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Abstract—Using Deep Neural Networks (DNNs) to tackle so-
called Team Decision problems where the nodes aim at max-
imizing an expected common utility on the basis of different
individual observations without any additional communications
was recently introduced in a previous work and illustrated in
the simple case of decentralized scheduling. In this work1, we
apply this idea to design a decentralized robust precoding scheme
in a Network MIMO configuration, which appears as a more
challenging setting due to the continuous decision space and the
required fine granularity of the precoding, in particular at high
SNR. While the application remains fundamentally decentralized
due to the decentralized nature of the channel state information
(CSI), the training is done jointly. This is possible thanks to the
common knowledge of the statistics (or equivalently the training
data set) at all cooperating TXs. The joint training is done directly
with respect to the desired figure-of-merit such that there is no
need to generate labels using another method, and the precoding
scheme obtained from the training does not only replicate a
known scheme but is able to outperform state-of-the-art methods,
as illustrated by simulations.

I. INTRODUCTION

Transmission with imperfect CSI at the TXs (CSIT) in
multi-user MIMO settings has been the focus of a large
number of works in the past decade. It is now quite well
understood what is the impact of imperfect channel state
information and how to design robust transmission schemes
that are less sensitive to such imperfect knowledge (See [1]–[4]
among others). Yet, the large literature dealing with imperfect
CSI on the TX side typically assumes logically centralized
CSIT, i.e., that the precoding is based on the basis of a single
imperfect channel estimate. In practice, this means assuming
that the precoding is either done in a central node or that the
channel estimates are perfectly shared between all TXs.

Future networks are expected to have a more flexible
architecture with TXs taking the form of street-lights, other
devices, or even UAVs [5]. In such infrastructures, decen-
tralized or partially centralized transmission might be an
interesting alternative to the fully centralized so-called Cloud
RAN infrastructure. Yet, it becomes then also necessary to
move away from the model of centralized imperfect CSIT to
take into account the imperfect CSIT sharing between the TXs
and the heterogeneity at the cooperating TXs.

This can be done by considering the so-called distributed
CSIT model [6] in which the TXs aim at cooperating on the
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basis of locally available imperfect CSIT without any addi-
tional exchange of information or any iteration. Finding the
optimally robust transmission scheme falls into the category
of challenging Team Decision (TD) problems [7]. In one line
of works, the Degrees-of-Freedom of the Broadcast Channel
(BC) with distributed CSIT is analysed and asymptotically
robust schemes are derived for some interesting configurations
(See for example [8]) while in another line of work, heuristic
algorithms are derived [9]. In [10], discretization of the con-
tinuous input is used to obtain a generic algorithm. Yet, the
proposed algorithm relies on a best-response approach (defined
rigorously below) which results in an algorithm having a large
complexity and quickly stopping at inefficient local equilibria.

In contrast, we apply to the problem of decentralized joint
precoding the idea of Team DNNs introduced in [11] for
decentralized scheduling. This allows us to apply very efficient
methods and software packages from the field of deep learning
[12], [13] to the problem of decentralized decision making. In
Team DNNs, the decision function is approximated at each
TX using a DNN and all the DNNs are jointly trained by
exploiting the common knowledge of the statistics. This joint
offline training allows to enforce a cooperating behaviour and
to go beyond best-responses equilibria as illustrated below.

Machine Learning and in particular Deep Learning are
attracting a huge interest from both academia and industry
as the successes of Artificial Intelligence become impressive
every day. Many works have started applying these methods
to wireless communications and signal processing problems
such that it is impossible to cover all approaches and we only
review some of the latest and most relevant results. For exam-
ple, several groups have considered how to apply Machine
Learning for decoding [14], [15], for detection [16], [17],
for caching [18] and for resource allocation in interference
channels [19]. Yet, to the best of our knowledge, no other work
has considered the joint training of DNNs for decentralized
cooperation.

Our main contribution consists in applying Team DNNs
to obtain a decentralized robust precoding scheme. After
adequate training, the proposed scheme is able to significantly
reduce the losses due to the decentralized imperfect CSIT, and
in particular, it is able to efficiently exploit the CSI available
at each TX. In configurations where the optimal solutions
are known, we can verify that the proposed scheme flexibly
adapts to the CSIT configuration to reach efficient transmission
schemes.



II. SYSTEM MODEL

A. Received Signal

We study a so-called Network MIMO transmission from
K TXs to K Receivers (RXs) where all nodes are equipped
with a single antenna for simplicity. We further assume that
the RXs have perfect CSI to focus on the problem of CSI
acquisition on the TX side, which is specially challenging due
to the inherent delay introduced from the CSI sharing and
the limited backhaul resources [20]. The channel from the
K TXs to the K RXs is represented by the multi-user channel
matrix H ∈ CK×K and the transmission is then described as y1

...
yK

 = Hx + η =

h
H
1 x
...

hH
Kx

+

η1

...
ηK

 (1)

where yi ∈ C is the signal received at the i-th RX, hH
i ∈

C1×K the channel from all TXs to the i-th RX, and η ,
[η1, . . . , ηK ]T ∈ CK the normalized Gaussian noise with its
elements i.i.d. as CN (0, 1).

We restrict to linear precoding such that the multi-user
transmitted signal x ∈ CK×1 is obtained from the symbol
vector s , [s1, . . . , sK ]T ∈ CK×1(having its elements i.i.d.
NC(0, 1)) from

x = Ts =
[
t1, . . . , tK

]  s1

...
sK

 =

K∑
k=1

tksk (2)

with tj ∈ CK being the multi-TX precoder serving user j and
T ∈ CK×K being the multi-user precoder.

B. Distributed CSIT

In the distributed CSIT model studied here, each TX re-
ceives its own CSI based on which it designs its transmission
parameters. Hence, TX j receives channel estimate Ĥ(j) ∈
CK×K and designs its transmit coefficient xj ∈ C1 as a
function of Ĥ(j), without any form of information exchange
with the other TXs. This model is in fact very general as it
allows for any joint distribution pH,Ĥ(1),...,Ĥ(K) .

This allows to model a large range of scenarios, whether
wireless exchange of CSI (e.g., for an UAV), through backhaul
links (e.g., following LTE standards), or partially centralized
architectures with correlated estimates.

Remark 1. Note that the knowledge of the statistics is used
only to generate a training data set containing all the channel
coefficients. It is hence possible to apply the exact same
method in a data driven approach where the channel distribu-
tion is not know but only samples of all channel coefficients
(e.g., measured in a real setting) are available. It is then only
required that the training data set is available at all TXs or
that the training is done in a central node.

C. Decentralized Precoding

In the D-CSIT setting, TX j aims at maximizing the sum
rate for each channel realization. As TX j cannot access the
transmit coefficients used at the other TXs, it needs to know
the distribution of the precoding decisions at the other TXs.

This requires to model the precoding decisions using pre-
coding functions. The precoding function of TX j is then
denoted by

wj : CK×K → C1×K (3)

such that the transmit signal xj at TX j for a given realiza-
tion Ĥ(j) is equal to

xj = wj(Ĥ
(j))s. (4)

Upon concatenation of all TXs precoding decisions, the global
precoder used for the transmission for a given channel real-
ization is equal to

T ,


w1(Ĥ(1))

w2(Ĥ(2))
...

wK(Ĥ(K))

 . (5)

D. Figure-of-Merit

Following the assumption of Gaussian signaling, the instan-
taneous rate of user k can be written as

Rk , log2

(
1 +

|hH
k tk|2

1 +
∑K

j=1,j 6=k |hH
k tj |2

)
, (6)

where we have considered for clarity unit variance Gaussian
noise. For clarity, we also introduce the instantaneous sum
rate as a function R(•) of the channel and all precoding
coefficients:

K∑
k=1

Rk = R
(
H,w1(Ĥ(1)), . . . ,wK(Ĥ(K))

)
. (7)

Our goal is to find the optimal strategy in a Bayesian
sense such that our final objective is the average sum rate∑K

k=1 E [Rk].
In this setting, the main difficulty is encountered in the

interference limited regime where the TXs need to coordinate
to reduce interference. In contrast, in the noise limited regime,
each TX can simply use matched precoding without any coor-
dination with the other TXs. Therefore, an important surrogate
measure of performance will be the average total received
interference at all users

∑K
k=1

∑K
j=1,j 6=k E

[
|hH

k tj |2
]
.

In this work, we will aim at minimizing the interference
instead of directly maximizing the sum rate. This is due to the
fact that the interference is convex in the precoding coefficients
and can be more easily optimized. Directly maximizing the
ergodic sum rate with the proposed approach is an interesting
approach but is out of the scope of this work.



E. Team Decision Formulation

With distributed CSIT, the TD problem of joint precoding
can be written as the following optimization problem:

(w?
1,. . .,w

?
K)= argmax

w1,...,wK

E
[
R
(
H,w1(Ĥ

(1)), . . . ,wK(Ĥ(K))
)]
(8)

subject to E
[
‖x‖2

]
≤ P .

Remark 2. We have written explicitly the functional depen-
dencies to emphasize the Team-aspect in the optimization
problem. We will however omit them in the following when
it leads to no confusion.

F. Comparison with Best Response Solutions

Most of the approaches in the literature dealing with this
problem often aim at best-responses (also called Nash Equi-
librium) [21], which in our setting are defined as follows.

Definition 1. A best-response precoding func-
tion (wBR

1 , . . . ,wBR
K ) for the Team Decision problem (8)

is a precoding function satisfying

wBR
j = argmax

(wj ,w̄BR
j )

E[R(H,wj , w̄
BR
j )], ∀j ∈ {1, . . . ,K}

(9)
where following common use in the Game Theory litera-
ture [22], we have used the short-hand notation (wj , w̄

BR
j )

to replace (wBR
1 , . . . ,wBR

j−1,wj ,w
BR
j+1, . . . ,w

BR
K ).

Obtaining such best-responses solution –although still
difficult– is more tractable as it is possible to alternate the
optimization at each TX. Yet, solving this alternating opti-
mization (9) means finding the best strategy of every TX given
the strategies of the other TXs. This often leads to inefficient
equilibria where the strategies of several TXs should change
at the same time to improve the performance. In contrast, the
approach described in the following section allows to directly
aim for a truly cooperative solution.

III. TEAM DNN BASED ROBUST JOINT DECENTRALIZED
PRECODING

A. General Principle

The obvious approach to tackle an optimization problem
over an infinite dimensional functional space is to reduce the
dimensionality by projecting over a finite dimensional sub-
space. The remaining difficulty being of course to efficiently
find the elements of the new subspace which provide the best
approximation for the optimal initial strategies.

We use in this work Deep Neural Networks (DNNs) because
of the very efficient and freely available methods developed
by large companies (such as Google or Amazon) to find
parametrizing coefficients Therefore, we will use a DNN at
each TX to approximate the precoding strategy and we will
denote the approximated precoding function by wθj , where
θj ∈ Rn are the coefficients to be optimized.

Remark 3. We restrict in this work to DNNs having the same
structure and the same number of coefficients for each TX,

but investigating how to choose the architecture of each DNN
is a very interesting research direction for future works.

With this approximation, the optimization problem (8) is
rewritten as

(θ?1 , . . . ,θ
?
K) = argmax

(wθ1
,...,wθK

)∈W
E
[
R
(
H,wθj (Ĥ(j))

)]
.

(10)
The joint distribution being known, it is possible to approx-

imate (10) using Sample Average Approximation (SAA) with
Monte-Carlo simulations to get:

(θ?1 , . . . ,θ
?
K) ≈ argmax

(w
(1)
θ1

,...,w
(K)
θK

)∈W

1

nMC

nMC∑
1=1

R
(
Hi,wθ1(Ĥ

(j)
i )
)
.

(11)
The essential question is now to see how the coefficients

in (11) can be efficiently optimized, i.e., in the Machine
Learning terminology, trained. The fundamental aspect behind
our approach is that the coefficients are jointly trained in a
logically centralized manner. It is important to understand that
this does mean that the training as to be at a single place. This
is one possibility, but the training could also be done at several
different places. The important property being that the training
is done on the basis of the same data set.

B. Logically Centralized Training

Optimization (11) can be tackled using standard tools from
Machine Learning and in particular using batch steepest Gradi-
ent Descent with batch size b [12], [13]. Practically, this means
that the sample are divided into batches of size b, where for
each batch, the gradient of the sum of these b elements is taken
and a small update in the direction of the steepest descent is
done.

The difference with conventional learning problems comes
from the the decentralized structure of the information which
leads to decentralized testing. Indeed, without particular care
in the training process, the performances might be heavily
degraded by the decentralized testing. Specifically, it is im-
portant for each DNN to effectively take into account that the
channels estimates are distributed according to the joint distri-
bution pH,Ĥ(1),...,Ĥ(K) . This decentralized application makes
the choice of the training parameters more intricate as usual
design guidelines do not hold any longer.

We will show in the simulation results some configurations
where it is possible to find training coefficients leading to
efficient robust transmissions schemes. Gaining a better the-
oretical understanding of the training in this decentralized
setting is a current line of research that will be further
discussed in the extended version.

C. Decentralized Testing

Once the training is achieved, we can evaluate the per-
formance of the obtained scheme, denoted by T-DNN pre-
coding, in a decentralized setting. Consequently, ntest sam-
ples (H`, Ĥ

(1)
` , . . . , Ĥ

(K)
` ) for ` ∈ {1, . . . ntest} are generated.

At the `-th sample, TX j can use its trained coefficients θj



to obtain its precoding coefficients w(j)
θj

(Ĥ
(j)
` ). The instanta-

neous sum rate achieved by taking into consideration all the
precoding decisions is then given by

Rtest
` = R

(
H`,wθ1(Ĥ

(1)
` ), . . . ,wθK (Ĥ

(K)
` )

)
(12)

and the average test sum rate is then approximated by

K∑
k=1

E [Rk] ≈ 1

ntest

ntest∑
`=1

Rtest
` . (13)

The training step should hence ensure that applying the
obtained coefficients to new unknown samples in the decen-
tralized setting does not lead to a strong degradation of the
performance, i.e., that the scheme has a low generalization
error. This is exactly why the choice of the hyper-parameters
(e.g., the number of layers, the number of neurons, the number
of iterations, etc...) is a critical and difficult part.

IV. SIMULATIONS RESULTS

As a first step towards the evaluation of the performance
of the T-DNN precoding scheme, we now present some
simulation results in a simple two-TX BC with a simple CSI
Gaussian model where the estimate at TX j is given by

{Ĥ}(j)
i,k = σ̄

(j)
i,k{H}i,k+σ

(j)
i,k{∆}i,k, ∀i, j, k ∈ {1 . . . ,K},

(14)
where ∆ is a matrix with its elements distributed as i.i.d.
Gaussian NC(0, 1) and we have defined

σ̄
(j)
i,k ,

√
1− (σ

(j)
i,k )2, ∀i, k, j. (15)

In this simple CSI configuration and in the two-TX setting,
the CSIT at TX 1 and TX 2 can be parametrized by the
vectors σ(1) and σ(2) given by

σ(1) , [σ
(1)
1,1, σ

(1)
1,2, σ

(1)
2,1, σ

(1)
2,2],

σ(2) , [σ
(2)
1,1, σ

(2)
1,2, σ

(2)
2,1, σ

(2)
2,2].

(16)

For example, if σ(1) = [0, 0, 0, 0], TX 1 has received perfectly
the complete CSI while σ(1) = [1, 1, 1, 1] means that TX 1
was able to receive only noise.

A. Training Parameters

The training of the DNN is implemented in Python and
Tensorflow, such that for ease of implementation we restrict
ourselves to real quantities. The extension to complex numbers
will be done in the extended version and does not present any
theoretical difficulty. We consider in the following a particular
training configuration which is the result of our empirical
investigation. Yet, we do not claim that this architecture is
the best one nor the most efficients, and it is also clear that
other approaches could also be used.

In the following simulations, a DNN with 3 hidden layers,
50 neurons per layer and the softmax function as activation
function is applied at each TX. The training is done using
the Adam stochastic gradient with batches of size 1000 out
of a training data set containing 10000 samples, a stepsize of
0.0001, and 10000 iterations through the entire data set.

B. Schemes of Comparison

Before giving schemes for comparison, we start by defining
the Zero-Forcing (ZF) precoder formally, as it is an important
scheme when considering interference minimization. Hence
for a given multi-user estimate, we denote by wZF

j (Ĥ) the
precoding coefficients for TX j obtained when applying the
ZF precoder (channel inversion) to the estimate Ĥ.

1) Perfect Channel State Information: The first relevant
bound, is the upperbound obtained when both TXs have
perfect channel state information and use it to minimize the
interference using the ZF precoder. We denote this upper-
bound by PCSI for perfect CSI and the precoder TPCSI is
then given by

TPCSI ,


wZF

1 (H)
wZF

2 (H)
...

wZF
K (H)

 . (17)

2) Naive ZF: A very intuitive lower bound is obtained
when each TX simply applies the ZF precoder based on its
own local estimate. This comes down to fully neglecting the
decentralized structure of the CSI and has been coined as naive
ZF. The effective precoder is then given by

Tnaive =


wZF

1 (Ĥ(1))

wZF
2 (Ĥ(2))

...
wZF

K (Ĥ(K))

 . (18)

C. Simulations for Varying SNR

In the following, we present simulations results in the CSIT
configuration where

σ(1) = [1, 0, 1, 0], σ(2) = [0, 1, 0, 1]. (19)

We show in Fig. 1, the training loss, i.e., the average interfer-
ence generated at each batch iteration. It can be seen that the
T-DNNs are able to very effectively reduce by several orders
of magnitude the interferences. The fluctuations come from
the division in batches and are both expected and necessary
as they are key to enforce a low generalization error, i.e., good
performances on unknown samples.

In Fig. 2, the average test sum rate over 10000 test samples
is presented and it can be seen that the T-DNN achieves
close to the perfect CSIT bound. This is understandable from
the fact that the CSIT configuration (19) corresponds to a
local CSIT configuration where each TX knows its channel
coefficients to both users and it has been shown in [23]
that the interference can then be perfectly removed with a
simple precoding. The T-DNN is able to learn well the optimal
strategy in this setting because the structure of the optimal
precoder is simple to learn, Interestingly, the T-DNN starts
to separate from the upperbound at high SNR but this effect
could be fully eliminated in successive simulations by using
20000 training samples and 20000 iterations.
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Fig. 1: Training loss, i.e., average interference generated over
each batch during the training process

Fig. 2: Average test sum rate in the CSIT configuration σ(1) =
[1, 0, 1, 0] and σ(2) = [0, 1, 0, 1] (i.e., local CSIT).

V. CONCLUSION

In this work, we have presented how Team-DNNs could be
trained to obtain novel decentralized precoding scheme being
robust to decentralized CSIT imperfections. The proposed
approach can be used in any CSIT configuration and can
even be applied using real data measurements as it only
relies on machine learning methods. The decision space is
continuous and the performance is known to have a strong
dependency with the precoder coefficients which makes it a
challenging setting for such methods. The simulations results
show the strong potential of the approach for decentralized
robust precoding and in general for team decision problems.
Yet, more extended simulations should be done to better
understand the strength and the limits of the approach as well
as the impact of the network infrastructure and parameters.
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