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Abstract—This work deals with hybrid beamforming for the
MIMO Interfering Broadcast Channel (IBC), i.e. the Multi-
Input Multi-Output (MIMO) Multi-User (MU) Multi-Cell (MC)
downlink (DL) channel. Hybrid beamforming (HBF) is a low
complexity alternative for fully digital precoding in Massive
MIMO systems. Hybrid architectures involve a combination of
digital and analog processing that enables both beamforming
and multiplexing gains. We consider BF design by maximizing
the Weighted Sum Rate (WSR) for the case of Perfect Channel
State Information at the Transmitter (CSIT). We optimize the
WSR using minorization and alternating optimization, the result
of which is observed to converge fast. The design is proposed
for both fully and partially connected analog BF architectures.
Moreover, we consider the BF design under realistic scenarios
with per-RF (radio frequency) chain or per-antenna power
constraints, leading to novel interference leakage aware water
filling procedures. Simulation results illustrate the good WSR
performance of the designs and the gains over naive constraint
satisfaction approaches.

Index Terms—Hybrid beamforming, massive MIMO, per RF
power constraints, perfect CSIT.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/ trans-
mission, Rx may denote receive/receiver/reception, BF may
denote beamforming/beamformer. Hybrid beamforming (HBF)
is a two-stage architecture in which the BF is constructed by
concatenation of a low-dimensional precoder (digital BF) and
an analog BF, with the number of RF chains less than the
number of antennas. This technique was first introduced in [1],
with the analog precoder implemented using phase shifters.
Hybrid precoding designs for single user (SU) systems can
be found in [2]–[4]. The authors in [2] propose near-optimal
solutions based on the formulation of sparse signal recovery
for a SU mmWave system. In [5] the authors use Weighted
Sum Rate (WSR) maximization as the target optimization
criterion for the HBF design. However, they optimize the
analog phasors using Tx power minimization criteria and a
zero-forcing (ZF) solution for the digital precoder. In [6],
we propose a Weighted Sum Mean Squared Error (WSMSE)
based approach for the joint max WSR design of digital and
analog beamformers for a multi-cell (MC) multi-user (MU)
MIMO system. [7], [8] propose a HBF design using sparse
formulations and approximating the minimum MSE (MMSE).
In [7], orthogonal matching pursuit (OMP) based algorithms
are used to successively select RF BF vectors from a set

of candidate vectors and the corresponding digital BF are
optimized by least squares fitting. [9] uses the decomposition
of analog BF vectors and antenna array response vectors into
Kronecker products of (unit modulus) factors. By exploiting
that the inner product of Kronecker structured vectors is the
product of factor inner products, different factors of the analog
BF vectors are designed either for interference nulling or
enhancing the signal power. While this interesting design
proposes to exploit only multipath CSIT for the intercell
interference, it is only applicable to Kronecker structured array
responses and is suboptimal due to the ZF constraints and
especially due to the number of phase variables (factors) that
grows only logarithmically with the number of antennas.

In contrast to the conventional (sum-)power constraint
(SPC) on the base station (BS), this paper considers a more
realistic scenario with additionally per-RF or per-antenna
power constraints (PRFPC/PAPC). In practice, each RF chain
is equipped with a power amplifier and its linear range of
the PA combined with Peak to Average Power Ratio (PAPR)
considerations lead to a power constraint per power amplifier.
Another scenario is the case of a distributed system where a
central BS is connected via a high speed backbone network to
remote antennas. Fully digital BF designs with PAPC can be
found in [10]–[13]. [10] focuses on the design of BF vectors
for a MISO system to minimize the per-antenna power while
enforcing a set of SINR constraints for each user. ZF BF
design with PAPC are discussed in [11], while [12] utilizes
UL/DL duality of the sum MSE for the precoder design.
Existing approaches for this problem are based on either
interior point methods that do not favorably scale with the
problem size or subgradient methods [14] that have very slow
convergence rate.
A. Contributions of this paper
• We propose a novel HBF design (for both fully or par-

tially connected structures) based on the WSR criterion
which is simplified using minorization and alternating
optimization. To the authors’ best knowledge, this is the
first paper to propose HBF design under the more realistic
scenario of per-RF or per-antenna power constraints.

• We propose a novel analog phasors design using a deter-
ministic annealing approach, leading to the only existing
solution which avoids the big problem of local optima.
Performance is significantly better than state of the art



solutions (compared e.g. to the alternating optimization
for phasor design using the WSMSE method as in [6]).

• We propose a novel interference leakage aware water
filling (ILA-WF) for the stream power optimization, even
for just SPC, but also augmented with PRFPC or PAPC.
We propose to solve the resulting convex Lagrange dual
problem by alternating bisection but may other solutions
can be considered. The ILA-WF allows automatic dis-
covery of the sustainable number of streams per user in
MIMO channels.

• The simulation results indicate that due to this power
optimization approach and the avoidance of auxiliary Rx
filters, the proposed algorithm can converge much faster
compared to existing approaches.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices respectively. the
operators E[·], tr{·} , (·)H , (·)T represents expectation, trace,
conjugate transpose and transpose respectively. A circularly
complex Gaussian random vector x with mean µ and covari-
ance matrix Θ is distributed as x ∼ CN (µ,Θ). Vmax(A,B)
or V1:M (A,B) represents (normalized) dominant generalized
eigenvector or the matrix formed by M (normalized) dominant
generalized eigenvectors of A and B. vec(X) represents the
vector obtained by stacking each of the columns of X and
unvec(X) represents the reverse operation. Further, A � 0
means that all the elements of the matrix A are ≥ 0.

II. MULTI-USER MIMO SYSTEM MODEL

In this paper we shall consider a multi-stream approach.
So, consider a multi-cell multi-user downlink (MC MU DL)
system with C cells and a total of K users. Hk,bi repre-
sents the Nk × N bi

t MIMO channel between user k (asso-
ciated to BS bk) and BS bi, with Tx side covariance matrix
E
[
HH
k,cHk,c

]
= Θc

k. User k receives

yk=Hk,bk Vbk Gk sk +
∑
i6=k

Hk,bi Vbi Gi si + vk, (1)

where sk is the dk × 1 intended signal stream vector (en-
tries are white, unit variance). We are considering a noise
whitened signal representation so that we get for the noise
vk ∼ CN (0, INk

). The analog BF Vc for base station c is of
dimension N c

t ×M c where M c is the number of RF chains.
The M c×dk digital BF is Gk. Note that the fully digital case
can be recovered from our design by substituting M c = N c

t

and Vc = I.
There exist two types of phased arrays at mmWave frequen-

cies: (i) passive phased arrays and (ii) active phased arrays
[15]. Though passive phase shifters incur some power loss,
they require only the same number of power amplifiers as
RF units, leading to PRFPC considerations. Since there is a
clear trend towards active systems, we also consider PAPC in
section III-D. Although we do not model the power loss (which
would complete the picture), simulations show that due to the
reduced number of power constraints, passive systems with
PRFPC have some power efficiency gain over active systems
with PAPC.

III. WSR MAXIMIZATION VIA MINORIZATION AND
ALTERNATING OPTIMIZATION

Consider the optimization of the hybrid beamforming de-
sign using WSR maximization of the Multi-cell MU-MIMO
system:

max
V,G

WSR(V,G) = max
V,G

K∑
k=1

uk ln det(R−1

k
Rk) , (2)

where the uk are the rate weights, G represents the collection
of BFs Gk, V the analog BFss Vc. Also, we define

Rk =

K∑
i=1,i6=k

Hk,biQiH
H
k,bi + INk

,

Rk =

K∑
i=1

Hk,biQiH
H
k,bi +INk

, Qk =VbkGkG
H
k VbkH

(3)

where (Rk) Rk is the Rx (signal plus) interference plus noise
covariance matrix and Qk is the Tx covariance matrix for
user k. The per-RF power constraints (PRFPC) at BS c can
be written as,∑

k:bk=c

[
GkG

H
k

]
i,i
≤ aci , i = 1, ...,M c, (4)

where
[
GkG

H
k

]
i,i

represents the ith diagonal element of
GkG

H
k . Further, also total Tx power constraints need to be

satisfied,
∑
k:bk=c

tr{Qk} ≤ P c . The WSR problem is non-

concave in the Qk due to the interference terms. Therefore
finding the global optimum is challenging. In order to render
a feasible solution, we consider constructing a minorizer based
on the difference of convex functions (DC programming)
approach. Consider the dependence of WSR on Qk alone.

WSR = uk ln det(R−1

k
Rk) + WSRk,

WSRk =

K∑
i=1,6=k

ui ln det(R−1

i
Ri),

(5)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and
concave, DC programming [16] introduces the first order
Taylor series expansion of WSRk in Qk around Q̂ (i.e. all
Q̂i).
WSRk(Qk, Q̂) = WSRk(Q̂k, Q̂)− tr

{
(Qk − Q̂k)Âk

}
,

Âk =− ∂WSRk(Qk,Q̂)
∂Qk

∣∣∣∣
Q̂k

=

K∑
i=1, 6=k

uiH
H
i,bk

(R̂−1

i
−R̂−1

i )Hi,bk .

(6)
Note that the linearized tangent expression WSRk constitutes
a (touching) lower bound for WSRk via −tr{R−1∆} ≤
− ln det(R−1(R + ∆)) and Rk ≥ Rk. Hence the DC ap-
proach is also a minorization approach [17], regardless of the
(re)parameterization of Q. Now let B̂k = HH

k,bk
R̂−1

k
Hk,bk ,

Ψc = diag (Ψc,1, ....,Ψc,Mc) represents the Lagrange mul-
tipliers associated with the per-RF power constraints Φc =
diag (ac1, ..., a

c
Mc). Ψ represents the set of all Ψc and Λ =

diag (λ1, ..., λC). Then, dropping constant terms, reparame-
terizing the Qk as in (3), performing this linearization for
all users, and augmenting the WSR cost function with the
Tx power constraints, we get the Lagrangian (7) which gets



maximized alternatingly [17] between digital and analog BF

L(V,G,Λ,Ψ) =

C∑
c=1

λcP
c +

C∑
c=1

tr{ΨcΦc}+

K∑
k=1

uk ln det
(
I + GH

k VbkHB̂kV
bkGk

)
−tr
{

GH
k

(
VbkH

(
Âk + λbkI

)
Vbk + Ψbk

)
Gk

}
.

(7)

A. Digital BF Design

Maximizing (7) w.r.t. Gk leads to the KKT conditions
VbkHB̂kV

bkGk =
(
VbkH

(
Âk+λbkI

)
Vbk + Ψbk

)
Gk

× 1
uk

(I + GH
k VbkHB̂kV

bkGk)
(8)

with solution dk dominant generalized eigenvectors (g.e.v.)

G
′

k=V1:dk

(
VbkHB̂kV

bk,VbkH
(
Âk+λbkI

)
Vbk +Ψbk

)
(9)

with eigenvalues Σk = 1
uk

(I + GH
k VbkHB̂kV

bkGk). The
gradient in (8), which would be the same with WSR re-
placed by WSR, leads to g.e.v. conditions whereas max-
imizing L in (7) leads to select the dominant g.e.v. Let
Sk = G′Hk VbkHB̂kV

bkG′k, Wk = G′Hk VbkHÂkV
bkG′k,

and Tk(λbk ,Ψbk) = Wk + G′Hk (λbkVbkHVbk + Ψbk)G′k.
Note that g.e.v. diagonalize Sk, Tk(λ

(j−1)
bk

,Ψ
(j−1)
bk

) and Σk

(see further for iteration index (j)). As g.e.v. are normalized,
the stream powers Pk ≥ 0 (diagonal) need to be optimized
separately. But this is straightforward from (7): substituting
Gk = G′k P

1
2

k in (7) yields,
L(V,G′,P,Λ,Ψ) =

∑C
c=1(λcP

c + tr{ΨcΦc})+∑K
k=1[uk ln det(I + SkPk)− tr{Tk(λbk ,Ψbk) Pk}].

(10)

B. Optimization of Power Variables: P,Λ,Ψ

The optimization of (10) w.r.t. Pk leads to the following
interference leakage aware water filling (ILA-WF)(
uk(Wk + G′Hk (λbkVbkHVbk + Ψbk)G′k)−1−S−1

k

)+

= Po
k(λbk ,Ψbk) =

(
uk T−1

k (λbk ,Ψbk)− S−1
k

)+
(11)

where, (X)+ denotes the positive semi-definite part of Her-
mitian X. We substitute the optimized power distribution
Po
k(λbk ,Ψbk) in (10) yielding the Lagrange dual function

g(Λ,Ψ) = L(V,G′,Po(Λ,Ψ),Λ,Ψ) =

C∑
c=1

gc(λc,Ψc)

gc(λc,Ψc) = λcP
c + tr{ΨcΦc}

+
∑
k:bk=c[uk ln det(I + SkP

o
k)− tr{Tk(λbk ,Ψbk) Po

k}]
(12)

where we omitted the dependence of g() on V,G′, which
are currently fixed in the alternating optimization process,
as we maximize over P. Λ,Ψ should be chosen such that
g(Λ,Ψ) is finite. Further, the non-negativity of Λ and Ψ
imposes constraints on the dual objective function. Formally,
the Lagrangian dual problem per cell can be stated as follows:

min
λc,Ψc

gc(λc,Ψc) subject to λc ≥ 0,Ψc � 0 , ∀c . (13)

Since the dual function gc(λc,Ψc) is the pointwise supremum
of a family of functions of λc,Ψc, it is convex [18] and the
globally optimal value λc,Ψc can be found by a multitude

of convex optimization techniques. We propose to use the
alternating bisection method as in Algorithm 1. This requires
to specify search ranges. We can take the lower bounds
(λc,Ψc,i) = (0, 0). The upper bounds are obtained by finding
the largest value over users such that the strongest mode of
that user loses power with the corresponding power constraint
being the only active one:
λc = max

k:bk=c
(ukSk−Wk)1,1/(G

′H
k VcHVcG′k)1,1 and Ψc,i =

max
k:bk=c

(ukSk−Wk)1,1/|(G′k)i,1|2. To simplify the description

of the method in Algorithm 1, we introduce Ψc,0 = λc. Also,
Ψc,i denotes all components of Ψc except for Ψc,i and we take
some liberty in ordering arguments of gc(). The complexity
could be reduced by reducing the bisection search ranges in
consecutive sweeps of overall alternating optimization sweeps.
Algorithm 1 Alternating bisection for Lagrange multipliers

Initialization: Ψc,i = 0,Ψc,i ,∀c, i.
for c = 1, ..., C

Repeat until convergence
for i = 0, 1, ...,M c

Ψc,i = (Ψc,i + Ψc,i)/2

if gc(Ψc,i,Ψc,i) < gc(Ψc,i,Ψc,i), Ψc,i = Ψc,i,
else Ψc,i = Ψc,i

end for
end for
With the optimized λbk and Ψbk , Po

k(λbk ,Ψbk) is no
longer diagonal. So consider its eigen decomposition Po

k =
UkPkU

H
k leading to the new diagonal Pk and absorb the

unitary Uk: G′k ← G′kUk. Note that the minorization ap-
proach, which avoids introducing Rxs, can at every BF update
allow to introduce an arbitrary number of streams per user by
determining multiple dominant generalized eigenvectors, and
then let the ILA-WF operation decide how many streams can
actually be sustained. Given the digital BFs and the Lagrange
multipliers, the analog BF Vc can be found by alternating
optimization.
C. Design of Unconstrained Analog BF

At first we consider the case in which the analog BF
is unconstrained. Hence the resulting design would also be
applicable to more general two-stage BF design [19] in which
the outer BF stage (Vc) is in common to all users in a cell.

1) Fully Connected Case: To optimize Vc, we equate
the gradient of (7) w.r.t. Vc to zero. Using ∂ ln det X =
tr(X−1∂X) and det(IM + AB) = det(IN + BA) from [20],
we get∑
k:bk = c

(
B̂kV

cGkζkG
H
k − (Âk + λcI)VcGkG

H
k

)
= 0,

with ζk = uk

(
I + GH

k VbkHB̂kV
bkGk

)−1

.
(14)

Now with vec(AXB) = (BT⊗A)vec(X) [20], we get
Vc = unvec(Vmax(Bc,Ac)), with (15)

Bc =
∑

k:bk = c

(
(GkζkG

H
k )T ⊗ B̂k

)
,

Ac=
∑

k:bk = c

(
(GkG

H
k )T ⊗ (Âk + λcI)

)
.

(16)



2) Partially Connected Case: As in [21], in a partially
connected phase shifting network, each RF chain is connected
to a subset of antennas. Assuming each RF chain is connected
to Lct = N c

t /M
c antennas, the analog precoder matrix can be

written as a block diagonal matrix

Vc =

vc1 0 . . . 0
0 vc2 0...

...
. . .

...
0 0 . . . vcMc

 (17)

where vci ∈ CLc
t×1 (with unit magnitude elements in the

phasor case). The advantage of a partially connected structure
is that we need only N c

t phase shifters. But at the cost of
degradation in performance compared to a fully connected
structure where there is more phase control. We define B̃c,k

as the N c
tM

c × N c
t matrix obtained by concatenating the

following subsets of columns: (i − 1)N c
t + 1 : (i − 1)N c

t +
Lct , i = 1, ...,M c of (GkζkG

H
k )T ⊗ B̂k. We define Ãc,i

similarly and let Ṽc = [vc T1 ,vc T2 , ...,vc TM ]T . Then optimizing
(7) w.r.t. Ṽc yields

Ṽc = Vmax(
∑

k:bk = c

B̃c,k,
∑

k:bk = c

Ãc,k). (18)

Alternating WSR maximization between digital BF and an
unconstrained analog BF now leads to Algorithm 2.

Algorithm 2 Hybrid BF Design via Alternating Minorizer
Given: P c,Φc,Hk,c, uk, ∀k, c.
Initialization: (Vc)(0) = V1:Mc(

∑
k:bk=c Θc

k,
∑
i:bi 6=c Θc

i ),
The G

(0)
k are taken as the ZF precoders for the effective

channels Hk,bkVbk with uniform powers (from SPC).
Iteration (j) :

1) Compute Q̂
(j)
k , B̂

(j)
k , Â

(j)
k , ∀k from (3), (6), (7).

2) Update G
′(j)
k , ∀k, from (9).

3) Update λ(j)
c ,Ψ(j)

c ∀c using Algorithm 1 and thus P
(j)
k

∀k, from (11).
4) Update (Vc)(j) , ∀c, from (15) for fully connected case

or from (18) for partially connected case.
5) Check for convergence of the WSR: if not go to step 1).

D. Hybrid Beamforming Design with Per-Antenna Power
Constraints

Per-antenna power constraints for HBF can be written as∑
k:bk=c

[
VcGkG

H
k VcH

]
i,i
≤ aci , i = 1, ..., N c

t . (19)

Substituting the above modified power constraints, WSR
alternating maximization through minorization leads to the
following expressions for the BFs (fully connected case)

G
′

k=V1:dk

(
VbkHB̂kV

bk,VbkH
(
Âk+λbkI+Ψ′bk

)
Vbk
)

Vc = unvec(Vmax(Bc,A
′
c)),

where A′c=
∑

k:bk = c

(
(GkG

H
k )T ⊗ (Âk + λcI + Ψ′bk)

)
,

and Ψ′c = diag (Ψc,1, ....,Ψc,Nc
t
).

(20)

The ILA-WF can be modified similarly. Note that as for
PRFPC, the maximum number of power constraints that can

be satisfied with equality is the number of streams (stream
powers).

E. Algorithm Convergence

The convergence proof of [22] does not apply directly
because the power constraints here are not separable in the
BF variables. The ingredients required are minorization [17],
alternating or cyclic optimization [17] (also called block
coordinate descent), Lagrange dual function [18], saddle-point
interpretation [18] and KKT conditions [18]. For the WSR cost
function WSR(Q) in (5) we construct the minorizer as in (6),
(7) leading to

WSR(Q) ≥WSR(Q, Q̂) =
K∑
k=1

[uk ln det(I + B̂kQk)− tr{Âk(Qk − Q̂k)}] (21)

where WSR(Q̂, Q̂) = WSR(Q̂). The minorizer, which is
concave in Q, still has the same gradient as WSR(Q̂) and
hence KKT conditions are not affected. Now reparameterizing
Q in terms of P,G′,V as in (3) and adding the power
constraints to the minorizer, we get the Lagrangian (10). Every
alternating update of L w.r.t. V, G′, or (P,Λ,Ψ) leads to an
increase of the WSR, ensuring convergence (within each of
these 3 parameter goups, we further alternate between each
user or BS). For the KKT conditions, at the convergence
point, the gradients of L w.r.t. V or G′ correspond to the
gradients of the Lagrangian of the original WSR. For fixed V
and G′, L is concave in P, hence we have strong duality for
the saddle point maxP minΛ,Ψ L. Also, at the convergence
point the solution to minΛ,Ψ L(Vo,G′o,Po,Λ,Ψ) satisfies
the gradient KKT condition for P and the complementary
slackness conditions for c = 1, . . . , C

λoc (P c −
∑
k:bk=c tr{VcoG′ok Po

kG
′oH
k VcoH} = 0,

tr{Ψo
c(Φ

o
c −

∑
k:bk=c G′ok Po

kG
′oH
k )} = 0

(22)

where all individual factors in the products are nonnegative
(and for Ψo

c , the sum of nonnegative terms being zero implies
all the terms being zero).

In the proposed approach, g(Λ,Ψ|V,G′) =
maxP L(V,G′,P,Λ,Ψ). In contrast, in [16], Lagrangian
duality and alternating optimization are interchanged with
dual function g(Λ) = maxV,G′,P L(V,G′,P,Λ) (no PRFPC
or PAPC), leading to more complex iterations and a power
optimization that is further away from classical water filling.

IV. DETERMINISTIC ANNEALING FOR PHASE SHIFTER
CONSTRAINED ANALOG BF

In this section, we propose an algorithm modification to
design the analog BF for a phase shifter constrained case.
Accounting of the unit modulus constraints of the entries of
Vc can be done by parameterizing as∣∣Vc

m,n

∣∣=1 ⇒ Vc
m,n=ej θ

c
m,n . (23)

One can push the alternating optimization paradigm further
to the level of each phasor by representing the WSR as a
function of each phasor element f(θcm,n) and optimizing it.



A similar such approach can be found in [6], where the
optimization is w.r.t. the WSMSE. However, a major drawback
of such designs is the strong non-convexity of the cost function
with many local optima. Hence depending on the initialization
the algorithm will converge to different local optima. So we
consider here one approach called deterministic annealing
(DA) (or homotopy method) to avoid the problem of local
optima. In DA, we use a homotopy parameter to gradually
move the problem from a simpler one (with known global
optimum) to the final complex problem, solving the problem
for every consecutive homotopy parameter instance, initialized
by the previous solution. If the homotopy parameter varies
slowly, the global optimum of the previous problem instance
will be in the region of attraction of the next global optimum.
For the analog beamforming design using phasors, we start
from the optimal unconstrained Vc which has close to all
digital performance. Then with the gradual forcing of the
amplitude of the unconstrained Vc to 1 we approach the global
optimum for the phasor case. The steps for the DA method
are given in Algorithm 3. Note that in Algorithm 3, b is some
constant value less than 1, say 0.9. Then in n iterations, the
coefficient amplitudes are modified by |Vc

i,j |b
n

. As n varies
from 0 to ∞, the homotopy parameter tn = bn varies from 1
to 0 and |Vc

i,j |tn varies from |Vc
i,j | to 1. We get

(Λ(n),Ψ(n),θ(n),G′(n),P(n))=argmin
Λ,Ψ

max
θ,G′,P

L(|V|tn,θ,G′,P,Λ,Ψ)

initialized by (Λ(n−1),Ψ(n−1),θ(n−1),G′(n−1),P(n−1)).
Algorithm 3 Deterministic Annealing for Analog Beamformer

Let Vc
i,j = |Vc

i,j |ejθ
c
i,j . Let the unconstrained Vc design (joint

Vc and all Gk using Algorithm 2) converge first.
1) Scale ∀ c, (i, j) : |Vc

i,j | ← |Vc
i,j |b.

2) Reoptimize all θci,j .
3) Update G′, P, Λ, Ψ using Algorithm 2.
4) Go to 1) for a number of iterations.
5) Redo 2)-3) a last time with all |Vc

i,j | = 1.

However, even though the DA ensure that the phasors design
(for a given unconstrained analog BF) converges to the global
optimum, the overall alternating WSR optimization algorithm
of digital BFs and analog precoders can still converge to
a local optimum depending on the initialization. To ensure
convergence to the overall global optimum, another layer of
DA can be added by solving the WSR problem at increasing
SNR values starting from near 0 to the desired SNR [23].

V. SIMULATION RESULTS

Simulations are presented for a single cell with K single
antenna users. Assuming a Uniform Linear Array (ULA), the
MISO channel for user k can be written as the pathwise

model hk =

L∑
i=1

αiat (φi), where αi is the complex path gain

which is assumed to be complex Gaussian with exponentially
distributed variance profile. φi corresponds to the Angle of
Departure (AoD) which is assumed to be uniformly distributed
in the interval [0, 30].Notations used in the figure: CoCSIT
refers to covariance CSIT , iCSIT refers to perfect CSIT.
SPC, PAPC, PRFPC refer to sum power, per-antenna power
or per-RF power constraints. Firstly, in Fig. 1, we consider
the case of only SPC. We compare the performance of 3

proposed algorithms with the optimal fully digital BF [24],
approximate WSR based hybrid design [5], WSR HBF via a
WSMSE based design [6] and a CoCSIT based scheme [25].
Except the curve denoted as ”Proposed Partially Connected
Analog BF”, all others are for fully connected analog BF.
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-10 0 10 20 30 40 50 60

Transmit SNR in dB

0

20

40

60

80

100

120

S
u

m
 S

p
e

c
tr

a
l 

E
ff

ic
ie

n
c

y
 (

b
it

s
/s

e
c

/H
z
)

Fully Digital with only SPC

HBF with only SPC

Fully Digital with SPC and PAPC [12]

Fully Digital with SPC and PAPC

HBF with SPC and PRFPC

HBF with SPC and PAPC

Naive  Fully Digital with SPC and PAPC

Naive HBF with SPC and PRFPC

Fig. 2: Sum rates, Nt=32,M=16,K=8, C=1, L=4.
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Fig. 4: Execution time comparison.

It is clear that the proposed unconstrained HBF solution has
the same performance as the fully digital solution. With phase
shifter constrained analog precoder, the proposed DA based
design narrows the gap to the fully digital performance and
performs much better than state of the art solutions such as
WSMSE which suffer from the issue of local optima. In Fig. 2,
we compare our fully digital and HBF designs based on SPC
and/or PAPC and/or PRFPC. Imposing PAPC or PRFPC in
addition to the SPC degrades the sum rate but less for PRFPC
as there are fewer constraints. Our digital SPC+PAPC designs
performs identically to that in [12]. The optimized designs for
PAPC or PRFPC outperform naive designs in which the SPC
BF is scaled down to satisfy the PAPC or PRFPC constraints,
esp. at intermediate SNR. Fig. 3 confirms those observations
for a larger number of BS antennas.

In Fig. 4, for the fully digital PAPC, we compare the
execution time in Matlab for the proposed solution to that
of the geometric programming (GP) approach in [12] for
the power allocation (which is solved using interior point
methods). The digital BF computation has similar complexity
(O(N3

t )) between SMSE in [12] and the proposed solution.
The complexity (Nt+1)x of the alternating bisection is linear
in the number of power constraints, where x represents the
complexity associated with the evaluation of g(Λ,Ψ)). GP has
a worst case polynomial time complexity. Faster convergence
of the minorization approach compared to the SMSE solution
and the reduced complexity of the alternating bisection vs the
GP lead to a much shorter execution time for the proposed
algorithm as shown in Fig. 4.

VI. CONCLUSIONS

In this paper, we presented a WSR maximizing algorithm
for digital or HBF, with unconstrained amplitude or phasor
analog BF, fully or partially connected, in a Multi-User
Multi-Cell MIMO system. We considered for the first time
the more realistic scenario of per-RF or per-antenna power
constraints for a HBF system. Convergence of the alternating
minorization approach was shown and adding deterministic
annealing allowed to attain the global optimum.
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