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Abstract. Sparse Baysesian Learning (SBL) provides sophisticated (state)
model order selection with unknown support distribution. This allows to
handle problems with big state dimensions and relatively limited data.
The techniques proposed in this paper allow to handle the extension of
SBL to time-varying states, modeled as diagonal first-order vector auto-
regressive (VAR(1)) processes with unknown parameters. Adding the
parameters to the state leads to an augmented state and a non-linear
(at least bilinear) state-space model. The proposed approach, which ap-
plies also to more general non-linear models, uses Variational Bayes (VB)
techniques to approximate the posterior distribution by a factored form,
with Gaussian or exponential factors. The granularity of the factorization
can take on various levels. In one extreme instance, called Gausian Space
Alternating Variational Estimation Kalman Filtering (GSAVE-KF), all
state components are treated individually, leading to low complexity fil-
tering. Simulations illustrate the performance of the proposed GVB-KF
techniques, which represent an alternative to Linear MMSE (LMMSE)
filtering.

Keywords: Sparse Bayesian Learning, Variational Bayes, Kalman Fil-
tering

1 Introduction

Sparse signal reconstruction and compressed sensing (CS) has received significant
attraction in the recent years. The signal model for the recovery of a time varying
sparse signal can be formulated as,

yt = Atxt + vt, (1)

where yt is the observations or data at time t, At is called the measurement or
the sensing matrix which is known and is of dimension N ×M with N < M , xt
is the M -dimensional sparse signal and vt is the additive noise. xt contains only
K non-zero entries, with K << M and is modeled by a diagonal AR(1) (auto-
regressive) process. vt is assumed to be a white Gaussian noise, vt ∼ N (0, γ−1I).
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In the time invariant case, to address this problem, there exists a variety of al-
gorithms such as the basis pursuit method [1] and the orthogonal matching
pursuit [2]. In Bayesian learning, sparse Bayesian learning (SBL) algorithm was
first proposed by [3, 4]. Performance can be further improved by exploiting the
temporal correlation across the sparse vectors [5]. However, most of these algo-
rithms do offline or batch processing, whose complexity doesn’t scale with the
problem size. In order to render low complexity or low latency solutions, online
processing algorithms (which processes small set of measurement vectors at any
time) will be necessary.

In sparse adaptive estimation [6], a time varying signal xt is estimated time-
recursively by exploiting the sparsity property of the signal. Conventional adap-
tive filtering methods such as LMS or recursive least squares (RLS) doesn’t
exploit the underlying sparseness in the signal xt to improve the estimation per-
formance. An approach to combine Kalman filtering and compressed sensing can
be found in [7]. Kalman filter focus on estimation of the dynamical state from
noisy observations where the dynamic and measurement process are considered
to be from linear Gaussian state space model. Compared to the state of the art,
we introduce not only sparse filter (state) but also sparse filter variations. We
apply SBL now to the prediction error variances of xt, then trying to sparsify a
prediction error variance actually encourage both that the actual variance gets
sparse and that the variation gets sparse because a prediction error variance is
small if either the quantity variance is small or its variation is small.

In the literature, there exist different KF based methods to handle the joint
filtering and parameter estimation problem. One such example is the widely
used EM-KF algorithm ( [8, 9]) which uses the famous Expectation Maximiza-
tion technique (EM), and alternating optimization technique for ML estimation.
To handle general nonlinear state space models, another variation called as Ex-
tended KF (EKF) algorithm exists. In this case, the state is extended with the
unknown parameters, rendering the new state update equation nonlinear. A third
derivation is the truncated Second-Order EKF (SOEKF) introduced by [10, 11]
in which nonlinearities are expanded up to second order, third and higher or-
der statistics being neglected. [12] present a corrected derivation of SOEKF and
show that the state of the art contains illogical approximations. In ( [11, 13]),
the Gaussian SOEKF is derived in which fourth-order terms in the Taylor se-
ries expansions are retained and approximated by assuming that the underlying
joint probability distribution is Gaussian. In [14], Villares et al. introduced the
Quadratic Extended Kalman Filter (QEKF). The authors extend the EKF to
deal with quadratic signal models and exploiting the fourth order signal statis-
tics. We proposed a space alternating variational estimation based technique for
single measurement vectors in [15].

1.1 Contributions of this paper

– We propose a novel Gaussian approximation Space Alternating Variational
Estimation (GSAVE) based SBL technique for LMMSE filtering called GSAVE-
KF. The proposed solution is for a multiple measurement case with an AR(1)
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process for the temporal correlation of the sparse signal. The update and pre-
diction stages of the proposed algorithm reveals links to the Kalman filter.

– For the static state case, numerical results presented elsewhere [15] suggest
that the proposed solution has a faster convergence rate (and hence lower
complexity) than (even) the existing fast SBL and performs better than the
existing fast SBL algorithms in terms of reconstruction error in the presence
of noise.

– For the dynamic state case considered here, simulations suggest that in spite
of both significantly reduced computational complexity and the estimation of
the unknown (hyper) parameters, the GSAVE-KF algorithm exhibits hardly
any MSE degradation in steady-state compared to the standard Kalman
filter with known parameters, but at the cost of a significantly increased
transient duration.

In the following, boldface lower-case and upper-case characters denote vectors
and matrices respectively. the operators tr(·), (·)T represents trace,and transpose
respectively. The operator (·)H represents the conjugate transpose or conjugate
for a matrix or a scalar respectively. A complex Gaussian random vector with
mean µ and covariance matrix Θ is distributed as x ∼ CN (µ,Θ). diag(·) rep-
resents the diagonal matrix created by elements of a row or column vector. The
operator < x > or E(·) represents the expectation of x. ||·| | represents the Frobe-
nius norm. <{(·)} represents the real part of (·). All the variables are complex
here unless specified otherwise.

2 State Space Model

Sparse signal xt is modeled using an AR(1) process with correlation coefficient
matrix F, with F diagonal. The state space model can be written as follows,

xt = Fxt−1 + wt, State Update,
yt = Atxt + vt, Observation,

(2)

where xt = [x1,t, ..., xM,t]
T

. Matrices F and Γ are defined as,

F =


f1 0 . . . 0
0 f2 0
...

...
. . .

...
0 0 . . . fM

 ,Γ =


1√
α1

. . . 0

0 0
...

. . .
...

0 . . . 1√
αM

 , (3)

Here fi represents the correlation coefficient and αi represents the inverse vari-
ance of xi,t ∼ CN (0, 1

αi
). Further, wt ∼ CN (0,Γ (I−FFH)) and vt ∼ CN (0, 1γ I).

wt are the complex Gaussian mutually uncorrelated state innovation sequences.
vt is independent of the wt process. Further we define, Λ = Γ (I − FFH) =
diag ( 1

λ1
, ..., 1

λM
).

Although the above signal model seems simple, there are numerous applica-
tions such as 1) Bayesian adaptive filtering [16, 17], 2)Wireless channel estima-
tion: multi-path parameter estimation as in [18,19]. In this case, xt = FIR filter
response, and Γ represents e.g. the power delay profile.
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3 VB-SBL

In Bayesian compressive sensing, a two-layer hierarchical prior is assumed for
the x as in [3]. The hierarchical prior is such that it encourages the sparsity
property of xt or of the innovation sequences vt.

p(xt/Γ ) =

M∏
i=1

p(xi,t/αi) =

M∏
i=1

N (0, α−1i ),

p(xt/xt−1,F,Γ ) =

M∏
i=1

p(xi,t/xi,t−1, αi, fi) =

M∏
i=1

N (fixi,t−1,
1

αi
).

(4)

For the convenience of analysis, we reparameterize αi in terms of λi and assume
a Gamma prior for Λ,

p(Λ) =

M∏
i=1

p(λi/a, b) =

M∏
i=1

Γ−1(a)baλa−1i e−bλi . (5)

The inverse of noise variance γ is also assumed to have a Gamma prior,
p(γ/c, d) = Γ−1(c)dcγc−1i e−dγ . (6)

Now the likelihood distribution can be written as,

p(yt/xt, γ) = (2π)−NγNe
−γ||yt−Atxt||2

2 . (7)

To make these priors non-informative, we choose them to be small values a =
c = b = d = 10−5.

3.1 Variational Bayesian Inference

The computation of the posterior distribution of the parameters is usually in-
tractable. In order to address this issue, in variational Bayesian framework, the
posterior distribution p(xt,Λ, γ/y1:t) is approximated by a variational distribu-
tion q(xt,Λ, γ) that has the factorized form:

q(xt,Λ, γ) = qγ(γ)

M∏
i=1

qxi,t(xi,t)

M∏
i=1

qλi(λi), (8)

where y1:t represents the observations till the time t (y1, ...,yt), similarly we
define x1:t. Variational Bayes compute the factors q by minimizing the Kullback-
Leibler distance between the true posterior distribution p(xt,Λ, γ/y1:t) and the
q(xt,Λ, γ). From [20],

KLDV B = KL (p(xt,Λ, γ/y1:t)||q(xt,Λ, γ)) (9)

The KL divergence minimization is equivalent to maximizing the evidence lower
bound (ELBO) [21]. To elaborate on this, we can write the marginal probability
of the observed data as,

ln p(yt/y1:t−1) = L(q) +KLDV B , where,

L(q) =
∫
q(xt,θ) ln p(yt,xt,θ/y1:t−1)

q(θ) dxtdθ,

KLDV B = −
∫
q(xt,θ) ln p(xt,θ/y1:t)

q(xt,θ)
dxtdθ,

(10)
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where θ = {Λ, γ} and θi represents each scalar in θ. Since KLDV B ≥ 0, it
implies that L(q) is a lower bound on ln p(yt/y1:t−1). Moreover, ln p(yt/y1:t−1)
is independent of q(xt,θ) and therefore maximizing L(q) is equivalent to min-
imizing KLDV B . This is called as ELBO maximization and doing this in an
alternating fashion for each variable in xt,θ leads to,

ln(qi(θi)) =< ln p(yt,xt,θ/y1:t−1) >θi,xt
+ ci,

ln(qi(xi,t)) =< ln p(yt,xt,θ/y1:t−1) >θ,xi,t
+ ci,

p(yt,xt,θ/y1:t−1) = p(yt/xt, γ,y1:t−1) p(xt/Λ,y1:t−1)p(Λ)p(γ).

(11)

Here <>k 6=i represents the expectation operator over the distributions qk for all
k 6= i. xi,t represents xt without xi and θi represents θ without θi. In section 5,
we consider another variant where the components of xt are treated jointly,

where the approximate posterior becomes q(xt,Λ, γ) = qγ(γ)qxt(xt)

M∏
i=1

qλi(λi).

3.2 Gaussian Posterior Minimizing the KL Divergence

In [22], for any distribution p(x), the Gaussian distribution q(x) ∼ CN (µ,Σ)
which minimizes the Kullback-Leibler divergence, KL(p||q), reduces to matching
the mean and covariance,

µ =< x >p(x), Σ =< xxH >p(x) − < x >p(x)< x >Hp(x) . (12)

4 SAVE Sparse Bayesian Learning and Kalman Filtering

In this section, we propose a Space Alternating Variational Estimation (SAVE)
based alternating optimization between each element of xt or γ. For SAVE,
no particular structure of At is assumed, in contrast to AMP which performs
poorly when At is not i.i.d or is sub-Gaussian. The joint distribution w.r.t the
observation of (2) can be written as,

p(yt,xt,θ/y1:t−1) = p(yt/xt,θ)p(xt,θ/y1:t−1). (13)

In the following, cxk,t , c
′
xk,t

, cαk , cλk , cx−1, cxt , c
′
xt and cγ represents normaliza-

tion constants for the respective pdfs.

4.1 Diagonal AR(1) ( DAR(1) ) Prediction Stage

In this stage, we compute the prediction about xt given the observations till time
t − 1, x̂k,t|t−1. The joint distribution for the state space model can be written
as,

ln p(xk,t, xk,t−1, fk, λk | y1:t−1) = −λk(xk,t − fkxk,t−1)H(xk,t − fkxk,t−1)−
1

σ2
k,t−1|t−1

|xk,t−1 − x̂k,t−1|t−1|2 + ((a− 1) lnλk + a ln b− bλk) .

(14)
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The prediction about xt can be computed from the time update equation of the
standard Kalman filter,

xk,t = f̂k|t−1xk,t−1 + f̃k|t−1xk,t−1 + wk,t. (15)

Here we denote f̂k|t−1 as the estimate of fk given the observations till t − 1

and f̃k|t−1 represents the error in the estimation. Similary we can represent
xk,t−1 = x̂k,t−1|t−1 + x̃k,t−1|t−1, x̃k,t−1|t−1 being the estimation error.

x̂k,t|t−1 = f̂k|t−1x̂k,t−1|t−1, x̃k,t|t−1 = f̂k|t−1x̃k,t−1|t−1 + f̃k|t−1xk,t−1 + wk,t,

=⇒ σ2
k,t|t−1

(a)
= |f̂k|t−1|2σ2

k,t−1|t−1 + σ2
fk

(|x̂k,t−1|t−1|2 + σ2
k,t−1|t−1) + 1

λ̂k|t−1
,

(16)
In the variational approximation, we assume that the posterior of fk and xk,t
are independent. (a) in (16) follows from this argument. Further the predictive
distribution p(xt/y1:t−1) can be approximated to be Gaussian distributed (refer
to the discussion in section 3.2) with mean x̂t|t−1 = [x̂1,t|t−1, ..., x̂M,t|t−1]T and

diagonal error covariance P̂t|t−1 = diag (σ2
1,t|t−1, ..., σ

2
M,t|t−1). Further the joint

distribution in (13) can be obtained as,

ln p(yt,xt,θ/y1:t−1) = N ln γ − γ ||yt −Atxt| |2 −M ln det(P̂t|t−1)−(
xt − x̂t|t−1

)H
P̂−1t|t−1

(
xt − x̂t|t−1

)
+ (c− 1) ln γ + c ln d− dγ + constants,

(17)

4.2 Measurement or Update Stage

Update of qxk,t(xk,t): Using (11), ln qxk,t(xk,t) turns out to be quadratic in xk,t
and thus can be represented as a Gaussian distribution as follows,

ln qxk,t(xk,t) = − < γ >
{

(yt −At,k < xk,t >)HAt,kxk,t − xHk,tA
H
t,k

(yt −At,k < xk,t >) + ||At,k| |2 |xk,t|2
}
− 1

σ2
k,t|t−1

(
|xk,t|2 − xHk,tx̂k,t|t−1−

xk,tx̂
H
k,t|t−1

)
+ cxk,t = − 1

σ2
k,t|t

∣∣xk,t − x̂k,t|t
∣∣2 + c′xk,t .

(18)
Note that we split Atxt as, Atxt = At,kxk,t + At,kxk,t, where At,k repre-

sents the kth column of At, At,k represents the matrix with kth column of At

removed. Clearly, the mean and the variance of the resulting Gaussian distribu-
tion becomes,

σ
−2 ,(i)
k,t|t =< γ > ||At,k| |2 + σ

−2 ,(i−1)
k,t|t ,

< x
(i)
k,t|t >= σ

2 ,(i)
k,t|t

(
AH
t,k

(
yt − At,k < x

(i−1)
k,t

>
)
< γ > +

x̂k,t|t−1

σ2
k,t|t−1

)
,

(19)

where i represents the iteration stage with limi→∞ < x
(i)
k,t|t >= x̂k,t|t represents

the point estimate of xk,t. However, in (19) the computation of< x
(i)
k,t|t > requires
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the knowledge of < x
(i)

k,t
>. So we need to perform enough iterations between

the components of < xk,t|t > till convergence. Moreover, we initialize < x
(0)
k,t|t >

by x̂k,t|t−1and σ
−2 ,(0)
k,t = σ−2k,t|t−1, which is obtained in the prediction stage.

One remark is that forcing a Gaussian posterior q with diagonal covariance
matrix on the original Kalman measurement equations gives the same result
as SAVE. Note that the derivations in [23] for VB-KF are not correct as it
does not have the correct variance expressions that vary with iteration! For
the convenience of the derivations in the following sections, we define P̂t|t =
diag(σ2

1,t|t, ..., σ
2
M,t|t), x̂t|t = [x̂1,t|t, ..., x̂M,t|t]

T .

4.3 Fixed Lag Smoothing

Kalman filtering in the EM-KF is not enough to adapt the hyper parameters,
instead we need atleast a lag 1 smoothing [24]. Motivated by this result, we
propose fixed lag smoothing with delay 1 for SAVE-KF. We rewrite the state
space model as follows,

yt = AtFxt−1 + Atwt−1 + vt︸ ︷︷ ︸
ṽt

,

p(yt,xt−1,θ/y1:t−1) = p(yt/xt−1,θ)p(xt−1,θ/y1:t−1),

(20)

where ṽt ∼ CN (0, R̃t), R̃t = AtΛAH
t + 1

γ I. The posterior distribution p(xt−1/y1:t−1)

is approximated using variational approximation as q(xt−1/y1:t−1) with mean

and covariance as x̂t−1|t−1 and P̂t−1|t−1.

ln p(yt,xt−1,θ/y1:t−1) = −1
2 ln det R̃t − (yt −AtFxt−1)HR̃−1t (yt −AtFxt−1)

− 1
2 det(P̂t−1|t−1)−

(
xt−1 − x̂t−1|t−1

)H
P̂−1t−1|t−1

(
xt−1 − x̂t−1|t−1

)
+ cx−1.

(21)
Prediction of xt−1:Using (11), ln qxt−1

(xt−1/y1:t) turns out to be quadratic
in xt−1 and thus can be represented as a Gaussian distribution with mean and

covariance as x̂t−1|t and P̂t−1|t respectively,

P̂
(i)
t−1|t = (< FHAH

t R̃−1t AtF > +P̂
−(i−1)
t−1|t )−1,

x̂
(i)
t−1|t = P̂

(i)
t−1|t(P̂

−1
t−1|t−1x̂

(i−1)
t−1|t+ < FHAH

t R̃−1t yt >).
(22)

To simplify further, we substitute F = F̂|t + F̃|t and the following expressions
can be obtained,

P̂
(i)
t−1|t = (F̂H|tA

H
t R̃−1t AtF̂|t + diag (AH

t R̃−1t At)P̂F|t + P̂
−(i−1)
t−1|t )−1,

x̂
(i)
t−1|t = P̂

(i)
t−1|t(P̂

−1
t−1|t−1x̂

(i−1)
t−1|t + F̂H|tA

H
t R̃−1t yt).

(23)

Note that, in the algorithm implementation as shown in Algorithm 1 below,
we introduce an iterative procedure (with i denoting the stage number) for the
smoothing updates unlike [23] where there is no iteration for the covariance part.
Note that we initialize the mean and variance in (22) from the converged values
from the filtering stage.
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4.4 Estimation of Hyper-Parameters

Update of qγ(γ): The Gamma distribution from the variational Bayesian ap-
proximation for the qγ(γ) can be written as,

ln qγ(γ) = (c− 1 +N) ln γ − γ
(
< ||yt − Atxt| |2 > + d

)
+ cγ ,

qγ(γ) ∝ γc+N−1e−γ(<||yt−Atxt||2>+ d).
(24)

The mean of the Gamma distribution for γ is given by,

< γ >= γ̂t =
c+N

2

(ζt + d) , ζt = βζt−1 + (1− β) < ||yt − Atxt| |2 >, where,

< ||yt − Atxt| |2 >= ||yt| |2 − 2<(yHt Atx̂t|t) + tr
(
AH
t At(x̂t|tx̂

H
t|t + P̂t|t)

)
,

(25)
where we introduced temporal averaging also and β denotes the weighting coef-
ficients which are less than one.
Update of qfk(fk): Using variational approximation we get a quadratic expres-
sion for ln q(fk|y1:t) ∼ Eq(xt,xt−1,Λ/y1:t) ln p(xt,xt−1,Λ,y1:t). Finally we write
the mean and variance of the resulting Gaussian distribution as,

σ2
fk|t = 1

λk<x2
k,t−1>|t

, f̂k|t =
<xk,t|tx

H
k,t−1|t>|t

<x2
k,t−1>|t

(26)

Here <>|t represents the temporal average given the observations till time
t. We introduce temporal averaging here to approximate terms of the form
< xk,t|tx

H
k,t−1|t >. This is done using the orthogonality property of LMMSE. So<

xk,t|tx
H
k,t−1|t >=< x̂k,t|tx̂

H
k,t−1|t > + < x̃k,t|tx̃

H
k,t−1|t >. The Kalman filter (in lin-

ear state-space models and Gaussian noise) provides instantaneous x̂k,t|t, x̂
H
k,t−1|t

and σ2
k,t|t, σ

2
k,t−1|t. This explains why we do temporal averaging (sample aver-

age replacing statistical average). We define P̂F|t = diag (σ2
f1|t, ..., σ

2
fM |t). Also

we define the following covariance matrices, Rm,nt =< xt−nx
H
t−m >|t and ξt

represents the temporal weighting coefficient which is less than one [24],

R0,0
t = (1− ξt)R0,0

t−1 + ξt (x̂t|tx̂
H
t|t + P̂t|t), R1,0

t = (R0,1
t )H = (1− ξt)R1,0

t−1+

ξtF(x̂t−1|tx̂
H
t−1|t + P̂t−1|t), R1,1

t = (1− ξt)R1,1
t−1 + ξt(x̂t−1|tx̂

H
t−1|t + P̂t−1|t).

(27)
Further, we denote the (i, j)th element of Rmn

t as Rmn
t (i, j).

Update of qλk(λk): Using variational approximation
ln q(λk|y1:t) ∼ Eq(xt,xt−1,fk/y1:t) ln p(xt,Λ, fk | y1:t), leading to

lnλk − λk(< |xk,t − fkxk,t−1|2 > +b) + (a− 1) lnλk + cλk ,

qλk(λk) ∝ λake
−λk(<|xk,t−fkxk,t−1|2>+b).

(28)

The resulting gamma distribution is parameterized just by one quantity, the
mean value, which gets used in the prediction stage and can be written as,

< λk >= (a+1)

(<|xk,t−fkxk,t−1|2>|t+b)
. (29)
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The temporal average < |xk,t − fkxk,t−1|2 >|t can be written as,

< |xk,t − fkxk,t−1|2 >|t=
R0,0
t (k, k)− 2<{f̂Hk|tR

1,0
t (k, k)}+ (|f̂k|t|2 + σ2

fk|t)R
1,1
t (k, k).

(30)

In Algorithm 1, we describe the GSAVE-KF algorithm in detail.

Algorithm 1 The GSAVE-KF Algorithm

Given: At,yt, N,M, λk|0 = a/b ∀k, γ0 = c/d, σ2
k,0|0 = 0, x̂k,0|0 = 0 ∀k, t > 0.

Prediction Stage

σ2
k,t|t−1 = (|f̂k|t−1|2 + σ2

fk|t−1
)σ2
k,t−1|t−1 + 1

λ̂k|t−1
, x̂k,t|t−1 = f̂k|t−1x̂k,t−1|t−1,

Update Stage

Initialization: σ
2 ,(0)

k,t|t = σ
2 ,(0)

k,t|t−1, x̂
(0)

t,k|t = x̂t,k|t−1

for i = 1, ...until convergence

σ
2 ,(i)

k,t|t = σ
2 ,(i−1)

k,t|t (σ
2 ,(i−1)

k,t|t γ̂t−1 ||At,k| |2 + 1)−1,

Kalman Gain Kk,t = σ
2 ,(i)

k,t|tA
H
t,kγ̂t−1,

x̂
(i)

k,t|t =
σ
2 ,(i)
k,t|t

σ2
k,t|t−1

x̂k,t|t−1 + Kk,t

(
yt − At,kx̂

(i−1)

t,k|t

)
,

end for

Smoothing Stage

Initialization: P̂
(0)

t−1|t = P̂t−1|t−1, x̂
(0)

t−1|t = x̂t−1|t−1

for i = 1, ..., until convergence

P̂
−(i)

t−1|t = (F̂H|tA
H
t R̃−1

t AtF̂|t + diag (AH
t R̃−1

t At)P̂F|t + P̂
−(i−1)

t−1|t ),

x̂
(i)

t−1|t = P̂
(i)

t−1|t(P̂
−1
t−1|t−1x̂

(i−1)

t−1|t + F̂HAH
t R̃−1

t yt).

end for

Estimation of Hyper-Parameters
Compute ζt,R

m,n
t from (25), (27).

σ2
fk|t = 1

λkR
1,1
t (k,k)

, f̂k|t =
R

1,0
t (k,k)

R
1,1
t (k,k)

.

γ̂t =
c+N

2
(ζt+ d)

, λ̂k|t = a+1

(R
0,0
t (k,k)−2<{f̂H

k|tR
1,0
t (k,k)}+(|f̂k|t|2+σ2

fk|t
)R

1,1
t (k,k)+b)

.

5 VB-KF for Diagonal AR(1) (DAR(1))

In this section, we treat the components of the state xt jointly, with all the hyper-
parameters λk, fk, γ assumed to be independent in the q’s. So the expressions
for the estimates of the hyper-parameters can be shown to be the same as in the
previous section on SAVE-KF.

5.1 DAR(1) Prediction Stage

The prediction about xt can be computed from the time update equation of the
standard Kalman filter,

xt = F̂|t−1xt−1|t−1 + F̃|t−1xt−1|t−1 + vt, F = F̂|t−1 + F̂|t−1, (31)
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where F̂|t−1 = diag (f̂1|t−1, ..., f̂M |t−1). We also define

Λ̂|t−1 = diag ( 1

λ̂1|t−1

, ..., 1

λ̂M|t−1

). Substituting xt−1|t−1 = x̂t−1|t−1 + x̃t−1|t−1,

x̂t|t−1 = F̂|t−1x̂t−1|t−1, x̃t|t−1 = F̂|t−1x̃t−1|t−1 + F̃|t−1xt−1|t−1 + wt, =⇒
P̂t|t−1 = F̂|t−1P̂t−1|t−1F̂

H
|t−1 + P̂F|t−1 diag (x̂t−1|t−1x̂

H
t−1|t−1 + P̂t−1|t−1) + Λ̂|t−1.

(32)

5.2 Measurement or Update Stage

Using (11),

ln qxt(xt) = − < γ >
{
− yHt Atxt − xHt AH

t yt + xHt AH
t Atxt

}
− xHt P̂−1t|t−1xt

+xHt P̂−1t|t−1x̂t|t−1 + x̂Ht|t−1P̂
−1
t|t−1xt + cxt = −(xt − x̂t|t)

HP̂−1t|t (xt − x̂t|t) + c′xt ,

(33)
where the mean and variance are written as,

P̂−1t|t =< γ > AH
t At + P̂−1t|t−1, x̂t|t = P̂t|t(< γ > AH

t yt + P̂−1t|t−1x̂t|t−1). (34)

6 Simulation Results

For the observation model, yt is of dimension 100 × 1 and xt is of size 200 × 1
with 30 non-zero elements. All signals are considered to be real in the simula-
tion. All the elements of At (time varying) are generated i.i.d. from a Gaussian
distribution with mean 0 and variance 1. The rows of At are scaled by

√
30

so that the signal part of any scalar observation has unit variance. Taking the
SNR to be 20dB, the variance of each element of vt (Gaussian with mean 0) is
computed as 0.01.

Consider the state update, xt = Fxt−1 + wt. To generate x0, the first 30 el-
ements are chosen as Gaussian (mean 0 and variance 1) and then the remaining
elements of the vector x0 are put to zero. Then the elements of x0 are randomly
permuted to distribute the 30 non-zero elements across the whole vector. The
diagonal elements of F are chosen uniformly in [0.9, 1). Then the covariance of
wt can be computed as Λ(I−FFH). Note that Λ contains the variances of the
elements of xt (including t = 0), where for the non-zero elements of x0 the vari-
ance is 1 and for the zero elements it is 0. Note that vt is Gaussian distributed
with mean 0. In Fig. 1, the blue curve corresponds to the case of a standard
Kalman Filter with known state-space model parameters. The red curve corre-
sponds to GSAVE-KF with again all these hyper-parameters known. The green
curve corresponds to the case of GSAVE-KF with all the hyper parameters also
estimated with lag-1 smoothing. Further, we show that filtering for AR(1) coef-
ficients (black curve) doesn’t converge to the basic KF. NMSE is the normalized
mean squared error at time t computed as ||xt−x̂t||2, averaged over 100 different
realizations of At, F, and of course the noise realizations. The simulations show
that in the scenario considered, GSAVE-KF exhibits hardly any MSE degrada-
tion over the more complex standard Kalman Filter in steady-state, but takes
time to reach steady-state. Adding the estimation of the parameters leads to
further slight degradations in steady-state and transient.
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Fig. 1. NMSE as a function of time (i.e. number of measurements or iteration index).

7 Conclusions

We presented a fast SBL algorithm called GSAVE-KF, which uses the variational
inference techniques to approximate the posteriors of the data and parameters
and track a time varying sparse signal. GSAVE-KF helps to circumvent the
matrix inversion operation required in conventional SBL using the EM algorithm.
We showed that in spite of the significantly reduced computational complexity,
the proposed algorithm with estimation of the unknown model parameters has
similar steady-state performance compared to the standard Kalman filter, at the
price of a significantly increased transient. The GSAVE-KF algorithm exploits
the underlying sparsity in the signal compared to classical Kalman filtering based
methods.
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