Accounting for Localization Errors in a Mixed-Vehicle Centralized Control System

Raj Haresh PATEL, Jérôme HÄRRI, Christian BONNET Communication Systems Department, EURECOM, Sophia-Antipolis, France

Mixed Vehicle Scenario

- Near future will have vehicles with different levels of automation on the roads
- Manually Driven Vehicles: No automation
- ACC vehicles: vehicle control capability
- CACC vehicles: vehicle control and communication capability
- $\begin{array}{l} \bullet \text{ Present day traffic issues} \to \text{ solution} \\ \left\{ \begin{array}{l} \text{Traffic jams} \\ \text{Accidents} \end{array} \right\} \to \begin{array}{l} \text{Vehicle Control Coordination} \\ \text{Fuel economy} \end{array}$

Vehicle Control Coordination

- Centralized control: a common controller computes and allocates control inputs
- From a controller point of view:
 Active Participants (APs) can be controlled (e.g.:
 CACC vehicles)
 Passive Participants (PPs) can not be controlled
 (e.g.: manually driven vehicles)
- Assumption: PPs like APs communicate with centralized controller using DSRC or cellular connection

Localization Errors

- Different Localization techniques achieve different levels of localization accuracy
- Localization errors with map-matching techniques are usually lower than with GPS
- Issue: Unaccounted errors in localization (e_i) causes accidents in a centralized control model

Methodology

- True location (p_i) : (unknown) actual localization value
- Perceived location (p_i^*) : (known) localization value with errors computed by the vehicle
- Potential location $(p_{i,1} \text{ to } p_{i,2})$: (computed) locations where vehicle can be found based on perceived location and localization accuracy
- Compute and use potential area occupied $(p_{i,1} \text{ to } p_{i,3})$ to ensure collision avoidance
- Solve multi vehicle collision free braking scenario using a centralized control model implementing Model Predictive Control

 $p_{i,1}$ to $p_{i,2}$: Potential location of vehicle $p_{i,1}$ to $p_{i,3}$: Potential area occupied by the vehicle

Figure: Modeling localization errors in 2D and in 1D

Centralized Control Model

Goal: To account for localization errors to ensure collision avoidance while deriving control inputs for APs

Cost Function
$$\Big\{ \text{minimize } J = \sum_{i=1}^{n_v} \sum_{n=1}^N \lVert u_i(n) - u_i(n-1) \rVert_2 \Big\}$$
 subject to

$$\begin{cases} l_{i,e} = l_i + 2 \cdot e_i \\ p_{i,1} = p_i^* + e_i \\ x_i = [p_{i,1} \ v_i]^T \\ x_i(n+1) = Ax_i(n) + Bu_i(n) \\ \left[1 \ \Delta t\right] - \left[(\Delta t)^2/2\right] \end{cases}$$

$$A = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} (\Delta t)^2 / 2 \\ \Delta t \end{bmatrix}$$

 $\begin{cases} x_i^{min} \leq x_i(n) \leq x_i^{max} \\ u_i^{min} \leq u_i(n) \leq u_i^{max} \end{cases}$ Vehicle and Passenger Constraints $\begin{cases} x_i^{min} \leq x_i(n) \leq x_i^{max} \\ u_i^{min} \leq u_i(n) \leq u_i^{max} \end{cases}$

Collision Avoidance Condition $\left\{d_{ik}^*(n)=p_{i,1}(n)-p_{k,1}(n)-l_{i,e}>0 \quad \forall i\in 2...n_v, \ k=i-1 \right\}$ Braking Condition $\left\{v_i(N)=0\right\}$

Manually Driven Vehicles $\begin{cases} u_i(n) = \begin{cases} 0 & \text{if } 0 \leq n \leq nt_{i,1} \\ u_i^{min} & nt_{i,1} < n \leq nth_i \end{cases} \quad \forall i \in \{PP\}$

 $j_i^{min} \leq j_i(n) \leq j_i^{max}$

Evaluation Criteria

Compute number of collisions avoided when:

- Localization errors are absent $\Rightarrow \alpha$
- Localization errors are present, unaccounted $\Rightarrow \beta$
- compute control inputs using erroneous localization
- implement computed control inputs on vehicles in their true locations
- Cost function used in $\beta 1$ maximizes comfort whereas the cost function used in $\beta 2$ minimizes deviation from a desired intervehicular distance (3 m)
- Localization errors are present, accounted $\Rightarrow \gamma$

Algorithm Performance

Green block = true location of vehicle Red block = potential location of vehicle

Simulation Results

Homogeneous APs

• Localization error for each vehicle is derived from $\mathcal{N}(0, \, \boldsymbol{\varphi})$ with a fixed $\boldsymbol{\varphi}$

Mixed APs and PPs

• Localization error for each AP and PP is derived from $\mathcal{N}(0,\,\varphi)$; (φ_{AP} =30 cm, φ_{PP} =4 m) respectively

Summary

- Our proposed approach considers localization errors while computing control inputs for APs in a centralized control system
- Despite erroneous localization, proposed algorithm closely matches the performance of the case where true localization was known
- Higher the penetration of AP, more are the collisions avoided because:
- -AP's controls can be controlled
- -AP's usually have lower localization errors

References

[1] R. H. Patel, J. Härri and C. Bonnet, "Accounting for Localization Errors in a Mixed-Vehicle Centralized Control System", MobilTUM 2017.