
Insights into Distributed Variational Inference
for Bayesian Deep Learning

Rosa Candela1, Pietro Michiardi1, Maurizio Filippone1

1 - EURECOM, Sophia Antipolis, France

Distributed Inference
I Motivations:

– Training of complex models and large datasets needs a distributed implementation

– Current distributed architectures are not efficient and do not scale well

– Previous experimental studies only consider simple models

I Parameter-Server architecture with data-parallelism approach:

– Data and workloads are distributed over worker nodes;

– Parameter Server maintains globally shared parameters;

Fig. 1: Parameter-Server architecture

I Synchronization schemes in TensorFlow implementation:

Fig. 2: Different synchronization techniques

Stochastic Variational Inference for DGPs
I Stochastic Variational Inference

– Intractable posterior over model parameters:

p(θ|Y ,X) =
p(Y |X,θ)p(θ)∫
p(Y |X,θ)p(θ)dθ

;

– Lower bound on marginal likelihood with mini-batch Stochastic Gradient optimization:

log[p(Y |X,θ)] ≥ n

m

∑
k∈Im

Eq(θ)(log[p(yk|θ)])−DKL[q(θ)‖p(θ|X)],

where q(θ) approximates p(θ|X);

– Estimate the expectation using Monte Carlo:

Eq(θ)(log[p(yk|θ)]) ≈ 1

NMC

NMC∑
r=1

log[p(yk|θ̃r)] with θ̃r ∼ q(θ);

I Deep Gaussian Processes (DGPs)

– Deep probabilistic models;

– Composition of functions:

f(x) =
(
h(Nh−1)

(
θ(Nh−1)

)
◦ . . . ◦ h(0)

(
θ(0)

))
(x);

h(0)(x) h(1)(x) h(1)
(
h(0) (x)

)

Fig. 3: Illustration of how stochastic processes may be composed.

I DGPs with random feature expansions

– Example of RBF kernel approximated with trigonometric functions:

Φrbf =

√
σ2

NRF
[cos (FΩ) , sin (FΩ)] ,

with
F = ΦW , p (Ω·j |θ) = N

(
0,Λ−1

)
, Λ = diag(l21, . . . , l

2
d);

– DGPs become equivalent to Deep Neural Networks with low-rank weight matrices.

Fig. 4: Diagram of the proposed DGP model with random features.

Experimental methodology
I Use mini-batch Stochastic gradient descent (SGD) algorithm

I Study the impact of design parameters:

– Batch size

– Learning rate

– Number of Workers

– Number of Parameter Servers

I Evaluate the performance through standard metrics:

– Training time

– Error Rate

Experimental Setup and Results
I Classification task;

I MNIST dataset with 60000 samples;

I DGP model configuration: 2 hidden layers, 500 random features, 50 GPs in the hidden layers.

Batch size

Learning rate

Number of workers

Number of Parameter Servers

Fig. 5: Training time and error rate as function of different parameters.

Conclusions
Results of the experimental study:

I Large batch size and high learning rate:

3 improve Synchronous SGD convergence speed;

7 increase model quality deterioration with Asynchronous SGD;

I Scaling up the number of workers:

– Asynchronous SGD reduces the training time, at expense of high error rate;

– Synchronous SGD shows a smaller speed-up, but maintains low error rate;

I Scaling up the number of Parameter Servers:

– can help to avoid bottlenecks at network level;

– produces negligible effects if the computation work prevails on the communication task;

Future works:

I Repeat the experiments with a different distributed setting;

I Improve SGD distributed implementation, modifying the updates collection phase.

References
[1] K. Cutajar, E. Bonilla, P. Michiardi, M. Filippone. Random Feature Expansions for Deep Gaussian Processes, ICML 2017.
[2] M. Abadi, P. Barham, J. Chen et al. TensorFlow: A system for large-scale machine learning, OSDI 2016.

1

