried with
S, T, i.e., it measures how well the system retrieves correct
cases.

We use a resubstitution approach: we populate an empty
repository by inferring the meta-mappings from a set Θ of
schema mappings. For each schema mapping σ, we store
the generated meta-mappings Qσ. We then pick a schema
mapping σ′ from Θ and search the repository by provid-
ing as input the source and target schemas in σ′. As a
query returns thousands of applicable meta-mapping, we
rank them according to the coverage and take the top 10
(k=10). We collect the top-10 result and compute the per-
centage of rightly retrieved meta-mappings Σ, i.e., Σ ∈ Qσ′ .

We test search precision with a repository of increasing
size (from 200 to 21,301). In each test, we query the reposi-
tory by using 50 different source-target pairs and report their
average precision. The experiment is repeated for single and
multiple scenarios. The largest corpus contains about 700K
explicit meta-mappings for single configuration (110K for
multiple configuration). In the multiple scenario, the test
is considered successful on a mapping σ when the retrieved
meta-mapping originates from the group that includes σ.

In Figure 7(c), precision decreases with the size of the
repository as larger numbers of mappings lead to an increas-
ing number of false positives in the search result. We report
the precision in retrieving the correct mapping for CDP with
a separate line. As soon as the CDP mapping gets inserted
in the repository (after about 10,200 transformations), it is
immediately identified by the search with all configurations.
This shows that specific structures and constants lead to
meta-mappings that are easy to retrieve.

Inferring meta-mappings from multiple schema mappings
(multiple scenario) improves precision for two main reasons.
The meta-mappings are more general since generated from
a larger number of similar cases, reducing the risk of over-
fitting. Also, the repository size decreases for all configura-
tions.

6.5 Search capability
We now evaluate GAIA in the search of valuable transfor-

mations for new schemas, i.e., scenarios (and therefore meta-
mappings) that have not been seen by the system yet. For
this task, we introduce the notion of search capability. Given
a mapping σ from S to T and the set of meta-mappings Qσ

inferred by σ, we consider S, T and search the repository,
making sure that it does not include any meta-mapping of
Qσ. We then measure the search capability as the coverage
(as defined in Section 5.2) of the k best retrieved meta-
mappings w.r.t. the meta-mappings in Qσ.

In the experiment, we resort to a hold-one-out technique.
We start from the empty repository and a set Θ of mappings.
We populate the repository with a set Γ ⊂ Θ of mappings
and then randomly choose a set of mappings Φ ⊂ Θ − Γ
(the “new mappings”). For each σ ∈ Φ from S to T, we
query the repository giving S, T as input. We then compute
the average α of the coverage of the top-10 meta-mappings
(k=10) w.r.t. the meta-mappings Qσ. Finally, we compute
the average of the α values of all σ ∈ Φ.

We test the dependence of search capability on the size
of the repository and the transformation scenario. For each
test run, the repository is populated with the meta-mappings
generated by a number of transformations (from 200 to 10,200),
in which we do not include CDP, in order to assess how well

11

Figure 7: Precision and capability for meta-
mappings and schema mappings.

the system provides transformations for it. We then com-
pute the search capability with 50 different source-target
pairs. In this case, we explicitly run the experiment using
CDP.

As apparent in Figure 7(d), the more mappings are added
to the repository, the higher is the search capability. This is
expected, as the presence of more meta-mappings increases
the likelihood to find a suitable one for the given input.
For CDP, we report only the best result, which is obtained
with the multiple configuration. We observe a significant im-
provement after the inclusion of the transformation number
“6400”, which is closer to the size of CDP.

Grouping mappings as a single transformation scenario
(multiple configurations) improves performance also in this
case. Not only the size of the repository is reduced, but
for the same number of input mappings, we observe an in-
creased search capability for all configurations. This shows
the positive impact of the merge procedure.

These tests show that complex mappings can be hardly
approximated by meta-mappings that do not originate from
them. Conversely, simpler transformations can be approxi-
mated very well with a sufficiently large set of meta-mappings.

6.6 Schema mappings corpus
Finally, we repeat the experiments on the real-world dataset

and use case S-T to measure search precision and ability of
our system when the repository is populated with schema
mappings. To build a schema mapping repository, we com-
pute the canonical meta-mapping for each schema mapping
and bind all the variables to the specific constants, inde-
pendently of their ambiguity, to guarantee fitness (e.g., ΣOB
in Section 4). The results for the meta-mappings are the
ones we obtained in the previous experiments with multiple
configurations.

In Figure 7(g), the precision results with a schema map-
ping repository are comparable to meta-mappings up to
about 13000 input mappings. Then the responses become
inaccurate because on the scarce generality of schema map-
pings, which lead to many false positives in the search. The
differences between the two approaches become more appar-
ent with the search capability (Figure 7(h)). For new, un-
seen cases, a repository of schema mappings does not provide
significant benefit, never going above 0.4 for any configura-
tion. This demonstrates the specificity of schema mappings,
that are hardly applicable for semantically similar cases.

7. RELATED WORK
While the notion of reuse is popular for software compo-

nents [15], it is getting attention in the database community

only recently [1]. The motivation comes from the increased
capability of storing enterprise data and metadata in non-
structured repositories, such as data lakes [14, 18] or knowl-
edge graphs [5], and from the wish to activate “enterprise
knowledge” by means of complex data management and rea-
soning tasks. A recent example of the reuse approach is the
automatic adaptation of rules for fraud detection across dif-
ferent datasets [25].

Our work goes towards this direction by introducing the
first framework for the reuse of schema mappings. In par-
ticular, we adopt the standard language of tgds for the
declarative definition of data transformations in data ex-
change [13], enriched with the specific semantics of meta-
mappings for the problem of exchanging metadata instead
of data [26]. One contribution in data exchange is the semi-
automatic generation of the schema mappings [12], given
simple correspondences between the schema elements [7, 4].
Matching discovery and generation support data transfor-
mation design [21], but they must be done for each new pair
of schemas. Moreover, schema mappings are usually man-
ually tuned with extra information coming from the user
background knowledge [3]. Our system is able to reuse this
manual refinement. There exist proposals to store element
matches for reuse [23], but they cannot store logical formu-
las and therefore crucial information, such as the structure
of the schema and the manual tuning, is completely lost, as
experimetally demonstrated in Section 6.6.

Our inference of meta-mappings from mappings can be
seen as the lifting to meta-level of the discovery of mappings
from data examples [2, 3, 16, 27], which in turn is inspired
by the discovery of queries given data examples [24]. In our
setting, previous algorithms [2, 3] would generate canoni-
cal meta-mappings that, as discussed in Section 3, would
not capture the semantics of a transformation. Our repair
algorithms (Section 3) can be seen as a generalization of
the previous algorithms where, with a limited extension of
the adopted language, we also deal with data examples with
self-joins. Gottlob and Senellart [16] introduce a theoretical
framework for the discovery of schema mappings, based on
a single data example. They address unsuitable mappings
by examining different repairs and solving a cost-based opti-
mization problem to choose the best ones. Their results are
not directly applicable to our context for two main reasons:
first, they operate at data level, and we have shown that
plain schema mappings fail to generalize (see Section 6.6);
then, they contribute intractability results, which reinforce
our need for heuristic search techniques. Kolaitis et al. [27]
build on Gottlob’s framework and propose polynomial-time
approximation algorithms to quickly choose the best repairs.
This is certainly useful in practice, yet would be limiting in
our setting, where we are actually interested in storing all
the variants to maximise reuse.

Traditional ETL tools and research and commercial sys-
tems for data wrangling such as VADA [22] and Trifacta [19]
allow to store, load and combine previously defined trans-
formations without any schema-level generalization or in-
dexing of the transformation semantics. As shown in the
experiments, our inference algorithm increases the chances
of reusing previous transformations.

8. CONCLUSIONS
We introduced a system to support the design of data

transformations. Starting from a set of schema mappings,

12

we generate more generic meta-mappings, which capture the
semantics of the input transformations at a higher level of
abstraction. We store meta-mappings in a searchable reposi-
tory and index them for fast retrieval. Given a new scenario,
we provide a list of “suitable” schema mappings. Experi-
ments confirm the high quality of the retrieved mappings.

One direction for future work is the extension of the ap-
proach to model constants and function symbols in the schema
mappings. This would allow us to capture and reuse data-
level constraints that are meaningful to the user.

9. REFERENCES
[1] D. Abadi et al. The Beckman report on database research.

Commun. ACM, 59(2):92–99, Jan. 2016.
[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.

Characterizing schema mappings via data examples. ACM
Trans. Database Syst., 36(4):23, 2011.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD, pages 133–144, 2011.

[4] Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema
Matching and Mapping. Data-Centric Systems and
Applications. Springer, 2011.

[5] L. Bellomarini, G. Gottlob, A. Pieris, and E. Sallinger.
Swift logic for big data and knowledge graphs. In IJCAI,
pages 2–10. ijcai.org, 2017.

[6] J. L. Bentley. Multidimensional divide-and-conquer.
Communications of the ACM, 23(4):214–229, 1980.

[7] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB, 4(11):695–701,
2011.

[8] P. A. Bernstein and S. Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD, 2007.

[9] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2006.

[10] C. Chen, B. Golshan, A. Y. Halevy, W. Tan, and A. Doan.
Biggorilla: An open-source ecosystem for data preparation
and integration. IEEE Data Eng. Bull., 41(2):10–22, 2018.

[11] L. Chiticariu and W. C. Tan. Debugging schema mappings
with routes. In Proceedings of the 32nd International
Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pages 79–90, 2006.

[12] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping creation
and data exchange. In Conceptual Modeling, 2009.

[13] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT, 2003.

[14] R. C. Fernandez, Z. Abedjan, S. Madden, and
M. Stonebraker. Towards large-scale data discovery. In
ExploreDB, pages 3–5, 2016.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[16] G. Gottlob and P. Senellart. Schema mapping discovery
from data instances. J. ACM, 57(2), 2010.

[17] P. Graham. Better bayesian filtering. In Proceedings of
Spam Conference, 2003.

[18] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis,
S. Roy, and S. E. Whang. Managing Google’s data lake: an
overview of the Goods system. IEEE Data Eng. Bull.,
39(3):5–14, 2016.

[19] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. In CIDR, 2015.

[20] M. A. Hernández, P. Papotti, and W. C. Tan. Data
exchange with data-metadata translations. PVLDB,
1(1):260–273, 2008.

[21] V. Kantere, D. Bousounis, and T. K. Sellis. A tool for
mapping discovery over revealing schemas. In EDBT, 2009.

[22] N. Konstantinou, M. Koehler, E. Abel, C. Civili,
B. Neumayr, E. Sallinger, A. A. A. Fernandes, G. Gottlob,

J. A. Keane, L. Libkin, and N. W. Paton. The VADA
architecture for cost-effective data wrangling. In SIGMOD
Conference, pages 1599–1602. ACM, 2017.

[23] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching. In ICDE. IEEE, 2005.

[24] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema
mapping as query discovery. In VLDB, pages 77–88, 2000.

[25] T. Milo, S. Novgorodov, and W. Tan. Interactive rule
refinement for fraud detection. In EDBT, pages 265–276,
2018.

[26] P. Papotti and R. Torlone. Schema exchange: Generic
mappings for transforming data and metadata. Data
Knowl. Eng., 68(7):665–682, 2009.

[27] B. ten Cate, P. G. Kolaitis, K. Qian, and W. Tan.
Approximation algorithms for schema-mapping discovery
from data examples. ACM Trans. Database Syst.,
42(2):12:1–12:41, 2017.

13

