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Abstract. We identify a flaw in the proof of security of Garbled Bloom
Filters, a recent hash structure introduced by Dong et al. (ACM CCS
2013) that is used to design Private Set Intersection (PSI) protocols,
a important family of protocols for secure cloud computing. We give
counter-examples invalidating a claim that is central to the original proof
and we show that variants of the GBF construction have the same issue
in their security analysis. We then give a new proof of security that shows
that Garbled Bloom Filters are secure nonetheless.
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1 Introduction

Private Set Intersection (PSI) protocols is one of the most important family of
protocol for secure computation that plays a central role in cloud computing
(see Section 1 of [4]). Garbled Bloom Filters (GBF) are a recent hash structure
introduced by Dong et al. in [4] (ACM CCS 2013) that are useful in the design
of PSI protocols. The idea of GBF is to combine a Bloom Filter (BF) with
XOR-based secret sharing to enable efficient test membership with regard to a
set while hiding the presence of elements in this set that were not searched for.
The construction of Dong et al. had quite a large impact in research as it was
used [3,15–17], improved [11,12] and cited [5,7,9,10,14] numerous times already.

The proof of Dong et al. can be summarized the following way: In a first
part they use a property of Bloom Filters to show that some event happens
with negligible probability; then in a second part they assume the absence of
the previously mentioned event and invoke the security of XOR-based secret
sharing to conclude the proof. This invocation of the security of XOR-based
secret sharing is done in a very immediate way, neglecting the fact that the
functioning of GBF, however heavily inspired by the XOR-based secret sharing
scheme, is not strictly speaking an instance of this scheme. The same remarks
hold for a PSI protocol suggested by Pinkas et al. in [11], based on the original
GBF construction by Dong et al., for which the proof of security is very short
and follows a reasoning similar to the one of Dong et al.

In this paper we show that a simple invocation of the security of XOR-based
secret sharing is in fact not sufficient to show that GBFs are secure. We do so
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by providing a counter-example, and further a larger class of counter-examples,
that invalidate the claims made in both previously mentioned proofs.

We show however that GBFs do satisfy their claimed security properties by
providing a new, more rigorous proof.

1.1 Organization of the Paper

In Section 2 we describe Bloom Filters, Garbled Bloom Filters as introduced
by Dong et al. in [4], and the original proof of Dong et al. for the security of
Garbled Bloom Filters. In Section 3 we give a counter example (and a class
of counter-examples) that invalidates the proof of Dong et al. In Section 4 we
describe the impact of our results on other GBF constructions that were inspired
by the one of Dong et al. In Section 5 we give a new proof of security for the
GBF construction of Dong et al. Finally in Section 6 we compare this work with
related work.

2 Preliminaries

2.1 Notations

We make use of the following usual conventions: With X a set, we denote by
x

$←− X the fact that x is sampled uniformly from X. With i a positive number,
we denote by [i] the sequence (1, 2, . . . , i). A function µ(·) is negligible if for every
positive polynomial p(·) and all sufficiently large n, it holds that µ(n) ≤ 1/p(n).
Throughout the paper, λ denotes the security parameter and two probability
ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are said to be computationally
indistinguishable [6, Definition 7.30] denoted X c≡ Y, if for every probabilistic
polynomial-time distinguisher D there exists a negligible function µ such that:∣∣∣Pr[D(1λ, x) = 1;x

$←− Xλ]− Pr[D(1λ, y) = 1; y
$←− Yλ]

∣∣∣ ≤ µ(λ)

2.2 Bloom Filters

Bloom Filters (BFs), introduced by Bloom in [1] and further studied by Broder
and Mitzenmacher in [2], are a hash structure that aims at efficiently testing
membership in a set. A BF is an array B of M bits associated with k random
hash functions h1, . . . , hk : {0, 1}∗ → [M ] . B is initialized by setting all the
array values to zero and one inserts an element x ∈ S in B by setting B[hi(x)]
to 1 for all i. Finally one checks the presences of x in the set S encoded by B by
testing whether B[hi(x)] is equal to 1 for all i ∈ [k]; if it is not the case then x
cannot be in S, otherwise x is in S with high probability. Following [12] we use
the notation h∗ to denote the set of all positions corresponding to an element x
or a set S:

h∗(x) = {hi(x) ∀i ∈ [k]}
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h∗(S) =
⋃
x∈S

h∗(x)

We will denote by BFS the Bloom Filter encoding set S when there is no ambi-
guity about what parameters M and (hi)i∈[k] where used.

The event that x appears to be encoded in B while it is actually not in S is
called a false positive. Dong et al. [4] show that the probability for x /∈ S to cause
a false positive is negligible in the number of hash functions k. As a consequence,
setting the number of hash function as greater or equal to the security parameter
(which is what Dong et al. do) results in a false positive probability negligible
in the security parameter.

Broder and Mitzenmacher in [2] show that the optimal value for k, that
minimizes the false positive probability for a given M and set size N , is:

k = ln(2)
M

N
. (1)

They also show that with this value of k about half of the bits are set after
insertion of all the elements in S.

2.3 Garbled Bloom Filters

Garbled Bloom Filters (GBFs) were introduced by Dong et al. in [4] (ACM
CCS 2013). GBF is a variant of BF that has some security properties making it
suitable for the design of Private Set Intersection (PSI) protocols (see [11] for a
description of PSI and a review of most recent schemes, including the one of [4]).

Like a BF, a GBF is an array of length M associated with k random hash
functions h1, . . . , hk : {0, 1}∗ → [M ] . However the components of a GBF are
not bits but bit strings of length λ. One inserts x in a GBF B by ensuring that⊕

i B[hi(x)] = x, and checks the presence of x in B by testing the same equality.
During insertion, each share is picked uniformly at random as in a XOR

secret sharing scheme, except the shares that were already set by the insertion
of a previous element that are left unchanged. Components that were never
wrote during insertion of the whole set are filled with random values. Algorithm
1 gives a more formal description of how a GBF is built. As with “normal”
Bloom Filters, we will denote by GBFS a GBF encoding set S when there is no
ambiguity as to the parameters used.

The security property of GBFs, which will be given formally in Section 2.5,
can be informally described as follows:

Definition 1 (Security of GBF – informal). Let S and C be two sets; Given
only {GBFS [i] ∀i ∈ h∗(C)} one cannot get any information about S − C.

2.4 Private Set Intersection Based on GBF

We give a quick overview of how GBFs are used in the design of Private Set
Intersection (PSI) protocols with one-sided output. Informally, a PSI protocol
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Algorithm 1: An algorithm for building a GBF representing set S with
parameters M, (hi)i=1...k, λ

Algorithm: GBF.Build
Input: S,M, (hi)i=1...k, λ
Output: B
Initialize B as an empty array of length M ;
for x ∈ S do

if ∃j ∈ h∗(x) : (B[j] is empty) then
for i ∈ h∗(x)− {j} do

if B[i] is empty then
B[i]

$←− {0, 1}λ ;
set B[j]← x⊕

⊕
i∈h∗(x)−{j} B[i] ;

else
Abort. ;

Fill any remaining empty component with fresh random values ;

is a protocol between two parties, each having a set, who want to compute the
intersection of their respective sets without revealing more information than this
intersection. In the one-sided output setting only one party, called the receiver,
learns the intersection, while the other party, called the sender, learns nothing.

In the PSI protocol of Dong et al. [4], the sender holds a set S and computes
GBFS while the receiver holds a set C and computes BFC . Both parties use the
same (G)BF parameters.

The two parties then run an Oblivious Transfer (OT) protocol, that is a
protocol that allows a party (called receiver and that matches the receiver of
the PSI protocol) to retrieve a record in a database held by another party (the
sender, who again matches the sender of the PSI protocol) without revealing to
the sender which record was retrieved by the receiver and without revealing to
the receiver the other records in the database.

The OT protocol is used in the PSI protocol of [4] by the receiver in order to
retrieve the components of GBFS corresponding to the “ones” in BFC . For any
element in S ∩ C, its corresponding components were retrieved so the receiver
is able to assert its presence in S ∩ C. At the same time, the security property
of GBFs guarantee that the receiver got no information about any element of
S − C. As for the sender, the privacy properties of the OT protocol suffice to
prevent him from learning anything about the set C of the receiver.

2.5 Original Proof of Security by Dong et al. [4]

The security of GBF is expressed by Theorem 4 in [4] which we reformulate in an
equivalent way in Theorem 1 of this paper. This theorem requires the definition
of the intersection between a GBF and a BF sharing the same parameters (see
Section 4.2 of [4])
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Definition 2 (Intersection between a GBF and a BF). Let M, (hi)i=1...k

and λ be some GBF parameters. Let S and C be two sets, and let GBFS and BFC

be built with parameters M, (hi)i=1...k (and λ for the GBF). The intersection of
GBFS and BFC , noted GBFS ∩BFC , is defined as:

(GBFS ∩BFC)[i]←

{
GBFS [i] if BFC [i] = 1

a random value otherwise

Dong et al show that GBFS∩BFC is a correct GBF encoding S∩C. We also
define the notion of “extraction” of a GBF with a BF, which is equivalent to the
notion of intersection but will make our proof in Section 5 simpler. We will use
the notion of intersection mostly in Section 3 in order to stay as close as possible
to the notation of Dong et al., and in Section 5 we will mostly use the notion
of extraction. With extraction, “non-selected” components are simply dropped,
or equivalently set to a special “empty” value, instead of being replaced by a
random value. It should be obvious that one obtains as much information from
a uniform independent random value than from a fixed value.

Definition 3 (Extraction of a GBF with a BF). Let M, (hi)i=1...k and λ
be some GBF parameters. Let S and C be two sets, and let GBFS and BFC

be built with parameters M, (hi)i=1...k (and λ for the GBF). The extraction of
GBFS using BFC , noted Extract(BFC , GBFS), is defined as:

Extract(BFC , GBFS)[i]←

{
GBFS [i] if BFC [i] = 1

empty otherwise

We now give Theorem 4 of [4] in a slightly reformulated but equivalent form:

Theorem 1 (Security of GBF (Theorem 4 of [4])). Let λ and N ∈ N and
let k = λ and M = Nk/ ln(2); let (hi)i∈[k] be a sequence of random oracles
{0, 1}∗ → [M ]. we have

(S,C,GBFS ∩BFC)
c≡ (S,C,GBFS∩C ∩BFC)

Where S and C have at most N elements. Equivalently with our “extraction”
notation:

(S,C,Extract(BFC , GBFS))
c≡ (S,C,Extract(BFC , GBFS∩C))

The proof Dong et al. give for Theorem 1 is reproduced below, with only
minor modifications to make it match our notation. Namely, what is written
GBFC∩S , GBF ′

C∩S and GBF ′′
C∩S in the original text is written respectively

GBFS ∩BFC , GBFS∩C and (GBFS ∩BFC) ∩BFS∩C in ours. We give a quick
overview of their proof: In their “case 1”, they show that the probability that
some element of S − C has all its positions in h∗(C) is negligible; then in “case
2” they argue that if no element of S − C has all its elements in h∗(C), the
distribution of GBFS∩BFC is then identical to the one of GBFS∩C . They invoke
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“the security of the XOR-based secret sharing scheme” to argue that an element
of S−C of which one of the shares was re-randomized during intersection cannot
leave any trace in the resulting GBF (this is the argument we will go against in
Section 3).

(Proof of Theorem 1 as it appears in [4])
Given GBFS ∩BFC , we modify it to get (GBFS ∩BFC) ∩BFS∩C . We
scan GBFS ∩BFC from the beginning to the end and for each location
i, we modify (GBFS ∩BFC)[i] using the following procedure:

– If (GBFS∩BFC)[i] is a share of an element in C∩S, then do nothing.
– Else if (GBFS ∩BFC)[i] is a random string, do nothing.
– Else if (GBFS∩BFC)[i] is a share of an element in S−C∩S, replace

it with a uniformly random λ-bit string.
The result is (GBFS ∩ BFC) ∩ BFS∩C . Every (GBFS ∩ BFC)[i] must
fall into one of these three cases, so there is no unhandled case.
Now we argue that the distribution of (GBFS∩BFC)∩BFS∩C is identical
to GBFS∩C . To see that, let’s compare each location in (GBFS∩BFC)∩
BFS∩C and GBFS∩C . From Algorithm 1 and the above procedure, we
can see that (GBFS∩BFC)∩BFS∩C and GBFS∩C contain only shares of
elements in S∩C and random strings. Because (GBFS ∩BFC)∩BFS∩C

and GBFS∩C use the same set of hash functions, for each 0 ≤ i ≤
m− 1, ((GBFS ∩BFC)∩BFS∩C)[i] is a share of an element in C ∩S iff
GBFS∩C is a random string. The distribution of a share depends only
on the element and the random strings are uniformly distributed. So the
distribution of every location in (GBFS ∩BFC)∩BFS∩C and GBFS∩C

are identical therefore the distributions of (GBFS ∩BFC)∩BFS∩C and
GBFS∩C are identical.
Then we argue that the distribution of (GBFS ∩BFC)∩BFS∩C is iden-
tical to GBFS ∩BFC except for a negligible probability η.
Case 1, GBFS ∩ BFC encodes at least one elements in S − C ∩ S. In
this case the distribution of (GBFS ∩ BFC) ∩ BFS∩C differs from the
distribution of GBFS ∩BFC . From Theorem 3, the probability of each
element in S − C ∩ S being encoded in GBFS ∩ BFC is ε. Since there
are d = |S| − |C ∩ S| elements in S − C ∩ S, the probability of at least
one element is falsely contained in GBFS ∩BFC is:

η = [skipped...] ≤ 2dε

As we can see η is negligible if ε is negligible.
Case 2: GBFS ∩ BFC encodes only elements from C ∩ S. In this case,
each element of S−C ∩S may leave up to k−1 shares in GBFS ∩BFC .
The only difference between GBFS ∩BFC and (GBFS ∩BFC)∩BFS∩C

is that in (GBFS ∩ BFC) ∩ BFS∩C , all “residues” shares of elements
in S − C ∩ S are replaced by random strings. From the security of the
XOR-based secret sharing scheme, the residue shares should be uniformly
random (otherwise they leak information about the elements). Thus the
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procedure does not change the distribution when modifying GBFS∩BFC

into (GBFS ∩BFC)∩BFS∩C . So the distributions of GBFS ∩BFC and
(GBFS ∩BFC)∩BFS∩C are identical. The probability of this case is at
least 1− η.
Since (GBFS ∩ BFC) ∩ BFS∩C ≡ GBFS∩C always holds and GBFS ∩
BFC ≡ (GBFS∩BFC)∩BFS∩C in case 2, we can conclude that Pr[GBFS∩
BFC ≡ GBFS∩C ] ≥ 1− η thus
|Pr[D(GBFS ∩BFC) = 1]− Pr[D(GBFS∩C) = 1]| ≤ η. ut

3 Invalidation of the Proof in [4]

The end of the proof contains the following assertion: “(GBFS∩BFC) ∩ BFS∩C ≡
GBFS∩C always holds and GBFS ∩BFC ≡ (GBFS ∩BFC) ∩ BFS∩C holds in
case 2”. This should result in GBFS∩C ≡ GBFS ∩BFC in case 2. We invalidate
this claim by giving a counter-example. Let the number of hash functions be
k = 3; let x and y be two elements of S − C such that h1(x) = h1(y) and that
for all i 6= 1, hi(x) ∈ h∗(C) and hi(y) ∈ h∗(C). This example is illustrated in
Figure 1. Note that this example can be situated in the case 2 of the proof of [4]
as it does not require any element of S to have all its positions in h∗(C).

x y
1

2

3

1

2

3

h∗(C)

Fig. 1: Illustration of our counter-example.

We have that GBFS must satisfy the following equations where we note
GBFS [hi(x)] as xi (and similarly with y):

x1 ⊕ x2 ⊕ x3 = x (2)
y1 ⊕ y2 ⊕ y3 = y (3)

x1 = y1 (4)

Combining (2), (3) and (4) gives:

x⊕ y = x1 ⊕ x2 ⊕ x3 ⊕ y1 ⊕ y2 ⊕ y3

x⊕ y = x2 ⊕ x3 ⊕ y2 ⊕ y3
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If we re-write the latter equation without our short-hand notation, we have that
GBFS satisfies the following:

x⊕ y =

GBFS [h2(x)]⊕GBFS [h3(x)]⊕GBFS [h2(y)]⊕GBFS [h3(y)] (5)

Regarding GBFS ∩ BFC , it does not satisfy equations (2) and (3) anymore
because the component GBFS [h1(x)] was replaced by a fresh random value
during the intersection operation; but it still satisfies equation (5) as it only
involves components that were not re-randomized during intersection, thanks to
the fact that h2(x), h3(x), h2(y) and h3(y) are in h∗(C).

On the other hand GBFS∩C , which was built without the knowledge of x
and y, does not satisfy (5) (except with a very small probability). As a result a
GBF where relation (5) does not hold is a valid outcome for the distribution of
GBFS∩C but not for the distribution of GBFS∩BFC . Those distributions cannot
be identical, and the proof given in [4] of Theorem 1 is wrong. The same counter-
example can also be used to invalidate the claims that “GBF ′′

C∩S ≡ GBF ′
C∩S”

and that “GBFC∩S ≡ GBF ′′
C∩S”.

This is not just a typo in [4], but truly a flaw in the proof. Recall, the
proof uses the fact that any x ∈ S − C has, with overwhelming probability,
one of its positions, say h1(x), out of h∗(C). As a result this component is
overwritten during intersection (or never retrieved in a PSI scenario). Dong et al.
then invoke “the security of the XOR-based secret sharing scheme” to argue that
no information can be obtained about x1 ⊕ x2 ⊕ x3. But the GBF construction
is not the exact same thing as a XOR secret sharing scheme, and the argument
does not hold. More precisely, in a GBF the component GBFS [h1(x)] (or x1)
may not be independent from other components in the GBF and in particular
its value can be tied to the value of other components that may be in h∗(C) and
are thus “visible”, which is the case with components y2 and y3 in our example.

3.1 Generalization of the Counter-Example
We give a larger class of situations where the same claims prove wrong. Let
P (S,C) (or just P if there is no ambiguity about the inputs) be the set of
positions that appear an odd number of times in (h∗(x) ∀x ∈ S − C):

P (S,C) = {p ∈ h∗(S −C) : |{(x, i) ∈ (S −C)× [k] : hi(x) = p}| mod 2 = 1}

Then GBFS satisfies the following relation, of which (5) is a special case, and
which is obtained the same way as (5) was obtained:⊕

S∩C

x =
⊕
p∈P

GBFS [p] (6)

If moreover P ⊂ h∗(C), none of the concerned components are re-randomized
during intersection so GBFS ∩BFC satisfies the same relation, that is:⊕

S∩C

x =
⊕
p∈P

(GBFS ∩BFC)[p] (7)
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x z

1

h∗(C)

y

2

3

4 1

2

3

4

1 2 3 4

Fig. 2: An example of a more general counter-example involving 3 elements of
S − C.

Figure 2 illustrates such a more general case with 4 hash functions and involving
3 elements x, y and z where GBFS ∩ BFC would satisfy the following relation
(but GBFS∩C would not):

x⊕ y ⊕ z = x1 ⊕ x2 ⊕ y2 ⊕ y3 ⊕ z3 ⊕ z4

4 Other GBF Constructions

We describe the consequences of our findings on the other GBF constructions
that were inspired by the one of Dong et al., namely the ones of Pinkas et
al. [11, Section 4.3] (USENIX Security 2014), and Rindal and Rosulek [12] (EU-
ROCRYPT 2017).

4.1 Pinkas et al. [11]: Same Situation as Dong et al. [4]

The construction of Pinkas et al. presents many optimizations over the one of
Dong et al., for instance through the use of random OT instead of “classical”
OT, but it also has a more essential difference with the construction of Dong et
al. in that the sum of the components associated to an element need not be equal
to the element itself. Instead, all component values are all chosen uniformly at
random and the sender sends for each element in her set a “summary value”
that is the sum of the components corresponding to this element, that is:

{
⊕
i

GBFS [hi(s)] ∀s ∈ S}

The receiver retrieves the components corresponding to her own elements via
OT and compute similar sums for these elements. Finally, the receiver compares
the sums she computed with the sums she received to learn which elements are
in both sets.
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The reasoning used by Pinkas et al. to show the security of this construction
is similar to the reasoning of Dong et al., namely, that unless there is a s ∈ S
such that h∗(s) ⊂ h∗(C) then the view of the receiver is not just computationally
indistinguishable from a simulated view, but truly independent from S − C.

Unfortunately the same problem appears as with the proof of Dong et al.
Take for instance the example of Figure 1: if x and y are in the sender’s set S,
then the receiver must have received these two values:

Kx = GBFS [h1(x)]⊕GBFS [h2(x)]⊕GBFS [h3(x)]

Ky = GBFS [h1(y)]⊕GBFS [h2(y)]⊕GBFS [h3(y)]

and because h1(x) = h1(y) the XOR of these two received values is equal to:

Kx ⊕Ky =

GBFS [h2(x)]⊕GBFS [h3(x)]⊕GBFS [h2(y)]⊕GBFS [h3(y)]
(8)

Which only depends on values the receiver knows. The receiver is then able to
detect the presence of x and y in S − C by testing whether any two summary
values have their sum equal to (8).

Again, and as with the GBF construction of Dong et al. [4], the construction
of Pinkas et al. is actually secure since our new proof given in Section 5 should
also apply. This means that such S and C are actually very hard to find. Nev-
ertheless this shows that the security of the GBF construction of [11] cannot be
proven simply by invoking the low probability to have h∗(s) ⊂ h∗(C) for some
s ∈ S.

4.2 Rindal and Rosulek [12]: no Apparent Issues

Rindal and Rosulek [12] present a new PSI protocol following the idea of the
GBF-based PSI protocol of Pinkas et al. [11, Section 4.3] we presented in the
previous section. They keep most of the ideas of Pinkas et al., including the use
of random OT and the optimizations it enables, as well as the idea of having the
sender sending summary values. However they build these summary values in a
different way, which is essentially:

Kx = H

x ||
⊕

i∈h∗(x)

GBFS [i]


Where H is a secure hash function and || denotes concatenation.

Interestingly, the presence of the hash function breaks the algebraic properties
of the summary values that were used in the previous section, meaning that
all the counter-examples we gave so far do not apply on the construction of
Rindal and Rosulek. This construction may thus be secure even against someone
knowing a subset X ⊂ S−C such that P (X,C) ⊂ h∗(C). But more importantly,
the security proof Rindal and Rosulek give for their construction [12, Section 5.3]
differs a lot from the proofs of Dong et al. [4] and of Pinkas et al. [11], and we
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did not find in the paper of Rindal and Rosulek the issue we identified in [4]
and [11].

Note however that the construction of Rindal and Rosulek and of Pinkas et
al. cannot always be used as a drop-in replacement of the original construction
of Dong et al. One example is a Searchable Encryption protocol [13] that uses
Garbled Bloom Filters but where the receiver looks up several GBFs and must be
unable to know what response (in the form of components retrieved) comes from
what filter. This requires that the receiver must be able to decide on the result
of a lookup (“present” or “absent”) using only the components retrieved and
without remembering what was the component that was being looked for. The
authors modify the GBF construction of Dong et al. by having the components
corresponding to an element having their sum equal to a fixed value instead of
the value of the element itself: ⊕

i∈h∗(C)

GBFS [i] = 0

Such a property could not be reached in a trivial way using the construction
of Rindal and Rosulek (or even the one of Pinkas et al.) because the sending of
summary values by the sender requires that the receiver knows what to compare
these values with, which requires that the receiver knows what GBF the values
correspond to. This shows why the study of the security proof of constructions
other than the one of Rindal and Rosulek is still relevant.

5 New Proof of Security

5.1 New Case Distinction

Our proof follows the idea of the proof of Dong et al. [4]: we consider two cases,
one that occurs with negligible probability and one in which the two distri-
butions are actually identical, and this results in the two distributions being
indistinguishable. What differs between our proof and the one of [4] is the case
separation: as we saw, the assumption of case 2 of [4] that no element in S − C
has all its positions in h∗(C) does not suffice to have GBFS ∩BFC ≡ GBFS∩C .

Instead, we make the following remark: it is very unlikely that there is some
subset X of S−C such that all the positions in h∗(X) being mapped by a single
element in X happens to be in h∗(C). Said differently, for any subset X ⊂ S−C
there is at least one position in h∗(X) that is both out of h∗(C) and corresponds
to a single element of X. Note that this covers the situation described in Section
3.1 (an thus our counter-examples in Figures 1 and 2 too): if all the position in
h∗(S − C) mapped an odd number of times are in h∗(C), then all the positions
out of h∗(C) are mapped at least 2 times. Formally we define the mapped-once
positions of X, noted m(X), and the never-mapped positions of X, noted n(X),
as follows:
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Definition 4 (Mapped-once and never-mapped positions of a set). Let
X ⊂ {0, 1}∗; the set of mapped-once positions of X is defined as:

m(X) := {p ∈ h∗(X) : ∃!(x, i) ∈ X × [k] : hi(x) = p}

Similarly, the set of never-mapped positions of X is defined as:

n(X) := {p ∈ h∗(X) : @(x, i) ∈ X × [k] : hi(x) = p}

The never-mapped positions of X correspond to the zeroes in BFX .

We then have the following:

Theorem 2. Let X ⊂ S − C, then:

P [m(X) ⊂ h∗(C)] ≤ negl(λ) (9)

Proof: We explain why Equation (9) holds. Our explanation is in two parts: First
we argue that the size of m(X) must be of size larger than k; from then the
probability that all these positions are in h∗(C) is lesser than the probability for
one element to have all its positions in h∗(C), which is already negligible (proved
by Dong et al. in their “case 1”). We start by showing that |m(X)| ≥ k with
overwhelming probability. Consider the sequence of sets X1, X2, . . . , X where
each set has one more element than the previous one. The number of mapped-
once positions of Xi = Xi−1 ∪ {x} for some i and some x is then the number
of mapped-once positions of Xi−1 plus the positions of x that are in n(Xi−1)
(some new mapped-once positions), minus the positions of x that are in m(Xi−1)
(positions that are not mapped-once anymore). Statistically, we thus have the
following expected difference:

E[|m(Xi)| − |m(Xi−1)|] = k
n(Xi−1)

M
− k

m(Xi−1)

M
(10)

That is:

m(X1) = k

E[m(X2)] = m(X1) + k
M − k

M
− k

k

M

= 2k

(
1− k

M

)
. . .

Now because |X| ≤ |S − C| ≤ |S| ≤ N , and due to the way GBF parameters
are created (see Section 2.2) BFX and a fortiori BFXi

should have not less
than half of its bits unset, so n(Xi) ≥ M/2 and kn(Xi−1)

M ≥ k/2. At the same
time m(Xi−1) is always very small compared to M . It should then obvious that
|m(X)| ≥ k. Finally as we already explained, the probability for m(X) to be a
subset of h∗(C) is negligible because it is less than the probability for a single
element to have all its positions in h∗(C), given that we already show it has a
size greater than k. ut
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5.2 New Proof of Security

We give a new proof of Theorem 1, that is, we show that:

(S,C,Extract(BFC , GBFS))
c≡ (S,C,Extract(BFC , GBFS∩C))

We consider two cases as it is done by Dong et al. [4]: The first case is where
there is a X ⊂ S − C such that m(X) ⊂ h∗(C). From Theorem 2, This case
happens with negligible probability. The second case is thus where there is no
such X, and we show that in this case the distributions are identical by showing
that any outcome of one distribution is a valid outcome of the other. Let B
be an outcome of the right-hand distribution, that is, the one with GBFS∩C ;
we show how to build a GBF B′ that is a valid outcome of GBFS such that
Extract(BFC , B

′) = B. We build B′ the following way: We start from B which,
recall, is a Garbled Bloom Filter with all its components not in domain of C
being empty. We will insert each element of S − C in B, keeping components
that were already set untouched. Insertion happens just as in the GBF.Build
algorithm. When all elements have been inserted, the remaining components are
filled with random values, just as in the end of GBF.Build. If the algorithm did
not halt, the resulting B′ encodes every element of S∩C (from the initial values
from B) and every element of S −C (that we just inserted). As a result, B′ is a
valid GBFS and Extract(BFC , B

′) is a valid outcome for Extract(BFC , GBFS).
We now show that the algorithm does not halt. Recall, the building algorithm

halts when an element that must be inserted only maps to positions that are not
empty. Since we are in the case where no X ⊂ S − C satisfies m(X) ⊂ h∗(C),
there must be a position in h∗(S−C) that is not in h∗(C) and which is mapped
by a single element y ∈ S−C. As a result if (S−C)−{y} was inserted without
halting, then the final y can be inserted without halting as well. This reasoning
can be repeated to show that (S − C)− {y} can be inserted without halting as
well, and recursively S − C can be inserted entirely without halting.

Finally given an outcome B of Extract(BFC , GBFS) one can trivially build
a valid GBF B′ encoding S ∩ C such that Extract(BFC , B

′) = B: it suffices
to fill all empty components of B with random values. As a result we have
Extract(BFC , GBFS) ≡ Extract(BFC , GBFS∩C) in our second case, and this
ends the proof of Theorem 1. ut

Note that this proof would also apply to the construction of Pinkas et al. [11].

6 Related Work

Security issues in the paper of Dong et al. [4] where identified by Rindal and
Rosulek [12] and by Lambæk [8], but none of these issues apply on the pro-
tocol that we study in this paper. Indeed, [4] describes two protocol: one that
aims at providing security against honest-but-curious adversaries, which is the
one that is being studied in this paper, and one that aims at providing se-
curity against malicious adversaries. The issues identified in [12] and [8] only
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concern the malicious-security protocol, and do not apply to the honest-but-
curious-security protocol (both present the honest-but-curious-security protocol
as satisfying its claimed properties).

By contrast, the issues we identify concern the security of the GBF construc-
tion. This property is invoked in the security proofs for both the honest-but-
curious-security protocol and the malicious-security one, so the two protocols
are affected. The issue we identify is thus different, and more general, than the
ones identified in [12] and [8].

7 Conclusion

Garbled Bloom Filters are a hash structure which, however still recent, already
had a significant impact on the design of secure protocols. We showed that
the security analysis of Garbled Bloom Filter contains a subtle difficulty as
the intuition that GBF security derives almost immediately from the security of
XOR-based secret sharing is actually false. Nevertheless we show that all existing
GBF constructions actually satisfy their claimed security property by providing
a new, more rigorous proof. This should strengthen the confidence we can have
in the GBF construction and promote a large use of it in the domain of secure
protocol design.
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