
Fast Two-Server Multi-User Searchable
Encryption with Strict Access Pattern Leakage

Cédric Van Rompay1, Refik Molva1, and Melek Önen1

EURECOM, France
vanrompa,molva,onen@eurecom.fr

Abstract. A recent paper showed that most Multi-User Searchable En-
cryption protocols do not provide any privacy without the assumption
that all users can be trusted, an assumption too strong to be realistic for
a MUSE system. As to the few MUSE protocols that are not affected,
they all suffer from some scalability issues. We present the first MUSE
protocol that does protect against user-server collusions, and yet scales
very well. The protocol is also very simple. We prove that the leakage of
the protocol is limited to the access pattern of queries and we report on
performance measurements from a proof-of-concept implementation.

Keywords: multi-user searchable encryption, diffie-hellman, access pat-
tern

1 Introduction

The advent of cloud computing allowed an ever increasing number of users to
delegate hosting and computation tasks to Cloud Service Providers (CSP). How-
ever users are less and less willing to trust CSPs regarding the handling of their
data, as massive data leaks are regularly made public. While simple client-side
encryption would solve the privacy problem, it would prevent any useful opera-
tion on the data on the server side. This is what motivated research on Searchable
Encryption (SE) (see [4–6,12] and their references) which goal is to allow a CSP
to search some outsourced data on behalf of a user without compromising the
privacy of this data and the privacy of the queries.

While current state-of-the-art SE schemes [6,9,11] can efficiently process very
large databases (terabyte-scale databases in [6]), these protocols only consider a
single user being both the only one uploading data and the only one searching
it. At the same time, research in SE also studied the situation where the dataset
is being written and/or searched by several users. The case where there are
both several readers and several writers is called “Multi-Reader-Multi-Writer
SE” by [5], but we will call it Multi-User SE (MUSE) for short in this paper.

MUSE is a recent but active research topic, with at least 13 publications
since 2007 [1, 3, 10, 13, 14, 16, 17, 20–23, 27, 29]. However it seems very difficult
to reconcile security and efficiency in MUSE. Prior to the 2013 paper of Popa
and Zeldovich [20], all papers on MUSE where assuming that the adversary
only had control over the server papers on MUSE were only considering the

2 Van Rompay et al.

server as a threat, implicitly assuming that all users were fully trusted. Popa
and Zeldovich were the first to address user-server collusions in MUSE and to
present a protocol, MKSE, that was supposed to provide privacy in such a model.
However this protocol was shown in [24] to fail as well to protect privacy against
user-server collusions, confirming the doubts emitted by Grubbs et al. in [13].
New MUSE protocols were presented in [23], [14] and [22] that seem to reach
an acceptable level of privacy against user-server collusions, but they all suffer
from scalability issues.

In this paper, we identify different mechanisms present in recent MUSE pro-
tocols [14,22,23] that trade some privacy for an efficiency increase, and we show
that combining them leads to a simple and efficient MUSE protocol which pri-
vacy level stays acceptable. The protocol we present, having similarities with an
existing PSI protocol [15] based on the Diffie-Hellman key exchange protocol, is
the first MUSE protocol to have both a very light user workload and a moderate
server workload while being secure against user-server collusions.

We give a rigorous proof of the security of the protocol using the “simula-
tion technique” [19] in the random oracle model, and we report on performance
measurements of a proof-of-concept implementation.

1.1 Organization of the Paper

In Section 2 we define Multi-User Searchable Encryption, in Section 3 we give
some technical preliminaries, and in Section 4 we give an overview of the related
work. In Section 5 we give an intuitive description of the idea of the protocol
we present, in Section 6 we give a formal description of the protocol, in Section
7 we analyse the security of the presented protocol, in Section 8 we analyse the
efficiency of the protocol and report on performance result of a proof-of-concept
implementation, and in Section 10 we conclude the paper.

2 Multi-User Searchable Encryption

We give a definition of a MUSE protocol and of the security of a MUSE protocol
that is general enough to apply to all existing constructions. In Section 6 we
apply these definitions to the protocol we present using a more formal syntax.

A MUSE protocol involves a server and a number of users. Users can be
of type either reader or writer. A writer owns some records and uploads
them to the server (in an encrypted form). For each record, the writer owning
it can authorize some readers to search it. We will speak of the authorization
graph or authorization map to denote the information of “which reader has
access to which record”. A reader can search the records for which she got the
authorization to do so by sending a query to the server in an encrypted form
which we will call trapdoor. We will only consider single-keyword search,
meaning that records are defined as sets of keywords, a query consists of a single
keyword and we say that a record matches a query if the query is present in the
record. Keywords are defined as bit strings. At the end of the search procedure,

Fast Two-Server MUSE with Strict Access Pattern Leakage 3

the server sends a response back to the querying reader (possibly in encrypted
form) who outputs the ids of records that match the query among the records
this reader was authorized to search.

We note Wd ∈ {0, 1}∗ the record with id d and we represent the authorization
graph by a function Auth such that for any reader r ∈ R we have d ∈ Auth(r)
if and only if r is authorized to search Wd. If q is the keyword queried by reader
r and a is the query result that r outputs at the end of the search protocol, the
protocol is correct if the following holds with overwhelming probability:

a = {d ∈ Auth(r) : q ∈Wd} (1)

Regarding security, the adversary we consider is a collusion of the server and
some users. We consider the adversary as honest-but-curious (see [19]), as it is
common in the literature on MUSE. Following the seminal paper of Curtmola
et al [8], we define the history of a MUSE protocol as the records, the queries,
and the authorizations. We define the leakage as a function of the history, and
we say that a MUSE protocol has some leakage with respect to an adversary if
the view of this adversary can be simulated in an indistinguishable way using
only the information from this leakage.

We define several notions that will be helpful when describing leakage func-
tions: the access pattern denotes the information of which record matched
which query. “Access pattern” is thus a synonym of “query result” (see equation
(1)). The term benign leakage will regroup all the information we consider as
non-sensitive. It consists of the size of each record, the number of queries from
each reader, and the authorization graph. Most MUSE protocols, and all of the
ones we compare our protocol with, reveal this benign leakage. As a result we
will sometimes omit the benign leakage, saying that some protocol “only leaks
the access pattern” while it also leaks the benign leakage. Finally the revealed
content denotes the queries and records which the adversary has a legitimate
access to through the users it controls. It includes the queries of corrupted read-
ers and the records of corrupted writers, but also the records corrupted readers
have access to. For the same reasons, we often omit it as well when describing
the leakage of protocols.

3 Preliminaries

Diffie-Hellman Problems Given some cyclic group G of order ζ having genera-
tor g, the Computational Diffie-Hellman (CDH) problem consists, given (ga, gb)
in G2, to compute gab. The Decisional Diffie-Hellman (DDH) problem consists,
given any triplet (ga, gb, gc) in G3 to outputs “true” if c = ab and “false” oth-
erwise. Groups where the CDH and DDH problems are assumed to be hard are
very widely used in practical cryptography. We will note h a cryptographic hash
function, modeled as a random oracle, that hashes any bit string into G.

4 Van Rompay et al.

4 Related Work

The first MUSE protocol was proposed by Hwang and Lee in 2007 [16]. It slightly
differs from our definition of MUSE because their protocol considers records as
tuples of keywords.

A MUSE protocol that is important in our study is the one of Bao, Deng,
Ding and Yang in 2008 [3]. Because this protocol and others in the state of the art
use bilinear pairings, we recall the definition of bilinear pairings and introduce
some notation related to them. Note that our protocol does not use bilinear
pairings but related MUSE protocols do.

Definition 1 (Bilinear Map). Let G1, G2 and GT be multiplicative cyclic
groups of order ζ, with respective generators g1, g2 and gT . e : G1 × G2 → GT

is a bilinear map if it is:

– bilinear: e(ga1 , gb2) = e(g1, g2)
ab for all a, b ∈ Z∗

ζ ;
– non-degenerate: e(g1, g2) generates GT ;
– efficiently computable for any input pair

Typical assumptions used on bilinear pairing groups are the hardness of the
CDH problem on each group, and using some specific types of pairing imple-
mentation, groups can also be assumed to be DDH-hard (see [2]). We will note
he a cryptographic hash function that hashes any bit string into G1.

In the protocol of Bao et al. [3], a Trusted Third Party (TTP) creates a
master key msk ∈ Z∗

ζ . Then for each user u (users are both readers and writers
in this protocol), the TTP creates a secret user key ku ∈ Z∗

ζ sent to the user and
a value called “complementary key” (later called “delta value”) g

msk/ku

2 that is
sent to the server. For the creation of both trapdoors and encrypted records, user
u encrypts a keyword w as he(w)

ku and the server pairs the encrypted keyword
with the complementary key to obtain the following:

e(he(w)
ku , g

msk/ku

2) = e(he(w), g2)
msk (2)

As a result while each user has her own secret key, the use of the complementary
key makes the protocol equivalent to a single user encrypting her records and
queries using master key msk, while this master key is in fact only known by
the TTP. This kind of MUSE protocols where all records and all trapdoors are
re-encrypted under a common secret key are called single-key.

A paper by Yang et al [29] adds a few extensions to the protocol of Bao et
al. [3] without changing its basic behaviour. Finally, a paper by Dong, Russello
and Dulay [10] presents a protocol that works in a similar fashion, but is based
on RSA encryption instead of bilinear pairings.

4.1 The MKSE Protocol

In [20], Popa and Zeldovich present a MUSE protocol named “Multi-Key Search-
able Encryption” (MKSE). This protocol introduces radical changes from the

Fast Two-Server MUSE with Strict Access Pattern Leakage 5

previous MUSE protocols in order to address a much more challenging threat
model where some users may be colluding with the server. The main difference
between MKSE and the protocol of [3] is that MKSE does not follow the “single-
key” structure. Indeed in a single-key MUSE protocol like the one of Bao et al. [3],
once the trapdoor of a user is transformed by pairing with the corresponding
delta value as in Equation (2), the transformed trapdoor can be applied on any
encrypted keyword of any encrypted record. Thus, an adversary controlling the
server and even a single user would have access to the entire database.

There is no TTP in MKSE; instead, user u creates his own secret key γu ∈ Z∗
ζ

and can authorize user v to search his record by computing the delta value gγu/γv

2 .
User u encrypts keyword w as e(he(w), g2)

γu , user v encrypts query q as he(q)
γv

which is transformed by the server using the delta value. Similarly as in Bao et
al. [3], we have:

e(he(q)
γv , g

γu/γv

2) = e(he(q), g2)
γu (3)

The main difference between MKSE and [3] is that in MKSE the encrypted
keywords are never transformed, but trapdoors are transformed to match the
encrypted keywords. While this requires the server to compute a pairing for each
record the querying user is allowed to search, it also ensures that the trapdoor
of a user can only be applied on the records this user was allowed to search,
mitigating the consequences of user corruptions.

The MKSE protocol had quite some impact. [20] has been cited by a number
of papers [25, 26, 28], most of them using it as a base and suggesting improve-
ments and extensions to it. Also, the MKSE protocol is at the core of the Mylar
platform, presented in [21], that aims at facilitating the development of secure
web applications. Mylar in turn was cited several times, including in the press1.

4.2 Insecurity of the Iterative Testing Structure and Recent
Protocols

In [24], Van Rompay et al. show that none of the previously mentioned MUSE
protocols can offer privacy against even a very small number of users colluding
with the server, because they all follow a common structure named “iterative
testing” in [24]. Interestingly this affects the MKSE protocol as well, despite the
fact that it was designed to protect against such collusions. We also remark a
MUSE protocol, presented in [17], that was not mentioned in [24] while it follows
the iterative testing structure as well.
1 http://bgr.com/2014/03/27/mylar-website-encryption-technology/

http://motherboard.vice.com/read/want-to-keep-data-private-encrypt-it-before-it-
even-reaches-a-server
http://www.ibm.com/developerworks/cloud/library/cl-always-on-data-encryption-
for-cloud-security
http://spectrum.ieee.org/computing/software/how-to-compute-with-data-you-cant-
see

6 Van Rompay et al.

Intuitively, iterative testing denotes the fact that the server sees encrypted
records as lists of encrypted keywords and that search consists in testing each
encrypted keyword one by one. When a query matches a record, the server can
see which was the encrypted keyword that matched the query. This reveals when
two queries from different readers are similar because they will match the same
encrypted keyword if there is a record both readers have access to. As a result,
the corruption of one user can lead to the recovery of queries of other, non
colluding users, which in turn can lead to the recovery of keywords in records
the colluding reader did not have access to. Results from some simulations in [24]
show that even a very small number of colluding users can lead to a major loss
of privacy across the whole dataset.

Some recent papers on MUSE [14,22,23] present protocols that do not follow
the iterative testing structure and achieve privacy against user-server collusions.
Nevertheless all these protocols suffer from some form of scalability issues.

In the protocol by Hamlin et al. [14] a reader must download and process
every single record he is allowed to search before re-uploading the processed
version to the server. Similarly in [23], the response received by a reader has a size
that is linear with the number of records being searched. This goes against the
main goal of cloud computing which is to allow end users with small capacities
to process large amounts of data. Finally in the 2018 protocol of Van Rompay
et al. [22], while the user workload is small and independent of the number
of records searched, the server workload is significant and the absence of an
implementation makes it difficult to assert the practicality of the protocol.

4.3 An Unexplored Middle Ground

All MUSE protocols suffer from either insecurity ([3, 10, 20] and derivatives)
or scalability issues [14, 22, 23] (See Figure 1). Among the protocols that are
secure against user-server collusions, we note various techniques which trade
some security for a gain in efficiency. We suggest to combine these techniques,
hoping that their performance advantages add up together, resulting in a level
of scalability that was not reached before among this kind of MUSE protocols.

security

efficiency

secure but innefficient

insecure but efficient

[3, 10, 20, 17]

[14, 22, 23]
unexplored

middle ground

Fig. 1. A representation of our notion of “unexplored middle ground” regarding the
security/efficiency dilemma in MUSE.

Fast Two-Server MUSE with Strict Access Pattern Leakage 7

These techniques consist of:

– In Hamlin et al. [14], trading off access pattern leakage for lower complexity
in underlying mechanisms. Leaking the access pattern is very common among
single-user SE schemes, even if an increasing number of statistical attacks
show the limitations of such leakage. Also, [24] shows that privacy against
user-server collusions is much greater in a MUSE protocol only leaking the
access pattern than in a protocol based on iterative testing. Accepting to leak
the access pattern avoids using the kind of complex and costly mechanisms
present in the protocols from Van Rompay et al. [22, 23].

– In the two protocols of Van Rompay et al., the use of two servers that
are assumed not to collude together. This kind of assumption is present
and well-accepted in various other protocols, the most well-known example
being Private Information Retrieval [7]. While relying on such an assumption
slightly weakens the privacy guarantees, it is obviously much better than
having to assume the absence of any user-server collusion as required by
protocols based on iterative testing. Having two non-colluding servers makes
it easier to protect the privacy of the records and queries because each server
can only be given a part of the information that is meaningless without the
other part, a privacy feature that cannot be achieved easily with a single
server. Note that in such two-server architecture, none of the servers are
trusted, both are modeled as independent honest-but-curious adversaries.

We view the combination of these techniques as a “middle ground” that has
not been studied yet, represented in Figure 1, where security is only slightly
weaker than in the latest protocols while scalability could be significantly im-
proved.

5 Idea of the Protocol

We show that accepting to leak the access pattern while assuming the presence of
two non-colluding servers leads indeed to a simple, efficient and scalable solution
to the MUSE problem. We claim that the MUSE protocol we present may be
the best practical tradeoff as of today for the MUSE problem with a very large
number of records.

The protocol is similar to a Private Set Intersection (PSI) protocol presented
in [15] (see also [18]), which we will call “DH-PSI”, that is solely based on the
Diffie-Hellman protocol. A (one-sided) PSI protocol involves a sender with set
Y and a receiver with set X, and the receiver must learn X ∩ Y and the size
of Y while the sender must learn nothing beyond the size of X. Remark that
set membership test, which is what our MUSE protocol does, is a special case
of set intersection: q ∈ Wq is equivalent to {q} ∩Wq 6= ∅. In DH-PSI [15], the
receiver picks a random value α ∈ Z∗

ζ and sends {h(x)α ∀x ∈ X} to the sender.
The sender picks a random value β ∈ Z∗

ζ and sends both {(h(x)α)β ∀x ∈ X}
and {h(y)β ∀y ∈ Y }. Finally the receiver computes {

(
h(y)β

)α ∀y ∈ Y } and

8 Van Rompay et al.

is able to see which elements of X are in Y without learning anything about
the elements in Y −X. Interestingly, this protocol was shown in [18] to be the
fastest existing PSI protocol when one set is much larger than the other one,
which corresponds to our case.

Reader WriterProxy Server

Fig. 2. An illustration of our protocol using the notation of a PSI protocol.

Our protocol can actually be considered as an “outsourced” version of the
protocol of [15]. The reader of MUSE would be the receiver in PSI and the writer
would be the sender, but instead of interacting together in a direct manner, the
receiver sends her masked set to the (non-trusted) proxy and her secret to the
server while the sender sends her masked set to the server and her secret key
to the proxy. Both the proxy and the server apply the key they received on the
masked set they received in order to compute a “double-masked” set. Finally the
proxy determines the intersection between the double-masked set it computed
and the one transmitted by the server. The result is returned to the reader as
the response to its query.

Figure 2 illustrates our protocol in a way that shows the similarities with
the DH-PSI protocol. In particular, the reader is represented as having a set X,
while in our case it would rather be a single element being the queried keyword.
The secret of the writer is noted γ because it corresponds to the record key in a
MUSE protocol, and the reader secret is noted ξ because it corresponds to the
blinding factor in [23].

Finally our protocol must efficiently handle a great number of readers sending
a great number of queries to a great number of records. Note that this aspect
is totally absent from the PSI protocol of [15]. The handling of many readers
and records without increasing the workload of users is trivial in our protocol,
thanks to the way the “outsourcing” is achieved: The proxy will transform a
trapdoor using the keys of the records the querying reader is allowed to search,
and the server will only prepare the proper encrypted records with the blinding
factor of the querying reader. The proxy or the server could “cheat” and try
to apply other keys or blinding factors, but the result will be of no use unless
the server sends extra prepared records to the proxy, which would violate the

Fast Two-Server MUSE with Strict Access Pattern Leakage 9

honest-but-curious model and/or the assumption that the two servers do not
collude together.

As to the handling of queries from a same reader, we note that there is no
need to renew the blinding factor at each query. This saves a great amount
of computation because both the preparation step and the sending of prepared
records are skipped. Instead, it suffices that the reader avoids sending two identi-
cal queries for a fixed period of time, say a month. The exact time period should
be chosen depending on how many query results the reader can remember, and
on how fast new keywords are added to records.

6 The Diffie-Hellman AP-MUSE Protocol

– The writer owning record Wd ∈ {0, 1}∗ picks record key γd at random from
Z∗
ζ . She encrypts this record into W d by computing:

W d ← {h(w)γd ∀w ∈Wd}

She sends W d to the server and γd to the proxy.
– The writer owning record Wd can authorize a reader r to search Wd simply

by notifying the proxy and the server.
– For each time period l, reader r picks a random blinding factor ξr,l ∈ Z∗

ζ and
sends it to the server.

– When the server receives blinding factor ξr,l, it computes the prepared en-
crypted record W d,r,l for each d ∈ Auth(r):

W d,r,l ← {wξr,l ∀w ∈W d}

It sends W d,r,l to the proxy.
– qr,l,s denotes the s-th query of reader r during the l-th time period. For each

such query, reader r creates the corresponding trapdoor tr,l,s:

tr,l,s ← h(qr,l,s)
ξr,l

tr,l,s is sent to the proxy.
– When receiving trapdoor tr,l,s, the proxy does the following steps for each

record the querying reader is authorized to search, that is for each d ∈
Auth(r):
• the proxy computes the transformed trapdoor t′r,l,s,d:

t′r,l,s,d = tγd

r,l,s

• the proxy looks for value t′r,l,s,d in prepared record W d,r,l. If the value is
found, we say that Wd matches.

The proxy sends the ids of the matching records to the querying reader.

We assume that a reader does not send similar queries during the same time
period, that is, qr,l,s 6= qr,l,s′ . However queries from different readers during the
same time period can be similar, that is, we can have qr,l,s = qr′,l,s′ .

10 Van Rompay et al.

7 Security Analysis

The security of the protocol derives from the hardness of the DDH problem in an
almost obvious way. Intuitively, both the proxy and the server receive keywords
that are “masked” by some key they do not know, the key being a blinding factor
in the case of the proxy and a record key in the case of the server. However we
still give a rigorous proof based on the simulation technique as it is usual in the
field of Searchable Encryption (see [6]). We prove security against the server and
proxy separately, but because the two proofs are very similar we start by giving
an overview of them.

We first give a formal definition of security in MUSE, adapted from the
definition of “Non-adaptive semantic security” by Curtmola et al. [8]

Definition 2 (Non-adaptive semantic security of a MUSE protocol).
Let MUSE be a MUSE protocol. Let VMUSE,A be an algorithm which takes a
MUSE history, runs protocol MUSE on this history, and outputs the view of
adversary A during this execution. Let S be a simulator and κ be the security
parameter.

We say that MUSE is semantically secure with leakage L with respect to A (or
simply that it has leakage L w.r.t A) if for all polynomial-size D1, there exists a
polynomial-size simulator S such that for all polynomial-size D2, the following
quantity is negligible in κ:

| Pr[D2(stD,V(κ,H)) = 1; (stD,H)← D1(1
κ)]

−Pr[D2(stD,S(κ,L(H))) = 1; (stD,H)← D1(1
κ)] |

In each proof we build a simulator that takes the leakage as input and that
outputs a simulated view. The only parts of the view that are not trivial to build
for the simulator are the encrypted keywords (for privacy against the server) and
the trapdoors and prepared keywords (for privacy against the proxy) that are
not revealed. Most of them are generated by replacing the call to hash function
h, modeled as a programmable Random Oracle (RO), by a uniform random
sampling from G. We say “most of them” because some prepared keywords in
the simulated view of the proxy are instead generated by taking a trapdoor and
transforming it (using the record key), in order to have the trapdoor matching
the resulting prepared record so that access pattern is preserved.

We show that the output of simulators are indistinguishable from the real
view of the adversary with a sequence of hybrid simulators where each hybrid
simulates one more element of the view that the previous one. The output of
any two successive hybrid simulators are shown to be indistinguishable with a
reduction to the DDH problem in G, using the following embedding of a DDH
instance ga, gb, gc:

h(w∗)↔ ga, γ∗ ↔ b, w∗ ↔ gc

Where w∗ is the keyword corresponding to the trapdoor (or prepared keyword
or encrypted keyword, depending on the case) that is simulated in one hybrid

Fast Two-Server MUSE with Strict Access Pattern Leakage 11

simulator but not in the other, called the pivot trapdoor/prepared keyword/en-
crypted keyword, and γ∗ (or ξ∗ for privacy against the proxy) is the record key
(resp. blinding factor) corresponding to the pivot element. The embedding is
done by programming the RO as follows: On input w∗ it outputs ga, and on any
other input it outputs gO[w] where O[w] is previously picked uniformly at ran-
dom if it was not already set, as is usually done with ROs. There is a subtlety in
the programming of the RO because it must be programmed before the value w∗

is available to the reduction. We give more details on this point further below.
The embedding of b is made possible by the way we define the RO: encrypting

a keyword using b as the record key or blinding factor is done with the following
function that uses gb which is is known to the reduction algorithm:

w 7→ (gb)O[w]

Finally the embedding of c is done by using gc as the pivot trapdoor/prepared
keyword/encrypted keyword.

The only thing that remains to be done in each of the proof is the argu-
mentation over the correctness of the embedding, essentially making sure that
the value we replace by gc does not appear anywhere else. This is where our
requirements that records do not contain duplicates and that a reader does not
send two identical queries during the same time period are needed.

Due to space limitations, the full proofs are given in Appendix A.

About programming the RO Note that programming the random oracle requires
to know the value of w∗. The reduction will only know this value when D1 returns
(see Definition 2), while we need to program the oracle before D1 starts. Popa
and Zeldovich suggest in [20] a way to overcome this difficulty: The reduction
makes a “bet” on which query to the oracle will be for the keyword that will end
up being w∗. It can also bet that D1 will never query the oracle for this keyword.
For instance the reduction can bet that the keyword given for the 3rd query to
the oracle will be the same keyword occupying the position corresponding to
w∗ in the history produced by D1. When D1 returns, the reduction can check
whether its bet was correct or not. If it was, the reduction can continue, otherwise
it halts and gives a random answer to the DDH problem. If the bet was that the
keyword is not queried and the bet was correct, this means that the reduction
can program the RO using the value of w∗ present in the history returned by
D1. Because D1 runs in polynomial time, there are only a polynomial number
of possible bets, thus a non-negligible advantage of the distinguisher still results
in a non-negligible advantage of the reduction.

8 Performance Analysis

Intuitively, what makes the protocol scalable is that the workload of a writer
is linear with the number of keywords she uploads, the workload of a reader
is linear with the number of queries it sends, the workload of the server is a

12 Van Rompay et al.

long-term task which does not affect search time, and the workload of the proxy
is no greater than the one of the server in MKSE [20].

To give a more precise performance evaluation, we consider a system with
A writers owning B records each, each record containing N keywords, and C
readers each having access to D records. We assume that all readers have the
same time period.

In our protocol, Each writer must perform B×N exponentiations and hashing
in G. The server must perform C ×D × N such exponentiations for each time
period, and the proxy must perform D exponentiations for each trapdoor it
receives. The workload of readers is only a single exponentiation and hashing
per query, and response reception requires essentially no resources (the final
response is received in plain text).

Note that preparation and transformation are tasks that are “embarrassingly
parallel”, meaning that they can be parallelized with no effort. They also have
strong data locality, meaning that each elementary task is applied on a small
portion of the whole dataset, allowing the use of distributed infrastructures like
MapReduce. Also, record preparation, performed by the server, is a predictable
amount of work without any burst and with long-term deadlines. Resources tend
to be cheaper for this kind of workload2. Also note that the proxy can discard
prepared records at the end of each time period, making its space consumption
about the same as the server.

8.1 Comparison with Other MUSE Protocols

RMO15 [23] and the protocol of Hamlin et al. [14] both have a very heavy reader
workload: in RMO15, the reader has to receive and decrypt D responses for each
query, and for HSWW18 it has to download, process and upload D×N keywords
at the beginning of the protocol. HSWW18 has a sublinear search time, though,
while RMO15 has a very heavy server workload.

When comparing DH-AP-MUSE with RMO18 [22], the most major difference
is the server workload. In RMO18 after each trapdoor transformation, the proxy
must perform a complex and costly privacy-preserving sub-protocol with the
server, which purpose is to prevent the proxy from learning the access pattern.
The exact cost of this lookup sub-protocol is difficult to assess, but there are
no doubts it is much more expensive that the simple local lookup done by the
proxy in DH-AP-MUSE.

8.2 Implementation and Performance Measurements

Another advantage of DH-AP-MUSE is its great simplicity, which makes its im-
plementation an easy task. We implemented the algorithms of DH-AP-MUSE in
less than 100 lines of C, using the Sodium crypto library3. We encoded prepared
records as bloom filters using the C library https://github.com/jvirkki/libbloom.
2 see https://www.slideshare.net/rasmusekman/aws-an-introduction-to-bursting-

gp2-t2
3 https://libsodium.org

Fast Two-Server MUSE with Strict Access Pattern Leakage 13

Performance measurements on a Amazon EC2 t2.micro instance4 gave the
following running times:

– trapdoor generation and keyword encryption: 0.1 ms per keyword
– record preparation (including insertion of prepared keywords in a bloom

filter): 60 µs per keyword
– trapdoor transformation: 60 µs per transformation

This means that a server hosted on a single t2.micro instance could handle
(in terms of computation) the preparation of records for 100 readers each having
access to 40,000 records assuming records of 10,000 keywords each and a time
period of one month. The same machine should be able as a proxy to transform
the trapdoor of a reader searching 40,000 records in under 3 s. Note that we
do not measure communication time, only computation. Hence there is no need
to run the algorithms on two different machines for these measurements. Using
a machine with a faster CPU (t2.micro has a frequency of 2.40 GHz) or with
more cores (using multi-threading) should scale capacity accordingly. “scaling
out” using several machines should also increase the capacity in a linear fashion
due to the embarrassingly parallel nature and high data locality of the task.

9 Improving Previous MUSE Protocols with Techniques
from this Protocol

The previous MUSE protocols of Van Rompay et al. [22, 23] can benefit from
several techniques used in the presented protocol, namely, the replacement of
bilinear pairings by “normal” DDH-hard groups and the periodic renewal of the
blinding factor. While these techniques would improve the efficiency of these
protocols, the presented protocol would still be much more scalable and the
comparisons we made in Section 8.1 would still be valid.

10 Conclusion

We presented a new MUSE protocol being the first to protect query and record
privacy against user-server collusions while scaling well to very large databases.
Moreover, techniques used in this protocols can be used to improve the efficiency
of existing protocols. Interesting topics for future work include a more thorough
study of the security implications of a access pattern leakage in a MUSE context,
which would give a great amount of insight on the practical security of this
protocol as well as the protocol of [14].

Acknowledgements This work was supported by the EU FP7 ERANET program
under grant CHIST-ERA-2016 UPRISE-IOT.
4 https://aws.amazon.com/ec2/instance-types/

14 Van Rompay et al.

References
1. Asghar, M.R., Russello, G., Crispo, B., Ion, M.: Supporting com-

plex queries and access policies for multi-user encrypted databases.
In: CCSW’13, Proceedings of the 2013 ACM Cloud Computing Secu-
rity Workshop, Co-located with CCS 2013, Berlin, Germany, Novem-
ber 4, 2013. pp. 77–88 (2013). https://doi.org/10.1145/2517488.2517492,
http://doi.acm.org/10.1145/2517488.2517492

2. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-Resistant Storage
via Keyword-Searchable Encryption. IACR Cryptology ePrint Archive 2005, 417
(2005)

3. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private Query on Encrypted Data in
Multi-user Settings. In: Information Security Practice and Experience, 4th Interna-
tional Conference, ISPEC 2008, Sydney, Australia, April 21-23, 2008, Proceedings.
pp. 71–85 (2008)

4. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private
searchable encryption from constrained cryptographic primitives. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - Novem-
ber 03, 2017. pp. 1465–1482 (2017). https://doi.org/10.1145/3133956.3133980,
http://doi.acm.org/10.1145/3133956.3133980

5. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A Survey of Provably Se-
cure Searchable Encryption. ACM Computing Surveys 47(2), 1–51 (aug 2014).
https://doi.org/10.1145/2636328

6. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very large databases: Data structures and
implementation. In: Proc. of NDSS. vol. 14 (2014)

7. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information re-
trieval. J. ACM 45(6), 965–981 (1998). https://doi.org/10.1145/293347.293350,
http://doi.acm.org/10.1145/293347.293350

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS
2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006. pp. 79–88 (2006).
https://doi.org/10.1145/1180405.1180417

9. David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin
Roşu, Michael Steiner: Highly-scalable searchable symmetric encryption with sup-
port for boolean queries. In: Advances in Cryptology–CRYPTO 2013, pp. 353–373.
Springer (2013)

10. Dong, C., Russello, G., Dulay, N.: Shared and Searchable Encrypted Data for
Untrusted Servers. In: Data and Applications Security XXII, 22nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security, London, UK,
July 13-16, 2008, Proceedings. pp. 127–143 (2008)

11. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M.C., Steiner, M.: Rich
Queries on Encrypted Data: Beyond Exact Matches. In: Computer Security - ES-
ORICS 2015 - 20th European Symposium on Research in Computer Security, Vi-
enna, Austria, September 21-25, 2015, Proceedings, Part II. pp. 123–145 (2015)

12. Fuller, B., Varia, M., Yerukhimovich, A., Shen, E., Hamlin, A., Gadepally, V., Shay,
R., Mitchell, J.D., Cunningham, R.K.: SoK: Cryptographically Protected Database
Search. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017. pp. 172–191 (2017). https://doi.org/10.1109/SP.2017.10

Fast Two-Server MUSE with Strict Access Pattern Leakage 15

13. Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov,
V.: Breaking Web Applications Built On Top of Encrypted Data.
In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28,
2016. pp. 1353–1364 (2016). https://doi.org/10.1145/2976749.2978351,
http://doi.acm.org/10.1145/2976749.2978351

14. Hamlin, A., shelat, a., Weiss, M., Wichs, D.: Multi-Key Searchable Encryption,
Revisited (2018), https://eprint.iacr.org/2018/018, published: Cryptology ePrint
Archive, Report 2018/018

15. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhanc-
ing privacy and trust in electronic communities. In: EC.
pp. 78–86 (1999). https://doi.org/10.1145/336992.337012,
http://doi.acm.org/10.1145/336992.337012

16. Hwang, Y.H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search
and Its Extension to a Multi-user System. In: Pairing-Based Cryptography - Pair-
ing 2007, First International Conference, Tokyo, Japan, July 2-4, 2007, Proceed-
ings. pp. 2–22 (2007)

17. Kiayias, A., Oksuz, O., Russell, A., Tang, Q., Wang, B.: Efficient Encrypted Key-
word Search for Multi-user Data Sharing. In: Computer Security - ESORICS 2016
- 21st European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I. pp. 173–195 (2016)

18. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection
for unequal set sizes with mobile applications. PoPETs 2017(4), 177–197 (2017).
https://doi.org/10.1515/popets-2017-0044, https://doi.org/10.1515/popets-
2017-0044

19. Lindell, Y.: How to simulate it - A tutorial on the simulation proof technique. In:
Tutorials on the Foundations of Cryptography., pp. 277–346 (2017)

20. Popa, R.A., Zeldovich, N.: Multi-Key Searchable Encryption. IACR Cryptology
ePrint Archive 2013, 508 (2013), http://eprint.iacr.org/2013/508

21. Popa, R.A., Stark, E., Valdez, S., Helfer, J., Zeldovich, N., Balakrishnan, H.:
Building Web Applications on Top of Encrypted Data Using Mylar. In: Proceed-
ings of the 11th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014. pp. 157–172 (2014),
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/popa

22. Rompay, C.V., Molva, R., Önen, M.: Secure and scalable multi-user search-
able encryption. IACR Cryptology ePrint Archive 2018, 90 (2018),
http://eprint.iacr.org/2018/090

23. Rompay, C.V., Molva, R., Önen, M.: Multi-user Searchable Encryption in the
Cloud. In: Information Security - 18th International Conference, ISC 2015, Trond-
heim, Norway, September 9-11, 2015, Proceedings. pp. 299–316 (2015)

24. Rompay, C.V., Molva, R., Önen, M.: A Leakage-Abuse Attack Against
Multi-User Searchable Encryption. PoPETs 2017(3), 168 (2017).
https://doi.org/10.1515/popets-2017-0034, https://doi.org/10.1515/popets-
2017-0034

25. Tang, Q.: Nothing is for free: Security in searching shared and
encrypted data. IEEE Trans. Information Forensics and Security
9(11), 1943–1952 (2014). https://doi.org/10.1109/TIFS.2014.2359389,
https://doi.org/10.1109/TIFS.2014.2359389

26. Yang, J., Fu, C., Shen, N., Liu, Z., Jia, C., Li, J.: General multi-
key searchable encryption. In: 29th IEEE International Confer-

16 Van Rompay et al.

ence on Advanced Information Networking and Applications Work-
shops, AINA 2015 Workshops, Gwangju, South Korea, March 24-27,
2015. pp. 89–95 (2015). https://doi.org/10.1109/WAINA.2015.18,
https://doi.org/10.1109/WAINA.2015.18

27. Yang, J., Liu, Z., Li, J., Jia, C., Cui, B.: Multi-key Searchable Encryption with-
out Random Oracle. In: 2014 International Conference on Intelligent Network-
ing and Collaborative Systems, Salerno, Italy, September 10-12, 2014. pp. 79–84
(2014). https://doi.org/10.1109/INCoS.2014.143, http://dx.doi.org/10.1109/IN-
CoS.2014.143

28. Yang, J., Liu, Z., Li, J., Jia, C., Cui, B.: Multi-key searchable encryption with-
out random oracle. In: 2014 International Conference on Intelligent Network-
ing and Collaborative Systems, Salerno, Italy, September 10-12, 2014. pp. 79–
84 (2014). https://doi.org/10.1109/INCoS.2014.143, https://doi.org/10.1109/IN-
CoS.2014.143

29. Yang, Y., Lu, H., Weng, J.: Multi-User Private Keyword Search for Cloud Comput-
ing. pp. 264–271. IEEE (Nov 2011). https://doi.org/10.1109/CloudCom.2011.43,
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133152

A Security Proofs

A.1 Privacy Against the Server

We show that DH-AP-MUSE has a leakage no greater than the benign leakage
and the revealed content against a honest-but-curious server that colludes with
any number of users but not with the proxy. The corresponding simulator is
described in Algorithm 1.

Algorithm 1: Simulator for the server view
Input: The benign leakage and revealed content
Create all record keys and all blinding factors ;
for each record id d do

if Wd is revealed then
Encrypt it using the record key γd previously generated;

else
Set Wd to a set of random bit strings
using the length of Wd from the benign leakage;
Encrypt Wd

Output: All encrypted records, all blinding factors and the record keys of
revealed records

We show that the output of this simulator is indistinguishable from a real
view using a sequence of hybrid simulators, where each hybrid simulates one more
non-revealed encrypted keyword than the previous hybrid. As a consequence the
first hybrid corresponds to the real view and the last hybrid corresponds to
Algorithm 1. All hybrids have the entire history as input except the last one
that only has the benign leakage and revealed content.

Fast Two-Server MUSE with Strict Access Pattern Leakage 17

We then show that the output of two successive hybrids are indistinguish-
able using a reduction to the DDH problem in G. The reduction performs the
following embedding of a DDH problem instance ga, gb, gc as described in the
beginning of Section 7:

h(w∗)↔ ga, γ∗ ↔ b, w∗ ↔ gc

Where w∗ is the “pivot keyword” that is simulated in one hybrid but not in the
other (for instance this could be “the third keyword of the second non-revealed
record”).

The embedding is correct if the view corresponds to the output of one hybrid
in the case where c = ab and the other hybrid in the case where c is random. The
only difference between these two outputs is that the pivot encrypted keyword
w∗ is simulated in one hybrid and properly generated in the other. All other
values of the hybrid output must be the same whatever c is. As a result we
must check that the value w∗ does not appear anywhere else in the output.
This is satisfied thanks to the fact that records are represented as sets in our
protocol, that is, they do not have duplicate elements. As a result, any keyword
w of the pivot record must be different from w∗ and its encrypted keyword will
be either generated as (gb)O[w] or with random sampling. Keywords in other
records correspond to a different record key so their encryption/simulation is
not a problem either.

As a result distinguishing the output of two successive hybrid is at least
as hard as solving the DDH problem in G, thus the output of Algorithm 1 is
indistinguishable from a real view, and this ends the proof.

A.2 Privacy Against the Proxy

We now show that DH-AP-MUSE has a leakage no greater than the access pat-
tern, the benign leakage and the revealed content against a honest-but-curious
proxy that colludes with any number of users but not with the server. The
corresponding simulator is described in Algorithm 2.

This time we show that the output of Algorithm 2 is indistinguishable from
a real view of the proxy using not one but two sequences of hybrids: The first
sequence will correspond to the simulation of prepared records and the second
sequence to the simulation of trapdoors. The first hybrid of the first sequence
corresponds to the real world experiment, and does not simulate any prepared
keyword nor any trapdoor. Then, each hybrid in the first sequence will simu-
late one more non-revealed prepared keyword than the previous hybrid, until
all non-revealed prepared keywords are simulated. The first hybrid of the sec-
ond sequence is the last hybrid of the first sequence, that is, it simulates all
non-revealed prepared records but none of the trapdoors. Finally each hybrid
simulator in the second sequence simulates one more trapdoor than the previ-
ous simulator. As a result the last hybrid simulator of the second sequence is
Algorithm 2.

We start by showing that two successive simulators from the first sequence
have indistinguishable outputs. The pivot keyword is characterized by d∗, i∗, r∗, l∗

18 Van Rompay et al.

Algorithm 2: Simulator for the proxy view
Input: The access pattern, the benign leakage and revealed content
Create all record keys and all blinding factors ;
for each r, l, s do

if qr,l,s is revealed then
Create tr,l,s as normal;

else
Create tr,l,s as a random element of G;

for each record id d, each r s.t. d ∈ Auth(r) and each l do
if Wd is revealed then

Encrypt and transform as normal;
else

Initialize W d,r,l as an empty set;
for each s such that d ∈ ar,l,s (known from the access pattern) do

Add (tr,l,s)
γd to W d,r,l;

Add random elements to W d,r,l until it has the proper size (known
from the benign leakage);

Output: All encrypted records, all blinding factors and the record keys of
revealed records

such that the second hybrid simulates prepared keyword W d∗,r∗,l∗ [i
∗] but the

first one does not. If W d∗,r∗,l∗ [i
∗] is matched by a trapdoor, the output distribu-

tions of the two simulators are more than indistinguishable, they are identical.
Indeed in this case the second simulator will not generate this prepared keyword
at random but by transforming the corresponding trapdoor, and the resulting
value will be the same as what the first simulator would have obtained, as a
consequence of the correctness of the protocol.

If W d∗,r∗,l∗ [i
∗] is not matched by any trapdoor though, the second simulator

will simulate it through random sampling, and again we show the two outputs
are indistinguishable with a reduction to the DDH problem. This time the em-
bedding of the DDH instance ga, gb, gc is as follows:

h(Wd∗ [i∗])↔ ga, ξr∗,l∗ ↔ b, W d∗,r∗,l∗ [i
∗]↔ gc

Again, the correctness of the embedding requires that the reduction does not
have to use the value gc for anything else than the pivot prepared keyword. The
argument for this is the same as for privacy against the server: a keyword does
not appear twice in a record, and other (prepared) records will use different
record keys (or different blinding factors).

Finally we show the indistinguishability of the output of two hybrids from
the second sequence. This time there are r∗, l∗, s∗ such that the second hybrid
simulates tr∗,l∗,s∗ but the first one does not. The embedding used is the following:

h(qr∗,l∗,s∗)↔ ga, ξr∗,l∗ ↔ b, tr∗,l∗,s∗ ↔ gc

Here the correctness of the embedding comes from our assumption that a reader
will not send two identical queries in a same time period, and this ends the proof.

