
Smashing the Stack Protector for Fun and Profit

Bruno Bierbaumer1 (�), Julian Kirsch1, Thomas Kittel1, Aurélien Francillon2,
and Apostolis Zarras3

1 Technical University of Munich, Munich, Germany
bierbaumer@sec.in.tum.de

2 EURECOM, Sophia Antipolis, France
3 Maastricht University, Maastricht, Netherlands

Abstract. Software exploitation has been proven to be a lucrative busi-
ness for cybercriminals. Unfortunately, protecting software against attacks
is a long-lasting endeavor that is still under active research. However,
certain software-hardening schemes are already incorporated into current
compilers and are actively used to make software exploitation a compli-
cated procedure for the adversaries. Stack canaries are such a protection
mechanism. Stack canaries aim to prevent control flow hijack by detecting
corruption of a specific value on the program’s stack. Careful design and
implementation of this conceptually straightforward mechanism is crucial
to defeat stack-based control flow detours. In this paper, we examine 17
different stack canary implementations across multiple versions of the
most popular Operating Systems running on various architectures. We
systematically compare critical implementation details and introduce one
new generic attack vector which allows bypassing stack canaries on current
Linux systems running up-to-date multi-threaded software altogether. We
release an open-source framework (CookieCrumbler) that identifies the
characteristics of stack canaries on any platform it is compiled on and
we propose mitigation techniques against stack-based attacks. Although
stack canaries may appear obsolete, we show that when they are used
correctly, they can prevent intrusions which even the more sophisticated
solutions may potentially fail to block.

1 Introduction

Buffer overflow vulnerabilities are as old as the Internet itself. In 1988, the Morris
Worm was one of the first malware discovered in public that leveraged this
vulnerability [1]. Since then, many security breaches can be linked to successful
exploitation of buffer overflows, which denotes that the problem is far from being
solved. As a matter of fact, the Mitre Corporation lists more than eight thousand
Common Vulnerabilities and Exposures (CVE) entries that contain the keyword
“buffer overflow”4. A significant portion of these vulnerabilities is comprised by
the so-called stack-based buffer overflow bugs [2]. This is due to the application’s
stack inherent property of mixing user-controlled program data together with
4 https://cve.mitre.org/cve/search_cve_list.html
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control flow related data; thus allowing an attacker to overwrite control flow
related parts of the stack.

Due to this well-known weakness, Cowan et al. [3] propose a technique named
Stack Smashing Protection (SSP). The idea behind SSP is to detect stack-based
control flow hijacking attempts by introducing random values (so-called canaries)
to the stack that serve as a barrier between attacker-controlled data and control
flow relevant structures. After a function finishes executing, a canary—named
after the coal miner’s canaries which were used to detect presence of gas—is
checked against a known “good” value stored in a safe location. Only if the canary
maintains its original value, execution continues. This mitigation technique has
been present in compilers for more than 10 years and is now a counter measure
supported by major compilers [4–6].

Recently, more advanced techniques have been proposed to prevent buffer
overflow attacks including Code Pointer Integrity (CPI) [7, 8] and Control Flow
Integrity (CFI) [9]. Both ideas encircle the concept of protecting the control
flow from being hijacked. These advanced techniques have created the illusion
that stack canaries are nowadays obsolete. However, both techniques consider
non-control-flow diverting attacks to be out of scope. As we discuss later, this is
an underestimated attack that can be successfully countered by stack canaries [10].
While introduced almost twenty years ago, stack canaries are still one of the
most widely deployed defense mechanisms to date [11] and are, as we will show,
a necessary complement to other more recent modern buffer overflow mitigation
mechanisms. As a matter of fact, all modern compilers support stack canaries.

In this paper, we show that stack canaries, even in combination with more
advanced techniques, are not a silver bullet. We find that due to inconsiderate
implementation decisions, stack canaries themselves are vulnerable to buffer over-
flow attacks; ironically the same type of attack that they are supposed to protect
against. To demonstrate this, we first implement a framework (CookieCrumbler)
which is able to identify the characteristics of stack canaries on various modern
operating systems, independently from the CPU architecture used. We then run
CookieCrumbler on 17 different combinations of Operating Systems (OSes), C
standard libraries, and hardware architectures. We run CookieCrumbler against
both seemingly old, but still widely used and supported, OSes as well as the most
recent versions. The extracted CookieCrumbler results enable us to introduce
a new attack based on the observation that the canary reference values are
not always stored at a safe location. This allows an attacker to overwrite the
control-flow relevant data structures and the current reference value at the same
time and thereby reliably bypass SSP.

In summary, we make the following main contributions:

– We propose CookieCrumbler , a framework to automate the identification of
the characteristics of SSP implementations.

– We evaluate CookieCrumbler against state of the art operating systems and
libraries, and discover weaknesses in multiple SSP implementations.

– We introduce a novel attack vector to exploit those vulnerabilities.
– We propose mitigations techniques to harden SSP implementations.
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2 Background and Related Work

2.1 Stack Smashing Protection

The idea to guard certain parts of the executable’s stack dates back to 1998 [3,12].
The concept is to protect control flow related information on the stack using
a so-called stack canary or stack cookie: a random value placed between the
user-controllable data and the return pointers on the stack during stack setup
phase in the function prologue. The mechanism is implemented synchronously
with the control flow: after function execution, once the control flow returns to
the caller, the cookie value is checked against a known “good” value. Only if there
is a match between the two values, the stack frame is cleaned up and the control
flow is allowed to return to the caller. Several years were needed for StackGuard
to be integrated in the mainline GCC distribution [13].

Attackers may try to evade StackGuard by embedding the canary in the
data used during the overflow (i.e., canary forgery). Cowan et al. [7] propose
two methods to prevent such a forgery: terminator and random canaries. In
32-bit operating systems, a terminator canary is usually constructed using of
the char representation of NULL, CR, LF, and EOF (0x000d0aff). This is because
overflows often exploit unsafe string manipulation functions: as the terminator
canary includes characters which are used to terminate strings, it is impossible
to directly include them in a string without terminating the string operation.
However, not all buffer overflows are due to unsafe string manipulation operations
(e.g., read()) and the fixed terminator canary does not provide any protection
in those cases. On the other hand, random canaries cannot be guessed by an
attacker and is therefore the most generic approach.

Marco-Gisbert and Ripoll extend the original StackGuard concept by propos-
ing a renewal of the secret stack canary during the fork and clone system calls [14].
This way, an external attacker is not able to brute-force the stack canary in
scenarios where the request handling routine is forked from a server application
for each request, as is typically the case for network facing applications. As an
alternative, Kuznetsov et al. [8] propose secure code pointers by storing them in
a safe memory region. In their work, they assume that the location of the safe
region can be hidden.

In essence, in order to be effective, StackGuard relies on the following assumptions:

Ê The cookie value placed on the stack (Can) must be unknown to the attacker.
Ë The known good value (Ref) is placed at a location in memory that is distinct

from the location of Can and ideally mapped read-only.
Ì If a stack cookie value (Can) is corrupted, the program execution terminates

immediately without accessing any attacker controlled data.
Í The overflow is contiguous, starting from a buffer on the stack, and therefore

does not permit an attacker to skip certain bytes in memory.

The main focus of this paper is to falsify Assumptions Ê, Ë, and Ì using
contiguous overflows (i.e., adhering to Assumption Í).
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2.2 Function Pointer Protection

Function pointers stored in writable memory at static addresses are common
targets to gain control of a vulnerable program’s execution. To defend against
this threat, [7] introduces code pointer protection. PointGuard [15] is the first
mechanism capable of encrypting code pointers in memory. For each process,
PointGuard generates a random key during process creation. Each pointer in
memory is then scrambled in memory by performing a bijective operation on the
pointer using the process’s specific random key.

Glibc implements this protection mechanism since 2005 [16] by using the
PTR_[DE]MANGLE macros. On the other hand, the Windows run-time, provides
similar functionality with the Rtl[En|De]codePointer API call since XP SP2
(2004). Both implementations use very similar algorithms to encipher pointers:
a logical bit rotation combined with an xor (⊕) involving the per-process
random secret (rand). For instance, the 64-bit Windows run-time implements
the following two equations for pointer protection:

ptrenc = ror64(ptrorig ⊕ rand,rand) (1)

ptrorig = rol64(ptrenc,rand)⊕ rand (2)

On Linux (with glibc), the situation is very similar, except that a constant is
used as the number of digits to rotate (0x11 is actually 2 · sizeof(void *)+ 1):

ptrenc = ror64(ptrorig ⊕ rand, 0x11) (3)

ptrorig = rol64(ptrenc, 0x11)⊕ rand (4)

Most notably, the main difference in the two implementations is that on Windows
the Rtl[En|De]CodePointer retrieves the value rand from the kernel, whereas
glibc on Linux stores the pointer guard in user space in the Thread Control Block
(TCB). Cowan et al. [15] state that the PointGuard key has to be stored on its
own page once it is initialized to protect the key against information leakage. As
can be seen, this assumption is not met by all implementations.

2.3 Attacks Against Stack Canaries

An adversary may attempt to attack the stack canary mechanism itself in order
to successfully exploit a program. Strackx et al. [17] analyze the security promises
made by randomization based buffer overflow mitigation systems, such as the ones
described above. They conclude that a vulnerable program offering both a buffer
overread and a buffer overflow can be easily attacked. However, their work misses
the experimental evaluation of the success rate of such an attack. Ding et al. [18]
reveal weaknesses in the StackGuard implementation used in Android 4.0: the
source of randomness used for the stack canaries is only initialized once at OS
boot and then used for every application on the system. In addition, the created
canary is predictable as the state used to initialize the canary only depends on
randomness available at kernel boot-up.
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Dynamic Canary Randomization [19] attempts to defend attacks targeting
stack canaries. This technique re-randomizes all active stack canaries during
run-time so the attackers cannot reuse the knowledge they gained while leaking
memory from an earlier execution of the attacked process. While this approach
might help against attacks that read the canary and then use the gained knowledge
in a separate step, it is ineffective against the attack introduced in this work.

2.4 Thread Control Block

Modern OSes contain a dedicated data structure, called TCB, to store information
about the environment that the current thread is executing in. The data stored
in the TCB varies depending on OSes and thread library implementations. For
instance, on Windows this data structure is named ThreadInformationtBlock

and contains information about a thread’s Structured Exception Handling (SEH)
chain, its associated Process Control Block (PCB), and a pointer to Thread Local
Storage (TLS). The TCB is accessed either using a library function or a designated
register that improves speed. For example, glibc on Linux x86_64 uses the fs

register as the base address of the TCB. Intel provides Model Specific Registers
(MSRs) to override fs and gs segment base addresses, effectively enabling 64-bit
OSes to access the TCB in a fast way. This is achieved by prefixing any load or
store operation with the fs segment register.

Both SSP (with StackGuard) and Function Pointer Protection (with Point-
Guard) belong to the standard set of defense mechanisms and are highly adopted
in practice. However, both mechanisms require the storage of their respective
random reference keys (Ref). This is where the TCB becomes relevant, in context
of our work: In some versions of the compiler/standard library, it is the TCB that
contains the reference keys for both mechanisms. Therefore, both mechanisms
can be attacked if the data contained in the TCB can be overwritten, as shown
in this paper.

2.5 Modern Defense Mechanisms

In this study, we explicitly concentrate on concrete implementations rather than
theoretic contributions. We therefore focus on defense mechanisms that are
(i) available in current (2018) compilers, (ii) production ready, and (iii) deployed
in current operating systems. This leaves us with a very narrow set of mechanisms.
In fact, we rarely find academic publications implementations that reach a mature
state PointGuard [15], and StackGuard [12].

There is a trend on maintaining the integrity of an application’s control flow at
runtime. CFI is achieved by ensuring the integrity of forward and backward edges
in the control flow graph. As we focus on stack based exploitation techniques
targeting control flow information related to the backward edge, we only consider
the backward edge validation relevant. Backward edge validation is typically done
using a shadow stack [9]. One production ready implementation is SafeStack [8],
which we inspect in Section 6 to understand its relationship to stack canaries.
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Algorithm collect_emp_data()
Data: Implicitly: Software architecture of the target system
Result: Data rows for main- and sub-thread
main ← measure()
sub ← run_thread(measure())
return (main, sub)

Procedure measure()
loc ← allocate_stack(128)
tls ← allocate_thread(128)
glo ← allocate_global(128)
dyn ← allocate_dynamic(128)
∆loc ← memory_location(Ref) - loc
∆tls ← memory_location(Ref) - tls
∆glo ← memory_location(Ref) - glo
∆dyn ← memory_location(Ref) - dyn
return ( (∆loc, W(∆loc)), (∆tls, W(∆tls)),

(∆glo, W(∆glo)), (∆dyn, W(∆dyn)) )

Algorithm 1: Algorithm used to measure empirical features.

3 Dissecting Implementation Choices

In this section we define five qualitative and five empiric features which we use
to systematically evaluate choices made in canaries implementation.

3.1 Qualitative Features

We identify key features of stack canaries by studying the source code of their
implementations—if available—or reverse engineering the functionality in their
binary format. As required by Assumption Ê (unknown Ref) we investigate the
origin of the randomness of the reference canary values. The re-randomization
of Ref is expected to occur at two points during program execution: (a) when
a process is duplicated using the fork system call on UNIX and (b) when a
new thread (and hence a new stack) is being created. Similarly, Can could take
different values while a particular thread executes different functions and allocates
distinct local stack frames. Information that might be encoded into function local
values of Can might include (i) Ref, (ii) the guarded stack contents or some
distinct identifier of the function context, and (iii) the thread ID.

Assumption Ì (immediate termination) is another claim that can only be
verified in a qualitative manner. To find the quantity of code executed after the
canary corruption is detected, we introduce the notion of noisiness of the failure
handler. To estimate the Noise level, we count function invocations that are
triggered from the point where execution enters the cookie verification failure
handler until the point where the application terminated. We also manually check
the number of variables that are read from the corrupted memory region (e.g.
the stack), and whether the handler executes in user or kernel mode, which we
denote by Current Privilege Level (CPL).

3.2 Empirical Features

To reason about potential attack targets, we retrieve basic information about
the application’s memory layout. For each OS and C library pair, we run a test
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program which follows Algorithm 1. The program measures the distance (in
terms of their addresses) between each user-controllable types of memory. This
distance measurement is an important information. Indeed, the closer the Ref
value is from a user controllable memory the easier it will be for an attacker to
overwrite this reference value, and therefore to be able to corrupt the canary
without being detected.

More precisely we measure spatial distances (∆) between the reference value
(Ref) and:
1. ∆loc: a variable allocated on the stack of the function.
2. ∆tls: a variable allocated in Thread Local Storage (TLS).
3. ∆glo: a global variable allocated in statically allocated memory.
4. ∆dyn: a variable allocated in dynamically allocated memory.

We then compute the range of non-contiguous bytes in ∆x. If this range is not
mapped as a contiguous writable memory, an overflow from this variable will
trigger a page fault before reaching Ref.
5. W(∆x): number of contiguously mapped writable bytes in ∆x.

3.3 CookieCrumbler

We implemented the CookieCrumbler framework to evaluate those features.
From a high-level perspective, CookieCrumbler is a direct implementation of
Algorithm 1 in C. When compiled and executed on a system, CookieCrumbler
will thoroughly analyze the implementation of stack canaries. For this purpose,
semantic knowledge about the exact location of Ref has to be added to the
program. For instance, on x86_64, Ref is located within the TCB at offset 0x28.
We include this information for all the environments presented in Section 4.

The core of Algorithm 1 is to retrieve the deltas ∆loc, ∆glo, ∆dyn, and
∆tls. To obtain the respective reference point in memory, we use (i) a stack
local variable, (ii) a variable with the static keyword, (iii) the pointer value
returned by malloc, and (iv) a variable with the __thread keyword (on UNIX) or
__declspec(thread) (on Windows). Threads are created by calls to the functions
pthread_create (on UNIX) or CreateThread (on Windows). To determine W(∆x),
we use signal handling on UNIX (catching SIGSEGV on a contiguous byte-by-byte
write) and the function IsBadWritePtr on Windows.

After successful execution, CookieCrumbler generates a set of memory loca-
tions, deltas, and number of writable bytes for the main- and the sub-threads of a
threaded application, respectively. A thorough analysis of these results can reveal
potential vulnerabilities in the implementation of stack canaries. The source code
and the measured data can be found online.5

4 Smashing the Stack Protector

We run CookieCrumbler on various OSes with different C standard libraries. Apart
from up-to-date version of the C runtime libraries, we also run CookieCrumbler
5 https://bierbaumer.net/security/cookie/
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on older libc versions that are currently still distributed in the stable branches
of commonly used Linux distributions. For more details refer to Table 1.

4.1 Qualitative Results

Surprisingly, the qualitative features we examined look very homogenous. We
therefore first explain the most common observations and then discuss special
cases. Unexpectedly, we found that almost none of the tested implementations
changes Can across different function invocations within the context of one
given thread. The only exception to this rule constitutes the Windows family of
operating systems, for which Can is chosen as Ref⊕ rbp when the rbp register
is used as stack frame pointer and Can = Ref⊕ rsp otherwise.

As indicated by the literature [14] we also observed Ref (and consequently
Can for all stack frames) to remain static across fork invocations on all UNIX
operating systems. On this particular point, comparison with Windows is impos-
sible as the fork system call is not supported by Windows operating systems
family.

In nearly all cases the failure handler executes in user space (the privilege
level CPL is 3). The only exceptions to this rule are Windows 8 and newer, which
implement the special interrupt number 0x29 (_KiRaiseSecurityCheckFailure)
for this purpose. When this interrupt handler is called, the program is ter-
minated without accessing any of the potentially corrupted memory in user-
space. Windows can fall back to the old user-space failure routine if a call to
IsProcessorFeaturePresent(PF_FASTFAIL_AVAILABLE) returns zero.

On Windows OS versions newer than 7, the Noise level is the lowest, as they
support an interrupt specifically designed for this purpose. Older versions call
8 functions in kernel32.dll and collect information about the current register
state before terminating (TerminateProcess) the application with return code
0xc0000409 (Security check failure or stack buffer overrun). OpenBSD, when
detecting a corrupt stack canary, infers the program’s name from a (safe) location
in the global variable section of the currently loaded standard library and prints
one line of information into the system log. Linux’s C standard libraries implement
__stack_chk_fail in different ways: musl libc does not provide any output and
terminates execution using a hlt instruction, accounting for a minimal Noise
level. diet libc prints a static error message and terminates the program with an
exit syscall. Bionic logs a static message, which required to allocate dynamic
memory, and finally terminates the program via a SIGABRT. The Noise level
culminates on Linux with glibc prior to version 2.26: where we measured that
the __stack_chk_fail function performs as many as 69 calls to other functions,
dispatching at least three calls using (PointGuard protected) writable global static
function pointers to create a stack trace by unwinding the attacker controlled
stack before exiting the process. More importantly, glibc prints the program name
fetched from the argv array on the stack, which is a potentially attacker-controlled
location creating an arbitrary memory leak primitive. This behavior (assigned
CVE-2010-3192) was finally fixed in glibc version 2.26 in August 2017.
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Table 1. Summary of problems found with CookieCrumbler .
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1 Android 7.0 ARM Bionic 3 3 3 3 3 3 3 3
2 Android 7.0 x86_64 Bionic 3 7 3 3 3 3 3 3
3 macOS 10.12.1 x86_64 libSystem.dylib 3 3 3 3 3 3 3 3
4 FreeBSD 11.00 x86_64 libc.so.7 3 3 3 3 8 8 3 3
5 OpenBSD 6.0 x86_64 libc.so.88.0 3 3 - - 3 3 3 3
6 Windows 10 x86 msvcr1400.dll 3 3 3 3 8 8 3 3
7 Windows 10 x86_64 msvcr1400.dll 3 3 3 3 8 8 3 3
8 Windows 7 x86 msvcr1400.dll 3 3 3 3 8 8 3 3
9 Windows 7 x86_64 msvcr1400.dll 3 3 3 3 8 8 3 3
10 Arch Linux x86_64 libc-2.26.so 3 7 8 8 3 3 3 3
11 Debian Jessie x86 libc-2.19.so 3 7 8 8 3 3 3 3
12 Debian Jessie ARM libc-2.19.so 3 3 3 3 8 8 3 3
13 Debian Jessie PowerPC libc-2.19.so 3 7 8 8 3 3 3 3
14 Debian Jessie s390x libc-2.19.so 3 7 8 8 3 3 3 3
15 Debian Stretch x86_64 dietlibc 0.33 7 7 8 8 3 3 3 8
16 Debian Stretch x86_64 musl-libc 1.1.16 3 7 8 8 8 3 8 3
17 Ubuntu 14.04 LTS x86_64 EGLIBC 2.15 3 7 8 8 3 3 3 3

4.2 Empirical Results

We classify our data points into three categories:

1. The vulnerable implementations satisfying ∆loc > 0 and W (∆loc) = 100.0%
are marked in 7. Here, a long buffer overflow on the stack allows for a complete
stack canary bypass as Can and Ref can be overwritten at the same time.

2. The weak implementations satisfying W (∆′) = 100.0% with ∆′ 6= ∆loc are
marked in 8. This requires an attacker to not only overflow a data structure
located in the memory segment next to Ref (maybe even in reverse direction),
but also to get control of the execution flow by overwriting a buffer on the
stack before the function containing the first vulnerability returns.

3. The secure implementations satisfying W (∆) 6= 100.0% are marked as 3 in
Table 1. These implementations do not offer the possibility to overwrite Ref
in memory and therefore are secure against the attack presented in this work.

In essence, Categories 1 and 2 violate the Assumption Ë.

4.3 Introduced Attack Vectors

We now discuss the practical implications for application security. For clarity we
omit the discussion of weak implementations, as an attacker would always need
more than one buffer-overflow in a vulnerable application to gain advantage of
the situation. For this, we assume an adversary who is capable of triggering a
buffer-overflow of suitable size on the stack. As such, we discuss possible attack
vectors in two different scenarios depending on the threading model the target
executable uses.
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Forking. In a forking environment, the whole address space of the target binary
is duplicated, including all Can and Ref values contained in memory. When
an attacker is able to obtain information about one of the forked processes this
renders randomness based countermeasures ineffective as all forked applications
share the same randomness: ASLR becomes predictable [20] as well as all cookie
values. Assuming an attacker is allowed to restart communication with the
vulnerable application an oracle can be created as follows: the attacker overwrites
a stack canary byte by byte and observes whether the application at the other
end crashes. Only one out of 28 possible byte values will allow the application to
continue execution. This effectively increases the chance of guessing the stack
canary from (28)8 = 264 to (28) ·8 = 211 in the worst case—implying a more than
significant difference in both attack duration as well as probability of success.
This attack vector has already been discussed by researchers [14, 19, 21]. Note
that a similar technique can be used to infer certain pointer values residing in
the attacked application’s stack frame.

Threading. On multi-threaded applications the insights from CookieCrumbler
can be used in two ways. (1) If the attacker can write null bytes and the application
is mapped at a static address in memory: all vulnerable implementations stack
canaries can be completely bypassed by overwriting Can and Ref with the same
value chosen by the attacker. As all program addresses are known, this case
directly reduces to an ordinary Return Oriented Programming (ROP) attack.
(2) If the attacker is not allowed to write null bytes or the application’s code
section is not mapped at a static address (e.g., Position Independent Executable
(PIE)): the attack can still succeed on Linux with glibc. The attacker will target
the PointGuard value, which is also stored in the TCB, directly following Ref.
Equations 3 and 4 show that in PointGuard any protected pointer is first rotated
by a fixed number of digits and then xored with the PointGuard value (i.e., an
attacker controlled number) in the considered setting.

The function in charge of terminating the program after a failed stack cookie
check in glibc eventually ends up demangling a pointer to pthread_once. It
is obvious that by the simple arithmetic used during pointer demangling, the
attacker can detour the execution flow by a fixed offset to this function. From here
on, no generic attack vector exists, but we want to point out that there are code
paths in glibc that execute the assembly-equivalent of execve("/bin/sh") [22],
which constitute valuable attack targets in our case. The likelihood of this attack
succeeding heavily depends on the memory layout imposed by the dynamic
loader on libraries. In our experiments we never observed a distance greater
than 224 between pthread_once and a gadget that eventually lead to remote code
execution.

4.4 Impact

The tested Linux-based platforms (Android, Arch Linux, Debian, and Ubuntu)
can be clustered into two different categories. Architectures which have dedicated
TLS access registers (x86, x86_64, s390x, and PowerPC) that store the Ref in
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the TCB and architectures without a direct register access to the TLS (ARM). We
have also analyzed the source code of glibc and categorized further architectures
as TLS-based stack canary implementations: IA64, SPARC, and TILE. While we
expect that our results can be extended to those architectures we did not had
access to such hardware and did not include them in Table 1.

The TLS-based SSP for all the libc implementations are vulnerable to our
attack in a multi-threaded environment by overwriting the Ref via a stack-based
buffer overflow6. SSP implementations where the Ref is located in the Global
section are more robust as it cannot be modified by an buffers overflow on the
stack. This result can be seen in the loc column in Table 1. Our evaluation
also shows that most implementations fail to separate other data regions from
the location of Ref. This might be exploitable if the program uses thread-local
variables. If one of the variables can be overflown, an attacker may overwrite the
reference canary Ref. In this case, the attacker needs two overflows (to change
both Ref and Can). This is a difficult attack which also affects single-threaded
applications, and therefore less critical issue.

Interestingly, diet libc defaults to storing the reference canary in the TLS,
even if the application is not multi-threaded. Thus also the main thread stack is
adjacent to the used TLS. Note that the main thread’s stack and its TLS region
are separated in the other implementations. This effectively breaks SSP for diet
libc. Also, we point out that SSP can be bypassed for multi-threaded applications
in all libc implementations.

Windows, macOS, and BSD derivatives store the reference cookie in the .bss

section. Hence, they are not vulnerable to our overflow attack. However, column
glo in Table 1 shows that storing the reference stack cookie in the .bss region
might open up a vulnerability. On Windows and FreeBSD, the stack canary is
located in front of the global variables. Thus, the value might get overwritten
by an overflow running towards lower addresses, which is less common yet not
impossible. Only macOS, OpenBSD, and Android (on architectures without TLS
based cookies, e.g., ARM) succeed to separate the reference cookie from all other
memory regions. As OpenBSD, at the time of writing, is lacking a compiler with
support for thread-local variables, it is not conducted in our experiments.

To get an overview how realistic the described attack is, we analyze the
binaries installed on a vanilla Debian Jessie installation. About 40% of those
programs depend on pthreads, which leaves them potentially vulnerable to our
attack. Server applications, like web servers, often rely on threading to handle
multiple clients at the same time and are particularly subject to such attacks.

5 Attack Mitigations

Re-randomizing Ref on process creation (e.g., after forking) is a promising idea
to increase canary entropy, as demonstrated by RenewSSP [14]. This approach
mitigates our attack partially, but we also propose to modify the thread library
to randomize Ref for each thread.
6 During the paper’s review this issue was independently discovered by Ilya Smith:
https://github.com/blackzert/aslur/
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Frantzen et al. [23] argue to relocate Ref to the PCB data structure, but
unfortunately this introduced more deficiencies. We extend this idea by proposing
the generation of per-function stack cookie values by xoring the static canary
with the current stack pointer value to borrow randomness from mmap. Similarly,
we can xor Ref with the return address of the protected function. However, this
mitigation is only effective for scenarios where the code segment of the protected
function is mapped at randomized addresses.7

Handlers running in a corrupted program context should strive to quit execu-
tion as fast as possible.Glibc’s __stack_chk_fail handler is a bad counter-example.
It passes control through several layers of code which uses attacker controlled val-
ues from the stack. This opens the possibility for further exploitation. Clearly, the
approaches taken by Microsoft Visual C (MSVC) and musl libc are preferable—
the handler quits as fast as possible and, in case of MSVC, any reasoning about
the crashed program’s state (if at all) is performed using run-time data from the
OS’s kernel only.

Finally, the TCB must not be mapped adjacently to any memory structure
that contains user-controllable buffers. The most direct way to achieve this is
the introduction of a mandatory guard page mapped with no access protection
at the bottom of the stack. Note that even though glibc’s pthread implementa-
tion apparently offers such functionality (pthread_attr_setguardsize), it is not
automatically turned on by software intending to use threads and even more
importantly only offers a mechanism to map a guard page on the top of the stack.

6 Improving Sophisticated Protection Mechanisms

To highlight how stack canaries can improve application security, we consider the
C program in Figure 1. Depending on the mitigation mechanisms added when
compiling this program, the authentication bypass can be trivially triggered. We
consider this example in the context of two software protection mechanisms:
SafeStack: SafeStack [8] is a State-of-the-Art CPI implementation that logically
separates the architectural stack into a safe and unsafe region. The safe region con-
tains all control-flow related data while the unsafe stack contains user-controlled
data (e.g., arrays).
Stack Canaries: We use the standard implementation employed by LLVM.
When compiling with SafeStack enabled, the variables password and admin_hash

are allocated in the unsafe stack, whereas the return addresses are in the safe
stack. The stack-based buffer overflow in the auth function make bypassing the
security check trivial: an attacker first overflows the password buffer and then
overwrites the admin_hash with the hash matching the provided password. When
stack canaries are enabled the attack is no longer trivial. After filling the password
buffer, an attacker has to overwrite Can to reach the admin_hash. Once the auth

function returns, the canary corruption will be detected and the program will
terminate.
7 OpenBSD very recently added “RETGUARD” which is similar to our proposition
https://marc.info/?l=openbsd-cvs&m=152824407931917&w=2.
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int auth(char * valid) {
char password[32];
gets(password);
return strcmp(valid, crypt(password, valid)) == 0;

}
int main(void) {

char admin_hash[] = "$1$01234567$b5lh2mHyD2PdJjFfALlEz1";
if (auth(admin_hash)) puts("Welcome to the Admin Area");

}
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Fig. 1. Different stack layouts of a C program exposing an authentication bypass
vulnerability when using (a) SafeStack (b) SafeStack with Canaries, (c) Canaries only.

The same security properties (protecting buffers of adjacent stack frames) are
achieved regardless of the usage of SafeStack. To reach the admin_hash buffer,
an attacker has to overwrite the Can value. As corrupting Can should result in
program termination—the fact that the return address ret is also reachable by
the overflow becomes irrelevant. While SafeStack threat model does not include
the corruption of non-control-flow-related data structures we argue that stack
canaries can improve resistance of CPI against non-control-flow targeting attacks.

7 Conclusion

In this work we presented CookieCrumbler , a multi-platform framework to sys-
tematically study stack canary implementations. We discovered scenarios which
are prone to a novel attack that allows bypassing State-of-the-Art stack protection
mechanisms in threaded environments. In addition, we introduced new ideas
for a more advanced attack that abuses the way exception routines and pointer
mangling mechanisms work together. Finally, we believe this work provides sys-
tematic insight into the qualitative implementation details of stack canaries used
by modern OSes and can serve as a basis for future explorations of security
critical parts of the OSes and C standard libraries in use today.
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