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Soft Cache Hits: Improving Performance through

Recommendation and Delivery of Related Content
Pavlos Sermpezis, Theodoros Giannakas, Thrasyvoulos Spyropoulos, and Luigi Vigneri

Abstract—Pushing popular content to small cells with local
storage (“helper” nodes) has been proposed to cope with the
ever-growing data demand. Nevertheless, the collective storage
of a few nearby helper nodes may not suffice to achieve a high
hit rate in practice. In this paper, we introduce the concept of
“soft cache hits” (SCH): An SCH occurs if a user’s requested
content is not in the local cache, but the user can be (partially)
satisfied by a related content that is. In case of a cache miss,
an application proxy (e.g., YouTube) running close to the helper
node (e.g., at a MEC server) can recommend the most related files
that are locally cached. This system could be activated during
periods of predicted congestion, or for selected users (e.g., low
cost plans), to improve cache hit ratio with limited (and tunable)
user QoE performance impact. Beyond introducing a model for
soft cache hits, our next contribution is to show that the optimal
caching policy should be revisited when SCHs are allowed. In
fact, we show that optimal caching with SCH is NP-hard even
for a single cache. To this end, we formulate the optimal femto-
caching problem with SCH in a sufficiently generic setup, and
propose efficient algorithms with provable performance. Finally,
we use a large range of real datasets to corroborate our proposal.

Index Terms—Mobile Edge Caching; Femto-Caching; Soft
Cache Hits; Recommendation Systems; Optimization

I. INTRODUCTION

A. Background and Motivation

Mobile edge caching has been identified as one of the five

most disruptive enablers for 5G networks [1], both to reduce

content access latency and to alleviate backhaul congestion.

However, the number of required storage points in future

cellular networks will be orders of magnitude more than in

traditional CDNs [2] (e.g., 100s or 1000s of small cells (SCs)

corresponding to an area covered by a single CDN server

today). As a result, the storage space per local edge cache must

be significantly smaller to keep costs reasonable. Even if we

considered a small subset of the entire Internet catalogue, e.g.,

a typical torrent catalogue (1.5 PB) or the Netflix catalogue

(3 PB), edge cache hit ratio would still be low even with a

relatively skewed popularity distribution and more than 1 TB

of local storage [3], [4].

Additional caching gains have been sought by researchers,

increasing the “effective” cache size visible to each user. This

could be achieved by: (a) Coverage overlaps, where each
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user is in the range of multiple cells, thus having access

to the aggregate storage capacity of these cells, as in the

femto-caching framework [5], [6]. (b) Coded caching, where

collocated users overhearing the same broadcast channel may

benefit from cached content in other users’ caches [7]. (c)

Delayed content access, where a user might wait up to a

TTL for her request, during which time more than one cache

(fixed [8] or mobile [9], [10], [11], [12]) can be encountered.

While each of these ideas can theoretically increase the cache

hit ratio (sometimes significantly), the actual practical gains

might not suffice by themselves, e.g., due to high enough cell

density required for (a), sub-packetization complexity in (b),

and imposed delays in (c).

To get around this seeming impasse, we propose to move

away from trying to satisfy every possible user request,

and instead try to satisfy the user. In an Internet which is

becoming increasingly entertainment-oriented, one can make

the following observations: (a) a user’s content requests are

increasingly influenced by various recommendation systems

(YouTube, Netflix, Spotify, or even Social Networks) [13];

(b) some related contents (e.g. two recent NBA games, two

funny cat clips) might have similar utility for a user; in micro-

economic terms, these are often called substitute goods; we

will use the terms alternative, related, and substitute content

inter-changeably.

B. Soft Cache Hits: Idea and Implications

Based on these observations, we envision a system where

“soft cache hits” can be leveraged to improve caching per-

formance. As one example, consider the following, for the

case of YouTube (or, any similar service). If a user requests

a content, e.g., by typing on the YouTube search bar, and the

content is not available in the local cache(s), then a local app

proxy located near the cache and having knowledge of the

cached contents (e.g. a YouTube recommender code running

at a Multi-access Edge Computing (MEC) server [14]), could

recommend a set of related contents that are also locally

available. If the user prefers or accepts (under some incentives;

see below) one of these contents, instead of the one she

initially typed/requested, a soft cache hit (SCH) occurs, and

an expensive remote access is avoided. We will use the term

soft cache hit to describe such scenarios.

Of course, appropriate incentives would be needed to nudge

a user towards substitute content. While perhaps a somewhat

radical concept in today’s ecosystem, we believe there are a

number of scenarios where soft cache hits are worth consider-

ing, as they could benefit both the user and the operator. (i) A



2

(a) (b)

Fig. 1: Mobile app example for Soft Cache Hits: (a) related

content recommendation (that the user might not accept) , and

(b) related content delivery.

cache-aware recommendation plugin to an existing application

could, for example, let a user know that accessing the original

content X is only possible at low quality and might be

choppy, freeze, etc., due to congestion, while related contents

A,B,C, ... could be streamed at high resolution, as shown

in Fig. 1(a). (ii) Alternatively, the operator could activate this

system only during predicted congestion periods, while giving

some incentives to users to accept the alternative contents

during that time (e.g., zero-rating services [15], [16]). (iii) In

some cases, the operator might even “enforce” an alternative

(but related) content (see Fig. 1(b)), e.g., offering low rate

plans with higher data quotas with the agreement that, during

congestion, only locally cached content can be served.

While, in the above cases, a potential unwillingness or

utility loss needs to be counter-balanced with appropriate in-

centives, this is not always the case. Sometimes soft cache hits

could be leveraged in a relatively seamless manner without the

potential psychological impact on user quality of experience

(QoE) due to conscient content replacement1. For example,

after a user watches a video X , the recommendation system

could re-order its list of recommendations (among related

contents of roughly equal similarity to X) to favor a cache hit

in the next request, without the user being aware of this change

or liking the recommended contents less. Such systems have

already been considered, and would be complementary to our

proposal [18], [19]. A similar case could be made for online

radio type of apps (like lastFM, Pandora, Spotify, etc.). While

a lot more can be said about each of the above preliminary

incentive ideas, and plenty more thinking might be needed to

go from these to concrete business cases, we believe these

suffice to motivate an investigation of the potential impact of

soft cache hits.

While soft cache hits could provide some benefits on top of

an existing caching policy, a first key observation is that the

optimal caching policy might differ, sometimes radically, when

soft cache hits are allowed. As a simple example, consider a

1A user that has already chosen a content might over-value her original
choice and feel unhappy to swap it to an objectively equally interesting
content. This effect is somewhat akin to the well-known endowment effect

from Behavioral Economics [17].

single cache with a tiny content catalog with contents A, B, C

of popularities 3, 2, 2, respectively (e.g. number of requests per

minute). If the cache could fit only a single content, traditional

caching will choose to store the most popular content (A),

leading to a cache hit ratio of 3/(3 + 2 + 2), approx. 43%.

However, assume we knew that 1 out of 2 users requesting A,

would be willing to watch content C instead (e.g. because C

is highly related to A, and available locally at HD). Same for

users requesting content B. Then, caching content C would

satisfy all requests for C (2), half the requests for B (0.5 · 2),

and half the requests for A (0.5 ·3), leading to a cache hit ratio

of 4.5/7, approximately 64% (an almost 50% improvement

over the standard policy). This simple example motivates the

significant potential of the approach, but also the need for

a fundamental reconsideration of caching policies, even in

relatively simple networking setups. Finally, while this simple

example might tempt the reader to think that the new optimal

policy is simply to (re-)rank contents based on total hit rate

each can achieve (including SCHs), and then apply standard

policies (e.g. picking the highest ranked ones), in fact we will

show that the optimal policy is a hard combinatorial (cover)

problem.

C. Contributions

The main contributions of the paper are summarized as

follows.

• Soft Cache Hits (SCH) concept: We introduce the novel

concept of soft cache hits. To our best knowledge, this is the

first time that this idea has been applied to edge caching for

cellular networks (besides our own preliminary work [20]).

• Soft Cache Hits (SCH) model: We propose a generic model

for mobile edge caching with soft cache hits that can capture

a number of interesting content substitution scenarios (e.g.

both Fig. 1(a) and Fig. 1(b)) and is versatile enough to

apply on top of both non-cooperative (i.e. single cache)

and cooperative caching frameworks [5], as well as various

networking assumptions.

• Analytical Investigation: We prove that the problem of

optimal edge caching with SCH is NP-hard even when

considering a single cache only. This is in stark contrast to

the standard case without SCH. We then prove that, despite

the increased complexity, the generic problem of femto-

caching with SCH still exhibits properties that can be taken

advantage of to derive efficient approximation algorithms

with provable performance.

• Trace-based Validation: We corroborate our SCH proposal

and analytical findings through an extended evaluation on 5

real datasets containing information about related content,

demonstrating that promising additional caching gains could

be achieved in practice.

As a final remark, it is important to stress that we do not

propose to modify the recommendation systems themselves

(unlike [18], [19], for example). Instead, our focus is on the

caching policy side, using the output of a state-of-art recom-

mendation system for the respective content type as input to

our problem (this will be further clarified in Section II). Of

course, a content provider with a recommendation system can



3

benefit from our approach to optimize its caching policies, or

even modify its recommendations to incorporate soft cache

hits. For example, upon peak hours, a content provider can

carefully “steer” recommendations to optimize the network

performance and user experience (e.g., from lower latency).

Moreover, jointly optimizing both the caching and the recom-

mendation sides of the problem could offer additional benefits.

We defer this to future work. Overall, we believe that such a

convergence between recommendation and caching systems is

quite timely, given that dividing lines between Mobile Network

Operators (MNO) and content providers are becoming more

blurry, due to architectural developments like Multi-access

Edge Computing (MEC) [14] and RAN Sharing [21].

In the following section we introduce the problem setup and

our soft cache hits model corresponding to the example appli-

cation of Fig. 1(a). In Section III we formulate and analyze

the problem of edge caching with SCH for a single cache, and

propose efficient caching algorithms. Then, in Section IV, we

generalize the problem, analysis, and algorithms to the femto-

caching case. In Section V we extend our model to capture

scenarios as in the example application of Fig. 1(b), and show

that our analytic findings are applicable to these scenarios as

well. The performance evaluation is presented in Section VI.

Finally, we discuss related work and future research directions

in Section VII, and conclude our paper in Section VIII.

II. PROBLEM SETUP

A. Network and Caching Model

Network Model: Our network consists of a set of users N
(|N | = N) and a set of SCs (or, helpers) M (|M| = M).
Users are mobile and the SCs with which they associate might

change over time. Since the caching decisions are taken in

advance (e.g., the night before, as in [5], [6], or once per few

hours or several minutes), it is hard to know the exact SC(s)

each user will be associated at the time she requests a content.

To capture user mobility, we propose a more generic model

than the fixed bipartite graph of [5]:

qij
.
= Prob{user i in range of SC j},

or, equivalently, qij is the percentage of time a user i spends in

the coverage of SC j. Hence, deterministic qij (∈ {0, 1}) cap-

tures the static setup of [5], while uniform qij (qij = q, ∀i, j)

represents the other extreme (no advance knowledge).

Content Model: We assume each user requests a content

from a catalogue K with |K| = K contents. A user i ∈ N
requests content k ∈ K with probability pik.2 We will initially

assume that all contents have the same size, and relax the

assumption later.

Cache Model (Baseline): We assume that each SC/helper

is equipped with storage capacity of C contents (all our proofs

hold also for different cache sizes). We use the integer variable

xkj ∈ {0, 1} to denote if content k is stored in SC j. In

the traditional caching model (baseline model), if a user i
requests a content k which is stored in some nearby SC, then

the content can be accessed directly from the local cache and

2This generalizes the standard femto-caching model [5] which assumes
same popularity per user. We can easily derive such a popularity pk from pi

k
.

a cache hit occurs. This type of access is considered “cheap”,

while a cache miss leads to an “expensive” access (e.g., over

the SC backhaul and core network).

For ease of reference, the notation is summarized in Table I.

TABLE I: Important Notation

N set of users (|N | = N )

M set of SCs / helpers (|M| = M )

C storage capacity of a SC

qij probability user i in range of SC j

K set of contents (|K| = K)

pi
k

probability user i to request content k

xkj k is stored in SC j (xkj = 1) or not (xkj = 0)

ui
kn

utility of content n for a user i requesting content k

Fkn(x) distribution of utilities ui
kn

, Fkn(x) = P{ui
kn

≤ x}
ukn avg. utility for content pair {k, n} (over all users)

sk size of content k

B. Soft Cache Hits

Up to this point the above model describes a baseline setup

similar to the popular femto-caching framework [5]. The main

departure in this paper is the following.

Related Content Recommendation: When a user con-

sumes a content (or initially requests a content) that is not

found in the local cache, we assume that an app proxy (e.g.

YouTube, Netflix, Spotify), collocated or near this cache, looks

at the list of contents its recommendation system deems related

to the currently consumed content (or the initial request),

checks which of them are available in the local cache, and

recommends them to the user (see the example in Fig. 1(a)). If

a user selects to consume next (or instead of the initial) one of

them, a (soft) cache hit occurs, otherwise there is a cache miss

and the network must fetch and deliver the original content.

Below, we first propose a soft cache hit model that captures

the scenario of Fig. 1(a). We will use this model throughout

Sections III and IV, to develop most of our theory. However,

in Section V, we will modify our model to also analyze the

scenario of Fig. 1(b), which we will refer to as Related Content

Delivery.

Definition 1. A user i that requests a content k that is not

available, accepts a recommended content n with probability

ui
kn, where 0 ≤ ui

kn ≤ 1, and ui
kk = 1, ∀i, k.

These utilities/probabilities (in the remainder we use these

terms interchangeably) define a content relation matrix U
i =

{ui
kn} for each user. They could be estimated from past

statistics and/or user profiles, and are closely related to the

output of the recommender for that user and that content app.

For example, if a collaborative filtering algorithm suggested

that the cosine distance [22] between files k and n for user i
is 0.5, we could set ui

kn = 0.53.

In some cases, the system might have a coarser view of these

utilities (e.g., item-item recommendation [23]). We develop

our theory and results for the most generic case of Definition 1,

3Going from a content relation value to a value for the willingness of a
user to accept that related content arguably entails some degree of subjectivity,
given that this also depends on the amount and type of incentives offered to
the user. Nevertheless, it is clear that whatever the actual value of ui

kn
, it will

be some function of and positively correlated to underlying content relevance,
which can be readily available from the respective recommendation system.
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but we occasionally refer to the following two subcases, which

might appear in practice:

Sub-case 1: The system does not know the exact utility ui
kn

for each node i, but only how they are distributed among

all nodes, i.e., the distributions Fkn(x) ≡ P{ui
kn ≤ x}.

Sub-case 2: The system knows only the average utility ukn

per content pair {k, n}.

III. SINGLE CACHE WITH SOFT CACHE HITS

In order to better understand the impact of the related

content matrices Ui on caching performance, we first consider

a scenario where a user i is served by a single small cell,

i.e., each user is associated to exactly one SC, but we might

still not know in advance which. Such a scenario is in fact

relevant in today’s networks, where the cellular network first

chooses a single SC to associate a user to (e.g., based on

signal strength), and then the user makes its request [24]. In

that case, we can optimize each cache independently. We can

also drop the second index for both the storage variables xkj

and connectivity variables qij , to simplify notation.

In the remainder, we select the cache hit ratio (CHR) as

the basic performance metric, similarly to the majority of the

related work. However, the analysis for CHR maximization

can be generalized to utility maximization [25], where “utility”

can be the content access cost or delay, energy consumption,

etc.

A. Soft Cache Hit Ratio

A request (from a user to a SC/helper) for a content k ∈ K
would result in a (standard) cache hit only if the SC/helper

stores the content k in its cache, i.e., if xk = 1. Hence, the

(baseline) cache hit ratio for this request is simply

CHR(k) = xk

If we further allow for soft cache hits, the user might be

also satisfied by receiving a different content n ∈ K. The

probability of this event is, by Definition 1, equal to ui
kn. The

following Lemma derives the total cache hit ratio in that case.

Lemma 1 (Soft Cache Hit Ratio (SCHR)). Let SCHR denote

the expected cache hit ratio for a single cache (including

regular and soft cache hits), among all users. Then,

SCHR =

N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
K
∏

n=1

(

1− ui
kn · xn

)

)

. (1)

Proof. The probability of satisfying a request for content k by

user i with related content n is P{n|k, i} = ui
kn · xn, since

ui
kn gives the probability of acceptance (by definition), and xn

denotes if content n is stored in the cache (if the content is not

stored, then P{n|k, i} = 0). Hence, it follows easily that the

probability of a cache miss, when content k is requested by

user i, is given by4
∏K

n=1(1− ui
kn · xn). The complementary

4To simplify our analysis, throughout our proofs we will assume that the
user is informed about all cached contents n with non-zero relevance ui

kn
to

the original content k. In practice, only a limited number of them would be
recommended (e.g. the N most related among the cached ones, as in [19])).
Our analysis also holds for this case, with limited modifications.

probability, defined as the soft cache hit ratio (SCHR), is then

SCHR(i, k,U) = 1−
K
∏

n=1

(1 − ui
kn · xn). (2)

Summing up over all users that might be associated with

that BS (with probability qi) and all contents that might be

requested (pik) gives us Eq.(1).

Lemma 1 can be easily modified for the sub-cases 1 and 2

of Definition 1 presented in Section II-B. We state the needed

changes in Corollary 1.

Corollary 1. Lemma 1 holds for the the sub-cases 1 and 2 of

Definition 1, by substituting in the expression of Eq. (1) the

term ui
kn with

u
i
kn → E[ui

kn] ≡

∫

(1− Fkn(x))dx (for sub-case 1) (3)

u
i
kn → ukn (for sub-case 2) (4)

Proof. The proof is given in Appendix A.

B. Optimal SCH for Equal Content Sizes

The (soft) cache hit ratio depends on the contents that

are stored in a SC/helper. The network operator can choose

the storage variables xk to maximize SCHR by solving the

following optimization problem.

Optimization Problem 1. The optimal cache placement

problem for a single cache with soft cache hits and content

relations described by the matrix U
i = {ui

kn}, ∀i ∈ N , is

maximize
X={x1,...,xK}

f(X) =
N
∑

i=1

K
∑

k=1

p
i
k · qi ·

(

1−
K
∏

n=1

(

1− u
i
kn · xn

)

)

(5)

s.t.

K
∑

k=1

xk ≤ C. (6)

In the following, we prove that the above optimization

problem is NP-hard (Lemma 2), and study the properties of

the objective function Eq. (5) (Lemma 3) that allow us to

design an efficient approximate algorithm (Algorithm 1) with

provable performance guarantees (Theorem 1).

Lemma 2. The Optimization Problem 1 is NP-hard.

Lemma 3. The objective function of Eq.(5) is submodular and

monotone (non-decreasing).

The proofs for the previous two Lemmas can be found in

Appendices B and C, respectively.

We propose Algorithm 1 as a greedy algorithm for Opti-

mization Problem 1: to select the contents to be stored in the

cache, we start from an empty cache (line 1), and start filling

it (one by one) with the content that increases the most the

value of the objective function (line 4), till the cache is full.

The computation complexity of the algorithm is O (C ·K),
since the loop (lines 2-6) denotes C repetitions, and in each

repetition the objective function is evaluated y times, where

K ≥ y ≥ K −C +1. An efficient implementation of the step

in line 4 can be based on the method of lazy evaluations of

the objective function; due to space limitations, we refer the

interested reader to [26].
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Algorithm 1
(

1− 1
e

)

-approximation Greedy Algorithm for

Optimization Problem 1.

computation complexity: O (C ·K)

Input: utility {ui
kn}, content demand {pik}, mobility {qi},

∀k, n ∈ K, i ∈ N
1: S0 ← ∅; t← 0
2: while t < C do
3: t← t+ 1
4: n← argmax

ℓ∈K\St−1

f(St−1 ∪ {ℓ})

5: St ← St−1 ∪ {n},
6: end while
7: S∗ ← St

8: return S∗

The following theorem gives the performance bound for

Algorithm 1.

Theorem 1. Let OPT be the optimal solution of the Opti-

mization Problem 1, and S∗ the output of Algorithm 1. Then,

it holds that

f(S∗) ≥

(

1−
1

e

)

· OPT (7)

Proof. Lemma 3 shows that the Optimization Problem 1 be-

longs to the generic category of maximization of submodular

and monotone functions (Eq. (5)) with a cardinality constraint

(Eq. (6)). For such problems, it is known that the greedy al-

gorithm achieves (in the worst case) a
(

1− 1
e

)

-approximation

solution [27], [26].

While the above is a strict worst case bound, it is known

that greedy algorithms perform quite close to the optimal in

most scenarios. In Sec. VI we show that this simple greedy

algorithm can already provide interesting performance gains.

C. Optimal SCH for Different Content Sizes

Till now we have assumed that all contents have equal

size. In practice, each content has a different size sk and

the capacity C of each cache must be expressed in Bytes.

Additionally, if a user requests a video of duration X and

she should be recommended an alternative one of similar

duration Y (note that similar duration does not always mean

similar size). While the latter could still be taken care of by

the recommendation system (our study of a real dataset in

Sec. VI suggests that contents of different sizes might still be

tagged as related), we need to revisit the optimal allocation

problem: the capacity constraint of Eq.(6) is no longer valid,

and Algorithm 1 can perform arbitrarily bad [26].

Optimization Problem 2. The optimal cache placement prob-

lem for a single cache with soft cache hits and variable

content sizes, and content relations described by the matrix

U
i = {ui

kn}, ∀i ∈ N , is

maximize
X={x1,...,xK}

f(X) =
N
∑

i=1

K
∑

k=1

p
i
k · qi ·

(

1−
K
∏

j=1

(

1− u
i
kn · xn

)

)

(8)

s.t.

K
∑

k=1

skxk ≤ C. (9)

Remark: Note that the objective is still in terms of cache

hit ratio, and does not depend on content size. This could

Algorithm 2 1
2 ·
(

1− 1
e

)

-approximation Algorithm for Opti-

mization Problem 2.

computation complexity: O
(

K2
)

Input: utility {ui
kn}, content demand {pik}, content size {sk},

mobility {qi}, ∀k, n ∈ K, i ∈ N
1: S(1) ←MODIFIEDGREEDY(∅,[s1, s2,...,sk])
2: S(2) ←MODIFIEDGREEDY(∅,[1, 1,...,1])
3: if f(S(1)) > f(S(2)) then

4: S∗ ← S(1)

5: else
6: S∗ ← S(2)

7: end if
8: return S∗

9: function MODIFIEDGREEDY(S0,[w1, w2,...,wk])
10: K(1) ← K; c← 0; t← 0
11: while K(1) 6= ∅ do
12: t← t+ 1
13: n← argmax

ℓ∈K\St−1

f(St−1∪{ℓ})

wℓ

14: if c+ wn ≤ C then
15: St ← St−1 ∪ {n}
16: c← c+ wn

17: else
18: St ← St−1

19: end if
20: K(1) ← K(1)\{n}
21: end while
22: return ← St

23: end function

be relevant, e.g., when the operator is doing edge caching to

reduce access latency to contents (latency is becoming a core

requirement in 5G).

The problem is a set cover problem variant with a knapsack

type constraint. We propose the approximation Algorithm 2

for this problem, which is a “fast greedy” algorithm (based

on a modified version of the greedy Algorithm 1) and has

complexity O
(

K2
)

.

Theorem 2.

(1) The Optimization Problem 2 is NP-hard.

(2) Let OPT be the optimal solution of the Optimization

Problem 2, and S∗ the output of Algorithm 2. Then, it holds

that

f(S∗) ≥
1

2

(

1−
1

e

)

· OPT (10)

Proof. A sketch of the proof can be found in Appendix D.

In fact, a polynomial algorithm with better performance
(

1− 1
e

)

-approximation could be described, based on [28].

However, the improved performance guarantees come with

a significant increase in the required computations, O
(

K5
)

,

which might not be feasible in a practical scenario when the

catalog size K is large. We therefore just state its existence,

and do not consider the algorithm further in this paper (the

algorithm can be found in [29]).

IV. FEMTOCACHING WITH RELATED CONTENT

RECOMMENDATION

Building on the results and analytical methodology of

the previous section for the optimization of a single cache
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with soft cache hits, we now extend our setup to consider

the complete problem with cache overlaps (referred to as

“femtocaching” [5]). Note, however, that we do consider

user mobility, through variables qij , unlike previous works in

this framework that often assume static users. Due to space

limitations, we focus on the case of fixed content sizes.

In this scenario, a user i ∈ N might be covered by more

than one SCs/helpers j ∈ M, i.e.
∑

j qij ≥ 1, ∀i. A user

is satisfied, if she receives the requested content k or any

other related content (that she will accept), from any of the

SCs/helpers within range. Hence, similarly to Eq. (2), the total

cache hit ratio SCHR (that includes regular and soft cache hits)

is written as

SCHR(i, k,U) = 1−
M
∏

j=1

K
∏

n=1

(

1− ui
kn · xnj · qij

)

(11)

since for a cache hit a user i needs to be in the range of a SC

j (term qij) that stores the content n (term xnj ), and accept

the recommended content (term ui
kn).

Considering (i) the request probabilities pik, (ii) every user

in the system, and (iii) the capacity constraint, gives us the

following optimization problem.

Optimization Problem 3. The optimal cache placement prob-

lem for the femtocaching scenario with soft cache hits and

content relations described by U
i = {ui

kn}, ∀i ∈ N , is
maximize

X={x11,...,xKM}
f(X) =

=

N
∑

i=1

K
∑

k=1

p
i
k ·

(

1−
M
∏

j=1

K
∏

n=1

(

1− u
i
kn · xnj · qij

)

)

, (12)

s.t.

K
∑

k=1

xkj ≤ C, ∀j ∈ M. (13)

The following lemma states the complexity of the above

optimization problem, as well as its characteristics that allow

us to design an efficient approximation algorithm.

Lemma 4.

(1) The Optimization Problem 3 is NP-hard,

(2) with submodular and monotone (non-decreasing) objective

function (Eq. (12)) and a matroid constraint (Eq. (13)).

Proof. We prove Lemma 4 by extending the basic ideas of

the single-cache case, and following a similar methodology as

in the proofs of Lemmas 2 and 3; the detailed proof is given

in [29].

Lemma 4 states that the Optimization Problem 3 is a max-

imization problem with a submodular function and a matroid

constraint. For this type of problems, a greedy algorithm can

guarantee an 1
2 -approximation of the optimal solution [26].

The greedy algorithm is similar to Algorithm 1 and is of com-

putational complexity O
(

K2M2
)

; i.e., instead of considering

only contents in the allocation, now tuples {content, helper}
need to be greedily allocated until the caches of helpers are

full (for a detailed pseudocode of the algorithm, we refer the

reader to [29]).

Theorem 3. Let OPT be the optimal solution of the Optimiza-

tion Problem 3, and S∗ the output of the greedy algorithm.

Then, it holds that

f(S∗) ≥
1

2
· OPT (14)

Submodular optimization problems have received consid-

erable attention recently, and a number of sophisticated ap-

proximation algorithms have been considered (see, e.g., [26]

for a survey). For example, a better
(

1− 1
e

)

-approximation

(with increased computation complexity though) can be found

following the “multilinear extension” approach [30], based

on a continuous relaxation and pipage rounding. A simi-

lar approach has also been followed in the original femto-

caching paper [5]. Other methods also exist that can give an
(

1− 1
e

)

-approximation [31]. Nevertheless, minimizing algo-

rithmic complexity or optimal approximation algorithms are

beyond the scope of this paper. Our goal instead is to derive

fast and efficient algorithms (like greedy) that can handle the

large content catalogues and content related graphs U, and

compare the performance improvement offered by soft cache

hits. The worst-case performance guarantees offered by these

algorithms are added value.

V. FEMTOCACHING WITH RELATED CONTENT DELIVERY

We have so far considered a system corresponding to the

example of Fig. 1(a), where a cache-aware system recommends

alternative contents to users (in case of a cache miss), but users

might not accept them. In this section, we consider a system

closer to our second example of Fig. 1(b), where the system

delivers some related content that is locally available instead

of the original content, in case of a cache miss. While a more

extreme scenario, we believe this might still have application

in a number of scenarios, as explained in Section I (e.g., for

low rate plan users under congestion, or in limited access

scenarios [32], [33]).

In the following, we model the related content delivery

system, formulate the respective optimization problem, and

show that it has the same properties with the problems in the

previous sections, which means that our results and algorithms

apply to this context as well. We present only the more generic

femto-cache case of Sec. IV; the analysis and results for the

single cache cases of Sec. III follow similarly.

Since now original requests might not be served, the (soft)

cache hit ratio metric does not describe sufficiently the perfor-

mance of this system. To this end, we modify the definition

of content utility:

Definition 2. When a user i requests a content k that is

not locally available and the content provider delivers an

alternative content n then the user satisfaction is given by

the utility ui
kn. ui

kn ∈ R is a real number, and does not

denote a probability of acceptance, but rather the happiness

of user i when she receives n instead of k. Furthermore

ui
kk = Umax, ∀i.

Note: we stress that the utilities ui
kn in Definition 2 do not

represent the probability a user i to accept a content n (as

in Definition 1), but the satisfaction of user i given that she

accepted content n. User satisfaction can be estimated by past

statistics, or user feedback, e.g., by asking user to rate the

received alternative content.
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Let us denote as Gi(t) ⊆ M the set of SCs with which the

user i is associated at time t. Given Definition 2, when a user

i requests at time t a content k that is not locally available,

we assume a system (as in Fig. 1(b)) that delivers to the user

the cached content with the highest utility5, i.e., the content n
where

n ≡ argmaxℓ∈K,j∈Gi(t)

{

ui
kℓ · xℓj

}

(15)

Hence, the satisfaction of a user i upon a request for content

k is

max
n∈K,j∈Gi(t)

{

ui
kn · xnj

}

(16)

Using the above expression and proceeding similarly to Sec-

tion IV, we formulate the optimization problem that the

network needs to solve to optimize the total user satisfaction

(among all users and all content requests), which we call soft

cache hit user satisfaction (SCH-US).

Optimization Problem 4 (SCH-US). The optimal cache

placement problem for the femtocaching scenario with related

content delivery and content relations described by the matrix

U = {ui
kn} is

maximize
X={x1,...,xK}

f(X) =

=

N
∑

i=1

K
∑

k=1

p
i
k · EGi

[

max
n∈K,j∈M

(

u
i
kn · xnj ·Qij

)

]

, (17)

s.t.

K
∑

k=1

xkj ≤ C, ∀j ∈ M. (18)

where Qij=

{

1 , if j ∈ Gi

0 , otherwise
, and the expectation EGi

[·]

is taken over the probabilities P{Gi} =
∏

j∈Gi

qij ·
∏

j /∈Gi

(1−qij).

For the sub-cases 1 and 2 of Definition 1 presented in

Sec. II-B, the following corollary holds.

Corollary 2. The expression of Eq. (17) needs to be modified

as

EGi

[

max
n∈K,j∈M

(

ui
kn · xnj ·Qij

)

]

→ EGi

[

max
n∈S

(

ui
kn

)

]

=

= EGi

[

∫

(

1−
∏

n∈S

Fkn(x)

)

dx

]

(19)

ui
kn → ukn (20)

where S = {ℓ : ℓ ∈ K, m ∈ M, xℓm ·Qim = 1}, for the

sub-cases 1 and 2 of Definition 1, respectively.

Proof. Due to space limitation the proof is given in [29].

We now prove the following Lemma, which shows that

Theorem 3 applies also to the Optimization Problem 4, and

thus it can be efficiently solved by the same greedy algorithm

(where the objective function of Eq. (17) is now used).

Lemma 5.

(1) The Optimization Problem 4 is NP-hard,

(2) with submodular and monotone objective function

(Eq. (17)).

5Equivalently, the system can recommend all the stored contents to the user
and then allow the user to select the content that satisfies her more.

Proof. The proof is given in Appendix E.

VI. PERFORMANCE EVALUATION

In this section, we investigate the gains of employing soft

cache hits and the performance of the proposed algorithms. We

first analyze 5 real datasets collected from different content-

centric applications/sources, such as YouTube and Amazon-

TV, as well as other types of contents (e.g. Android applica-

tions) or data sources (like MovieLens) (Sec. VI-A). We have

also tested our schemes with some data related to personalized

radio (lastFM) with similar conclusions. The datasets contain

information about content relations, based on which we build

the utility matrices U. We use these realistic utility matrices

U in our simulations to study the performance of caching

with or without soft cache hits. In Sec. VI-B we describe

the simulation setup, and present and discuss the results in

Sec. VI-C.

A. Datasets of Content Relations

YouTube dataset. We consider a dataset of YouTube videos

from [34]6. The dataset contains several information about the

videos, such as their popularity, size, and a list of related

videos (as recommended by YouTube). We build the utility

matrix U = {unk}, where unk = 1 if video n is in the list of

related videos of k (or vice-versa), and otherwise unk = 0.

Amazon datasets. We also analyze 3 datasets of product

reviews from Amazon [35] for Android applications (Amazon-

App), Movies and TV (Amazon-TV), and Videogames

(Amazon-VG). The datasets include for each item a list of

contents that are “also bought”. 7 We consider for each dataset

10000 of its items, and build a utility matrix U = {unk},

where unk = 1 if item n is also bought with item k (or vice-

versa), and otherwise unk = 0.

MovieLens dataset. We finally consider a movies-rating

dataset from the MovieLens website [36], containing 69162
ratings (from 0.5 stars to 5) of 671 users for 9066 movies.

As these datasets contain only raw user ratings and not movie

relations per se, to obtain content relation matrix U , in this

case, we do an intermediate step and apply a standard concept

from collaborative filtering [22]. Specifically, we calculate the

similarity of each pair of contents based on their common

ratings as their cosine-distance metric:

sim(n, k) =

∑#users
i=1 ri(n) · ri(k)

√

∑#users
i=1 r2i (n) ·

√

∑#users
i=1 r2i (k)

where we normalized the ratings ri, by subtracting from

each rating the average rating of that item, so that we ob-

tain similarity values ∈ [−1, 1]. Due to the sparsity of the

dataset (few common ratings), we also apply an item-to-item

collaborative filtering (using 10 similar items) in order to

predict the missing user ratings per item, and thus the missing

similarity values. We build the utility matrix U = {unk}
with unk = max {0, sim(n, k)}, i.e, unk ∈ [0, 1]. Finally,

6Data from 27-07-2008, and depth of search up to 3; see details in [34]
7Our main motivation to use the game and app datasets was to also validate

the robustness of our approach to other types of data. Soft cache hits though
might be more relevant for free apps or games, rather than paid products.
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TABLE II: Information contained in datasets.

content content content relations ukn

popularity size ∈ {0, 1} ∈ [0, 1]
Amazon-* × × X ×
MovieLens X × × X

YouTube X X X ×

TABLE III: Dataset analysis.

#contents content relations popularity

E[R]
(

std[R]
E[R]

)

E[p]
(

std[p]
E[p]

)

Amazon-App 8229 16.0 (2.2) -
Amazon-TV 2789 7.8 (1.0) -
Amazon-VG 5614 22.0 (1.1) -
MovieLens 4622 125.8 (0.5) 15 (1.6)
YouTube 2098 5.3 (0.7) 500 (3.1)

we assign to each item a popularity value equal to the number

of ratings for this item.

For ease of reference, Table II presents the information

contained in each dataset.

Due to the sparsity of the YouTube dataset, we only consider

contents belonging to the largest connected component (defin-

ing as adjacencies, the positive entries of the utility matrix).

For consistency, we consider only the contents in the largest

connected component for the other datasets as well. Moreover,

since the Amazon and YouTube datasets do not contain per-

user information, and the per-user data in the MovieLens

dataset is sparse, we consider the sub-case-2 of Definition 1,

i.e., ui
kn = ukn for all users i.

The number of remaining contents for each dataset are given

in Table III. We also calculate for each content the number of

its related contents Rn =
∑

k unk (or the sum of its utilities

for the MovieLens dataset where ukn ∈ [0, 1]), and present the

corresponding statistics in Table III along with the statistics

for the content popularity.

B. Simulation Setup

Cellular network. We consider an area of 1 km2 that con-

tains M SCs. SCs are randomly placed in the area (following

a Poisson point process), which is a common assumption in

related work [5], [37]. An SC can serve a request from a user,

when the user is inside its communication range, which we

set to 200 meters. We also consider N mobile users.

We select as default parameters: N = 50 users, and M = 20
SCs with caching capacity C = 5 (contents). This creates a

relatively dense network, where a random user is connected

to 3 SCs on average.

Content demand. We consider a scenario of content de-

mand for each dataset of Sec. VI-A, with the corresponding set

of contents, content popularities and relations (utility matrix).

For datasets without information on content popularity (see

Table II), we generate a random sample of popularity values

drawn from a Zipf distribution in [1, 400]8 with exponent

α = 2. For each scenario we generate a set of 20 000 requests

according to the content popularity, over which we average

our results. When soft cache hits are allowed, we assume the

related content recommendation model of Definition 1 (see

also Fig. 1(a)).

8The max value is selected equal to the max number of requests per user,

i.e.,
#requests
#contents

.
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Fig. 2: Cache hit ratio for all datasets and caching schemes,

for the default scenario.

Unless otherwise stated, the simulations use the default

parameters summarized in Table IV.

Caching schemes / algorithms. We consider and compare

the following schemes for single-SC (single) and multi-SC

(femto) to user association.

• Single: A single cache accessible per user (e.g., the closest

one). Only normal cache hits allowed, and the most popular

contents are stored in each cache, which is the optimal

policy in this simple setup. It will serve as the baseline for

single cache scenarios.

• SingleSCH: Here soft cache hits are allowed. However, the

caching policy is still based on popularity as before (i.e., is

not explicitly optimized to exploit SCHs)

• SingleSCH*: This is our proposed policy. Here soft cache

hits are allowed, and the caching policy is optimized to fully

exploit this (according to Algorithm 1 or Algorithm 2).

• Femto: Femto-caching without soft cache hits. This is the

baseline scheme for this class of scenarios, where the

proposed algorithm from [5] is applied.

• FemtoSCH: Femto-caching based content placement (same

as in Femto), but allowing soft cache hits on user requests

(a posteriori).

• FemtoSCH*: Our proposed policy. Femto-caching is ex-

plicitly optimized for soft cache hits, according the greedy

algorithm (Sec. IV).

C. Results

1. Overall performance

We simulate scenarios for all datasets / utility matrices

with the default parameters (Table IV), both under single

and multi user-SC association. Fig. 2 shows the achieved

cache hit ratio CHR (or soft cache hit ratio, SCHR) un-

der the baseline caching (Single/SingleSCH/Femto/FemtoSCH)

and the SCHR under a content placement using our algorithms

(SingleSCH*/FemtoSCH*).

Key Message: Allowing soft cache hits can lead to a dramatic

increase in the cache hit ratio.

Comparing the cache hit ratio (CHR) under the popularity-

based caching (Single/Femto - red/pink bars) and the schemes

we propose (SingleSCH*/FemtoSCH* - black/grey bars),

shows that allowing soft cache hits brings a significant increase

in the CHR for all datasets. The relative gain ranges from 60%
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TABLE IV: Parameters used in simulations: default scenario.

Parameter Value Parameter Value

Area 1 x 1 km Cache size, C 5

nb. of SCs, M 20 nb. of users N 50

SC comm. range 200 m Zipf distr. ∈ [1, 400], α = 2

in the Amazon-TV case, up to around 780% in the Amazon-App

case, for the Single scenarios; the relative gains in the Femto

scenarios are similarly impressing (from 70% up to 530%,

respectively). These initial results indicate that soft cache hits

can be a promising solution for future mobile networks, by

increasing the virtual capacity of mobile edge caching.

Key Message: While gains can sometimes already be

achieved just by allowing soft cache hits, to fully take

advantage of soft cache hits, the caching policy should be

redesigned to explicitly take these into account (through the

utility matrix).

Fig. 2 demonstrates that gains could already be achieved by

simply introducing soft cache hits on top of existing (state-

of-the-art) caching policy (SingleSCH/FemtoSCH - dark/light

green bars), but these are scenario-dependent. For example,

in the Amazon scenarios the increase in CHR by allowing

soft cache hits is marginal (red vs. green bars), while in the

YouTube scenario it is 1.5× higher. In contrast, explicitly de-

signing the caching policy to exploit soft cache hits allows for

important gains in all scenarios (black/grey bars). Specifically,

in the Amazon scenarios the performance gains are almost

entirely due to the caching algorithm (just allowing soft cache

hits, does not improve performance), while in the YouTube

scenario our utility-aware algorithms outperform by around

40% popularity-based caching. These results show clearly that

existing caching policies are not capable to exploit the full

potential of soft cache hits.

2. Impact of network parameters

We proceed to study the effect of network parameters, on

the performance of soft cache hits schemes. We consider the

YouTube dataset, for which the soft cache hits schemes (Sin-

gleSCH*/FemtoSCH*) have a moderate gain (around 1.5−3×)

over the baseline schemes. We simulate scenarios where we

vary the cache size C and the number of SCs M ; the remaining

parameters are set as in the default scenario (Table IV).

Key Message: (a) Soft cache hits improve performance

irrespectively of the underlying network parameters (even

for a few SCs with small capacity); (b) Combining femto-

caching and soft cache hits achieves significantly higher

CHR that today’s solutions.

Cache size impact: We first investigate the impact of cache

size, assuming fixed content sizes. Fig. 3 depicts the total cache

hit ratio, for different cache sizes C: we consider a cache

size per SC between 2 and 15 contents. The simulations sug-

gest that the SingleSCH*/FemtoSCH* scenarios consistently

achieve more than 2.5× (single) and 1.2× (femto) higher CHR

than Single/Femto. What is more, these gains are applicable

to both single- and femto- caching. The two methods (femto-

caching and soft cache hits) together offer a total of 3.3× to

7× improvement compared to the baseline scenario Single.

Finally, even with a cache size per SC of about 0.1% of the
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Fig. 3: Cache hit ratio vs. cache size C.
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Fig. 4: Cache hit ratio vs. number of SCs M .

total catalog (C = 2), introducing soft cache hits offers 29%
CHR (SingleSCH*), whereas today’s practices (popularity-

based caching without SCH) would achieve only 4% CHR.

SC density impact: In Fig. 4 we consider the impact of SC

density. In sparse scenarios (e.g., M = 5), a user usually is in

the range of at most one SC. For this reason, Femto and Single

perform similarly. As the SC density increases, the basic Femto

is able to improve performance, as expected, by exploiting

cache cooperation. However, every 2× increase in density,

which requires the operator doubling the infrastructure cost,

offers roughly a relative improvement of 30 − 50%. Simply

introducing soft cache hits instead, suffices to provide a 2×
improvement.

Key Message: The extra cost to incentivize soft cache hits

might be quite smaller than the CAPEX/OPEX costs in in-

frastructure investment to achieve comparable performance

gains.

3. Impact of utility matrix

We further investigate the impact of the content relations as

captured by the matrix U (and its structure). To quantify the

content relations, we use as a metric the sum of the utilities

per content Rn =
∑

k unk (see also Sec. VI-A and Table III).

Key Message: The CHR increases with the density (E[R])
of the utility matrix. Even low utility values ukn can

significantly contribute towards a higher CHR.

The first important parameter to consider is the average

value of Rn, i.e., the density of the utility matrix U. We

consider the MovieLens dataset, where the utilities ukn are

real numbers in the range [0, 1]. To investigate the impact of

the density of U, we consider scenarios where we vary the

matrix U: for each scenario we set a threshold umin and take

into account only the relations between contents with utility
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Fig. 5: Cache hit ratio for the MovieLens dataset for scenarios

with different umin thresholds; default scenario.
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Fig. 6: Relative increase in the cache hit ratio due to soft

cache hits (y-axis). Amazon scenarios with different variance

of number of related contents (x-axis).

higher than umin, i.e.,

U
′

= {u
′

kn} =

{

ukn if ukn ≥ umin

0 if ukn < umin

Table V gives the density of the utility matrix for the different

values of the threshold umin, and Fig. 5 shows the cache hit

ratio for these scenarios. When umin is set to a large value

(i.e., only few relations are taken into account and the matrix

U is sparse), there is no (umin = 0.75) or negligible ( umin =
0.5) improvement from soft cache hits. However, as the density

of U increases (lower thresholds umin), the gains in CHR

significantly increase; note that these gains are from content

relations with low utility values (i.e., less than 0.5 or 0.25
for the two rightmost scenarios, respectively). Moreover, it is

interesting that in the scenario with umin = 0.25, the gains

are almost entirely due to the more efficient caching from

our algorithms, i.e., popularity-based caching would not be

efficient even if soft cache hits were allowed (green bars).

TABLE V: Utility matrix density for the MovieLens dataset

for different umin thresholds.

threshold umin 0.75 0.5 0.25 0

E[R] 0.9 10.8 49.0 125.8

Key Message: Highly skewed distributions of #relations, Rn,

can lead to more efficient caching (in analogy to heavy tailed

popularity distributions).

Our simulation study demonstrates the effect of the variance

of the number of related contents, i.e.,
std[R]
E[R] . We consider

the three Amazon scenarios of Fig. 2 that have the same

content popularity distribution and similar E[R] values (see

Sec. VI-B). Fig. 6 shows the relative gain (of soft cache

schemes over baseline schemes) in these scenarios where the

distribution of Rn has different variance (see Table III). When

the variance is very high (Amazon-App,
std[R]
E[R] = 2.2) the CHR

under soft cache hit schemes is almost an order of magnitude

larger than the baseline scenarios. Large variance means that

a few contents have very high Rn; thus storing these contents

allows to serve requests for a large number of other (non-

cached) contents as well. Finally, an interesting observation is

that the variance of the distribution plays a more important

role than the density of the utility matrix: although the utility

matrix in the Amazon-VG scenario (E[R] = 22,
std[R]
E[R] = 1.1)

is denser than in the Amazon-App scenario (E[R] = 16,
std[R]
E[R] = 2.2), the gain of the latter is higher due to the higher

variance.

4. Performance of scheme extensions

Key Message: The gain of our algorithms is consistent for

all the considered variations of soft cache hits scenarios.

Finally, we evaluated scenarios with (a) contents of different

size and (b) related content delivery model (Def. 2), and

observed the following. In the former scenarios (from the

YouTube dataset), the performance improves considerably for

all cache size values (e.g., similarly to the equal content sizes

case). In the latter scenarios (from the MovieLens dataset; sim-

ilar to scenarios of Fig. 5), the user satisfaction singificantly

increases with related content delivery (i.e., soft cache hits),

and denser matrices (i.e., higher willingness of users to accept

related contents) lead to better performance.

VII. RELATED WORK

Mobile Edge Caching. Densification of cellular networks,

overlaying the standard macro-cell network with a large num-

ber of SCs (e.g., pico- or femto-cells), has been extensively

studied and is considered a promising solution to cope with

data demand [38], [39], [40]. As this densification puts a

tremendous pressure on the backhaul network, researchers

have suggested storing popular content at the “edge”, e.g.,

at SCs [5], user devices [8], [9], [12], or vehicles [10], [11].

Our work is complementary to these approaches: it can

utilize such mobile edge caching systems and further optimize

the cache allocation when there is a cache-aware recommender

systems in place. We have applied this approach in the

context of mobile (ad-hoc) networks with delayed content

delivery [41] as well, and applied it here for the first time

in the context of femto-caching [5]. Additional research di-

rections have also recently emerged, more closely considering

the interplay between caching and the physical layer such

as Coded Caching [7] and caching for coordinated (CoMP)

transmission [42], [43]. We believe the idea of soft cache hits

could be applied in these settings as well, and we plan to

explore this as future work.

Caching and Recommendation Interplay. There exist

some recent works that have jointly considered caching and

recommendation for wireless systems [19], peer-to-peer net-

works [44], and CDNs [45], [18]. Specifically, [44] studies the

interplay between a recommendation system and the perfor-

mance of content distribution on a peer-to-peer network like
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BitTorrent (e.g., recommending contents based on the number

of “seeders”) towards improving performance.

[45] shows that users tend to follow YouTube’s sugges-

tions, and despite the large catalog of YouTube, the top-

10 recommendations are usually common for different users

in the same geographical region. Hence, CDNs can use the

knowledge from the recommendation system to improve their

content delivery. Finally, [18], [19] propose approaches of

recommended list reordering, which can achieve higher cache

hit ratios (e.g., for YouTube servers/caches).

These works, except for [19] which is closer to our study,

(i) focus on the recommendation side of the problem, ignoring

or simplifying the optimal caching algorithm, and (ii) do not

consider the wireless cooperative caching aspect of the prob-

lem. Nevertheless, the increasing dependence of user requests

on the output of recommender systems clearly suggests that

there is an opportunity to further improve the performance

of (mobile) edge caching by jointly optimizing both, with

minimum impact on user Quality of Experience.

A preliminary version of our work appears in [20]. However,

there are a number of key additions in this work: (i) we

consider in detail the single-cache scenario (Sec. III) and

propose a more efficient algorithm (Alg. 1), as well as an

algorithm for unequal content sizes (Alg. 2); (ii) we introduce

the entirely new model of Sec. V and the corresponding

analysis; (iii) we collected and analyzed 4 extra real datasets of

content relations (Amazon and MovieLens datasets), in order

to extend the evaluation and provide further insights on the

gains of SCH (Sec. VI).

VIII. CONCLUSIONS

In this paper, we have proposed the idea of soft cache

hits, where an alternative content can be recommended to a

user, when the one she requested is not available in the local

cache. While normal caching systems would declare a cache

miss in that case, we argue that an appropriate recommended

content, related to the original one can still satisfy the user

with high enough probability. We then used this idea to design

such a system around femto-caching, and demonstrated that

considerable additional gains, on top of those of femto-caching

can be achieved using realistic scenarios and data. We believe

this concept of soft cache hits has wider applicability in

various caching systems.
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APPENDIX A

PROOF OF COROLLARY 1

Sub-case 1. Since the exact per-user utilities are not known,

we calculate the SCHR given in Eq. (1) by taking the con-

ditional expectations on Fkn(x). Denoting the corresponding

pdf as fkn(x), we proceed as follows:

SCHR =
N
∑

i=1

K
∑

k=1

pik · qi ·E

[(

1−
K
∏

n=1

(

1− ui
kn · xn

)

)]

=
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1− E

[

K
∏

n=1

(

1− ui
kn · xn

)

])

=
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
K
∏

n=1

E
[(

1− ui
kn · xn

])

)

=
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
K
∏

n=1

∫

(1− t · xn) · fkn(t)dt

)

=
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
K
∏

n=1

(

1−

(∫

t · fkn(t)dt

)

· xn

)

)

=
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
K
∏

n=1

(

1− E[ui
kn] · xn

)

)

where (i) the third equation holds since the utilities for

different content pairs {k,n} are independent, and thus the

expectation of their product is equal to the product of their

expectations, and (ii) we denoted

E[ui
kn] ≡

∫

t · fkn(t)dt =

∫

(1 − Fkn(t))dt

and the above equation holds since ui
kn is a positive random

variable.

Sub-case 2 follows straightforwardly.

APPENDIX B

PROOF OF LEMMA 2

We prove here the NP-hardness of the optimal cache allo-

cation for a single cache with soft cache hits. Let us consider

an instance of Optimization Problem 1, where the utilities

are equal among all users and can be either 1 or 0, i.e.,

ui
kn = ukn, ∀i ∈ N and ukn ∈ {0, 1}, ∀k, n ∈ K. We

denote as Rk the set of contents related to content k, i.e.

Rk = {n ∈ K : n 6= k, ukn > 0} (related content set) (21)

Consider the content subsets Sk = {k} ∪ Rk . Assume that

only content k is stored in the cache (xk = 1 and xn =
0, ∀n 6= k). All requests for contents in Sk will be satisfied

(i.e. “covered” by content k), and thus SCHR will be equal to
∑

i∈N

∑

n∈Sk
pin ·qi. When more than one contents are stored

in the cache, let S
′

denote the union of all contents covered

by the stored ones, i.e., S
′

=
⋃

{k:xk=1} Sk. Then, the SCHR

will be equal to
∑

i∈N

∑

n∈S′ pin ·qi. Hence, the Optimization

Problem 1 becomes equivalent to

max
S‘

∑

n∈S′

pin · qi s.t. |{k : xk = 1}| ≤ C.

This corresponds to the the maximum coverage problem with

weighted elements, where “elements” (to be “covered”) cor-

respond to the contents i ∈ K, weights correspond to the

probability values pin · qi, the number of selected subsets

{k : xk = 1} must be less than C, and their union of

covered elements is S
′

. This problem is known to be a NP-

hard problem [46], and thus the more generic problem (with

different ui
kn and 0 ≤ ukn ≤ 1) is also NP-hard.

APPENDIX C

PROOF OF LEMMA 3

The objective function of Eq. (5) f(X) : {0, 1}K → R is

equivalent to a set function f(S) : 2K → R, where K is the

finite ground set of contents, and S = {k ∈ K : xk = 1}. In

other words,

f(S) ≡
N
∑

i=1

K
∑

k=1

pik · qi ·

(

1−
∏

n∈S

(

1− ui
kn

)

)

. (22)

A set function is characterised as submodular if and only

if for every A ⊆ B ⊂ V and ℓ ∈ V \B it holds that

[f (A ∪ {ℓ})− f (A)]− [f (B ∪ {ℓ})− f (B)] ≥ 0 (23)

From Eq. (5), we first calculate

f (A ∪ {ℓ})− f (A) =
N
∑

i=1

K
∑

k=1

pikqi



1−
∏

n∈A∪{ℓ}

(

1− ui
kn

)





−
N
∑

i=1

K
∑

k=1

pikqi



1−
∏

n∈A

(

1− ui
kn

)





=
N
∑

i=1

K
∑

k=1

pik · qi ·





∏

n∈A

(

1− ui
kn

)

−
∏

n∈A∪{ℓ}

(

1− ui
kn

)





=

N
∑

i=1

K
∑

k=1

pik · qi ·



ui
kℓ ·

∏

n∈A

(

1− ui
kn

)



 .

Then,
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[f (A ∪ {ℓ}) − f (A)]− [f (B ∪ {ℓ}) − f (B)] =

=
N
∑

i=1

K
∑

k=1

pikqi



ui
kℓ

∏

n∈A

(

1− ui
kn

)





−
N
∑

i=1

K
∑

k=1

pikqi



ui
kℓ

∏

n∈B

(

1− ui
kn

)





=
N
∑

i=1

K
∑

k=1

pikqi · u
i
kℓ ·





∏

n∈A

(

1− ui
kn

)

−
∏

n∈B

(

1− ui
kn

)





=
N
∑

i=1

K
∑

k=1

pikqi · u
i
kℓ ·

∏

n∈A

(

1− ui
kn

)

·



1−
∏

n∈B\A

(

1− ui
kn

)





The above expression is always ≥ 0, which proves the

submodularity for function f .

Furthermore, the function f is characterised as monotone if

and only if f(B) ≥ f(A) for every A ⊆ B ⊂ V . In our case,

this property is shown as

f(B) − f(A) =
N
∑

i=1

K
∑

k=1

pikqi ·



1−
∏

n∈B

(

1− ui
kn

)





−
N
∑

i=1

K
∑

k=1

pikqi ·



1−
∏

n∈A

(

1− ui
kn

)





=
N
∑

i=1

K
∑

k=1

pikqi ·





∏

n∈A

(

1− ui
kn

)

−
∏

n∈B

(

1− ui
kn

)





=
N
∑

i=1

K
∑

k=1

pikqi ·
∏

n∈A

(

1− ui
kn

)

·



1−
∏

n∈B\A

(

1− ui
kn

)



 ≥ 0

APPENDIX D

PROOF OF THEOREM 2

Following similar arguments as in the proof of Lemma 2,

the Optimization Problem 2 can be shown to be equivalent

to the budgeted maximum coverage problem with weighted

elements, which is an NP-hard problem [46].

In Algorithm 2, we first calculate a solution S(1) returned

by a modified version (MODIFIEDGREEDY) of the greedy

algorithm (line 1). The differences between the greedy algo-

rithm (e.g., Algorithm 1) and MODIFIEDGREEDY, are that the

latter: (a) each time selects to add in the cache the content

that increases the most the fraction of the objective function

over its own size (line 13), and (b) considers every content,

until there is no content that can fit in the cache (lines 14-

20). Then, Algorithm 2 calculates the solution S(2) that the

greedy algorithm would return if all contents were of equal

size (line 2). The returned solution, is the one between S(1)

and S(2) that achieves a higher value of the objective function

(lines 3-7).

Hence, Algorithm 2 is a “fast-greedy” type of approximation

algorithm. Since, the objective function was shown to be

submodular and monotone in Lemma 3, our fast greedy ap-

proximation algorithm can achieve a 1
2 ·
(

1− 1
e

)

-approximation

solution (in the worst case), when there is a Knapsack con-

straint, using similar arguments as in [47].

APPENDIX E

PROOF OF LEMMA 5

Item (1): Optimization Problem 4 is of the exact same

nature as Optimization Problem 3, so it follows that it is NP-

hard.

Item (2): We proceed similarly to the proof of Lemma 3. The

objective function of Eq. (17) f(X) : {0, 1}K×M → R is

equivalent to a set function f(S) : 2K×M → R, where K and

M are the finite ground sets of contents and SCs, respectively,

and S = {k ∈ K, j ∈ M : xkj = 1}:

f(S) ≡
N
∑

i=1

K
∑

k=1

pik ·EGi

[

max
(n,j)∈S

(

ui
kn ·Qij

)

]

(24)

For all sets A ⊆ B ⊂ V and {content, SC} tuples (ℓ,m) ∈
V \B, we get

f (A ∪ {(ℓ,m)}) − f (A) =

=
N
∑

i=1

K
∑

k=1

pik ·EGi

[

max
(n,j)∈A∪{(ℓ,m)}

(

ui
knQij

)

]

−
N
∑

i=1

K
∑

k=1

pik ·EGi

[

max
(n,j)∈A

(

ui
knQij

)

]

=
N
∑

i=1

K
∑

k=1

pik ·EGi

[

R

(

ui
kℓ ·Qim − max

(n,j)∈A

(

ui
knQij

)

)]

where in the last equation we use the ramp function defined

as R(x) = x for x ≥ 0 and R(x) = 0 for x < 0. Subsequently,

[f (A ∪ {(ℓ,m)}) − f (A)]− [f (B ∪ {(ℓ,m)}) − f (B)] =

=
N
∑

i=1

K
∑

k=1

pik · EGi

[

R

(

ui
kℓQim − max

(n,j)∈A

(

ui
knQij

)

)

−R

(

ui
kℓQim − max

(n,j)∈B

(

ui
knQij

)

)]

The above equation is always ≥ 0 (which proves that the

objective function Eq. (17) is submodular), since the ramp

function is monotonically increasing and comparing the two

arguments of the function R(x) in the above equation, gives

u
i
kℓQim − max

(n,j)∈A

(

u
i
knQij

)

−

(

u
i
kℓQim − max

(n,j)∈B

(

u
i
knQij

)

)

= max
(n,j)∈B

(

u
i
knQij

)

− max
(n,j)∈A

(

u
i
knQij

)

≥ 0

since B is a superset of A and therefore its maximum will

be at least equal or greater than the maximum value in set A.

Similarly, since A ⊆ B it holds

f(B) − f(A) =

=
N
∑

i=1

K
∑

k=1

pik ·EGi

[(

max
(n,j)∈B

(

ui
knQij

)

− max
(n,j)∈A

(

ui
knQij

)

)]

≥ 0

which proves that the Eq. (17) is monotone.
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