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Abstract. Named entity recognition (NER) and disambiguation (NED)
are subtasks of information extraction that aim to recognize named en-
tities mentioned in text, to assign them pre-defined types, and to link
them with their matching entities in a knowledge base. Many approaches,
often exposed as web APIs, have been proposed to solve these tasks dur-
ing the last years. These APIs classify entities using different taxonomies
and disambiguate them with different knowledge bases. In this paper, we
describe Ensemble Nerd, a framework that collects numerous extractors
responses, normalizes them and combines them in order to produce a
final entity list according to the pattern (surface form, type, link). The
presented approach is based on representing the extractors responses
as real-value vectors and on using them as input samples for two Deep
Learning networks: ENNTR (Ensemble Neural Network for Type Recog-
nition) and ENND (Ensemble Neural Network for Disambiguation). We
train these networks using specific gold standards. We show that the
models produced outperform each single extractor responses in terms of
micro and macro F1 measures computed by the GERBIL framework.

1 Introduction

A crucial task in knowledge extraction from textual document consists in the two
complementary tasks of Named Entity Recognition (NER) and Named Entity
Disambiguation (NED), achieving the goal of assigning to parts of text (tokens)
respectively a type —from a pre-defined taxonomy— and a unique identifier —
normally in the form of URI— that points univocally to the referred entity in a
given knowledge base. The combination of these two tasks is often abbreviated
with the acronym NERD [5,6]. The current state of the art offers an interesting
number of NERD extractors. Some of them can be trained by a developer on his
own corpus, while other ones are only accessible as black-box services exposed
via web APIs offering a limited number of parameters.

In terms of NER, each service provides generally its own taxonomy of named
entity types which can be recognised. While they all provide support for three
major types (person, organization, location), they largely differ for more fine-
grained types which makes hard their comparison and combination. In terms



of NED, each extractor can potentially disambiguate entities against specific
knowledge bases (KB), but in practice, they mostly rely on popular ones, namely
DBpedia, Wikidata, Freebase or YAGO. For this reason, comparing and merging
the results of these extractors require some post-processing tasks that typically
rely on mappings between those KBs. This task is however simpler than the
type alignment, because of the large presence of owl:sameAs links between the
different KBs.

In this paper, we present Ensemble Nerd, a multilingual ensemble method
that combines the responses of different NERD extractors. This method relies
on a real-value vectorial representation as input samples for two Deep Learning
networks, ENNTR (Ensemble Neural Network for Type Recognition) and ENND
(Ensemble Neural Network for Disambiguation). The networks provide models
for performing type alignment and named entity linking to a knowledge base.
This strategy is evaluated against some well-known gold standards, showing that
the output of the ensemble outperforms the results of single extractors.

This work aims to answer the following research questions: Can we define
an ensemble method that combines the extractors responses in order to create
a new more powerful extractor? Is it possible to define an ensemble method
that avoids a type alignment step or that computes it automatically, without
any human intervention? Which ensemble method should be adopted to exploit
all the collected information? Considering that extractors return list of named
entities – together with the type and the disambiguation link of each of them
–, how this data can be numerically represented? Can we better understand
which features contribute more to improve the ensemble output response? How
dependant is this feature selection of the corpora, language, entity types and
what is the influence of the KB?

The remainder of this paper is organised as follows: Section 2 describes some
related work. Section 3 details how we represent the extractors responses, while
Section 4 presents the core of the ensemble method. An evaluation is proposed
in Section 5, while conclusion and and future work are discussed in Section 6.

2 State of the Art

Ensemble methods for the NER and NED tasks have already largely been studied
in the literature. The NERD framework [5, 6] allows to compare and evaluate
some of the most popular named entity extractors. It can analyse any textual
resource published on the web and to extract the named entities that are de-
tected, typed and disambiguated by various named entity extractor APIs. For
overcoming the different type taxonomies, the authors designed the NERD on-
tology which provides a set of mappings between these various classifications and
consequently makes possible an evaluation of the quality of each extractor. This
task was originally a one time modeling exercise: the authors manually mapped
the different taxonomies to the NERD ontology.

NERD-ML, a machine learning approach developed on top of the NERD
framework, combines the responses of single extractors applying alternatively



three different algorithms: Naive Bayes (NB), k-Nearest Neighbours (k-NN) and
Support Vector Machines (SVM) [6, 11]. It is a more sophisticated and robust
approach that uses machine learning inductive techniques for passing from the
output type of single extractors to the right entity type in a normalized types
set, i.e. the NERD Ontology [7]. FOX [9, 10] is a framework that relies on
ensemble learning by integrating and merging the results of four NER tools:
the Stanford Named Entity Recognizer [3], the Illinois Named Entity
Tagger [4], the Ottawa Baseline Information Extraction (Balie) and the
Apache OpenNLP Name Finder. FOX compares the performance of these
tools for a small set of classes namely LOCATION, ORGANIZATION and PER-
SON. For achieving this goal, the entity types of each NER tools is mapped to
these three classes. Given any input text t, FOX processes t with each of the
n tools it integrates. The result of each tool Ti is a piece of annotated text ti,
in which either a specific class or zero (not belonging to the label of a named
entity) is assigned to each token. The tokens in t are then represented as vectors
of length n and are used for getting the final type. The author demonstrates
that a Multi-Layer Perceptron (MLP) gets the best results among a pool of 15
different algorithms [9].

3 Feature Engineering for NERD

Ensemble Nerd currently integrates a set of 8 extractors shown in Table 3. An
extractor can belong to the set T (extractors that perform NER task) or to the
set U (extractors that perform NED task). Currently, TextRazor is the only one
in both sets: T ∩ U = {TextRazor}. All these extractors relies on Wikidata,
Wikipedia or DBpedia for entity disambiguation.

Each extractor produces a list of named entities as response for a specific
input text. From this output, we generate 4 different kinds of feature.

1. Surface form features. They are strictly related to the text used to
extract named entity. The input text is split into tokens and a word embedding

Extractor Type recognition NE disambiguation

AlchemyAPI 3 7

DandelionAPI 7 3

DbSpotlight 7 3

TextRazor 3 3

Babelfy 7 3

MeaningCloud 3 7

Adel 3 7

OpenCalais 3 7

Table 1. Extractor included in Ensemble Nerd. 3 indicates that the extractor supports
the action (type recognition or named entity disambiguation)

.



Fig. 1. Example of type taxonomy for a generic extractor.

representation is assigned to each of them. We consider also the stop words,
assigning also to them a real-value vectorial representation. The word vectors
are computed using fastText [1]. We define sx as the real-valued vector associated
to a specific token x:

sx =
[
sxp |s

x
c

]
, dim(sx) = 400 (1)

where | (pipe) is the concatenation operator and dim is the vector dimension.
sxp , dim(sxp) = 300, consists in the token embedding computed using the

Wikipedia pre-trained fastText models released by the authors. The model changes
depending on the language used in the text, since all localised Wikipedia have
been used to train language specific models.

sxc , dim(sxc ) = 100, is the token embedding computed when training fastText
directly on a particular textual corpus – i.e. the one for which we want to perform
the NERD tasks. This means that sxc does not vary depending on the language
but on the gold standard itself.

2. Type features. Each extractor e ∈ T has its own type taxonomy o which
is a taxonomy of a maximum depth L. In the following, we consider a simple
example of an taxonomy o with just a 2 levels hierarchy (Figure 1):

1. Level 1 includes three types: PLACE, ORGANIZATION and PERSON.
2. Level 2 includes four types: CITY and MOUNTAIN (subtypes of PLACE)

and ACTOR and MUSICIAN (subtypes of PERSON).

We name Ci the number of different types inside the level i (e.g. C1 = 3).
We infer a one-hot encoding representation for each level as shown in Table 3.

For a generic type τ in the last layer (e.g. ACTOR), the features vector vτ
consists in the concatenation of the one-hot representation of each type founded



LEVEL 1 LEVEL 2

Type Representation Type Representation

PERSON 001 ACTOR 0001

ORGANIZATION 010 MUSICIAN 0010

PLACE 100 CITY 0100

MOUNTAIN 1000

Table 2. Representation of types through one-hot encoding.

on the walk from the root to the leaf associate to τ . The features vector for
ACTOR is therefore 0010001, where the first three values 001 derive from PER-
SON and the last four values 0001 derive from ACTOR. Hence, we can state
that dim(vτ ) =

∑L
i Ci. If the extractor e ∈ T returns a type that is not the

last level in the hierarchy, as PERSON, we fill the missing vector positions with
0. The features vector vPERSON associated to PERSON is thus 0010000. This
mechanism is extensible to any taxonomy. However the dim(vτ ) is different for
each extractor, depending on the taxonomy that it uses.

This procedure can be extended also to extractors that do not perform NER.
A generic extractor e, where e ∈ U ∧ e 6∈ T , returns a link for each entity. Fol-
lowing the interlinks between KBs, we can always obtain an entity in Wikidata.
The type of the entity would be the class of this entity in Wikidata, which is the
value of the property instance of (P31)3. Entities might possess multiple types
and for this reason they are represented through K-hot encoding.

For a typed named entity wt with the format (surface form, type),

the type feature vector vwt

e is computed for the extractor e where e ∈ U ∨e ∈ T .

dim(vwt

e ) varies accordingly to the considered extractor. In fact, we get a real-
value numerical type representation without a type alignment phase. For this
reason, the number of dimensions that forms the type features vector depends
on the the number of types in the extractor taxonomy.

3. Entity features. These features represent the similarity between two
Wikidata entities w1 and w2, as a vector of 5 dimensions. The first four dimen-
sions correspond to semantic knowledge:

1. the first dimension Suri(w1, w2) indicates if the compared entities share the
same URI with a Boolean;

2. the second dimension provides the string similarity between the labels lw1

and lw2
associated to the compared entities:

SLev(w1, w2) = max(1− dLev(lw1
, lw2

)/β, 0), β = 8

where dLev(lw1
, lw2

) is the Levenshtein distance between the compared
strings and β is a constant equals to the number of maximum differences
after which the similarity is saturated to 0.

3 https://www.wikidata.org/wiki/Property:P31

https://www.wikidata.org/wiki/Property:P31


3. the third dimension STfIdf (w1, w2) represents the TF-IDF Cosine Simi-
larity between the abstracts associated to the compared entities. This di-
mension represents a textual knowledge as in [12];

4. the fourth dimension Socc(w1, w2). value indicates if the compared entities
share the same occupation (P106).4 This property is specific for entities of
type PERSON: this Wikidata class has no other subclasses, as opposed to
the other types. For this reason this similarity dimension greatly helps in
the disambiguation of people with similar names but different professions.
Socc(w1, w2) is set to 1 when the two entities referred to people that have the
same profession, and 0 otherwise (different profession or not a PERSON).

The fifth and last dimension of the vector represents the structural similarity
as in [12]. We define a property set P , containing three properties: subclass of
(P279)5, instance of (P31)6, and part of (P361)7. A subgraph G is extracted
from Wikidata selecting all the triples in which a property in P appears. We
define the distance dw1,w2

between two generic entities w1 and w2 as the shortest
path length that links w1 and w2 in G. Then, we compute the maximum distance
between two nodes in the graph G, defining it as dmax. We assess the structural
similarity between w1 and w2 as:

Sstc(w1, w2) = −dw1,w2

dmax
+ 1

The total similarity between w1 and w2 can be expressed as:

S(w1, w2) =

= [Suri(w1, w2), SLev(w1, w2), STfIdf (w1, w2), Socc(w1, w2), Sstc(w1, w2)]
(2)

The choice of representing the similarity between two entities as a real-value
vectors rather than using an entity embedding is in line with our goal of rep-
resenting how the extractors differ in the prediction rather than directly repre-
senting an entity. This approach avoids to compute embeddings on the whole
Wikidata KB. We rely on interlinks between KBs for guaranteeing that we can
always compare Wikidata entities. This causes the risk that no Wikidata entity
exists for the source one, i.e. because the information is not present. However,
this case is very rare (Table 3) in all the considered benchmarks in the evalua-
tion, thanks to the reliance of all the involved extractors on Wikidata, Wikipedia
or DBpedia, which containing similar information. This would become a limit
when using different KBs (e.g. thematic ones), not fully interlinkable to Wikidata
and for which a loss in information should be taken in account.

4. Score features. Some extractors return scores representing either the
confidence or the saliency for each named entity. For each extractor e ∈ K, wk is
a named entity score with the format (surface form, scores). We define

4 https://www.wikidata.org/wiki/Property:P106
5 https://www.wikidata.org/wiki/Property:P279
6 https://www.wikidata.org/wiki/Property:P31
7 https://www.wikidata.org/wiki/Property:P361

https://www.wikidata.org/wiki/Property:P106
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P361


Extractor Disambiguation KB WD Coverage

Dandelion Wikipedia 99%

DBSpotlight DBpedia Fr 98%

TextRazor Wikidata 100%

Babelfy DBpedia 100%

Table 3. Coverage of matching against Wikipedia of disambiguated entity in the
ground truth.

vwk

e as the features vector representing the scores for wk and the extractor e.

dim(vwk

e ) depends on the considered extractors, more precisely on the number
of scores returned by it.

4 Ensemble NERD: ENNTR and ENND

Our experimental ensemble method relies on two Neural Networks that receive in
input the features described in the previous Section. We respectively name them
with the acronyms Ensemble Neural Network for Type Recognition (EN-
NTR) and Ensemble Neural Network for Disambiguation (ENND). For
both networks, the hyper parameter optimization was done using Grid Search.

These networks architectures come after a series of previous experiments
that involved LSTM and BiLSTM, receiving a complete vector including all the
features as input sample. A really slow training, the ease of network overfitting
to the sample input, and huge difference in dimensionality (and so in impact to
the results) between the different features were some of the reasons for which we
have abandoned these approaches.

Ensemble Neural Network for Type Recognition (ENNTR). We con-
sider a generic ground truth GT formed by N textual fragments (e.g. sentences),
such that we can split each fragment in tokens. Xi is the ordered list of tokens
for fragment i. Concatenating the lists Xi, we get a list X, that is the ordered
list of tokens for the whole corpus. We call x a generic token in X.

GT associates a type in a taxonomy oGt to each token x. We identify the
neural network target as Yt. The number of samples in Yt is equal to the total
number of tokens: dim(Yt) = dim(X). The neural network goal is to assign the
right type to each token and its architecture is represented in Figure 2.

ENNTR has an output layer O formed by H = card(oGT ) neurons, where
card(oGT ) is the number of different types (or cardinality) in oGT . As a conse-
quence, each value returned by a neuron in the output layer corresponds to the
probability that a token x belongs to a specific type. Hence, each target sample
yt is a vector formed by H values, where each value corresponds to a type and
a neuron. In Figure 2, we are assuming that H = 4.

ENNTR presents many input layers. Using the same notation used in Section 3,
T is the set of extractors that return type information, K is the set of extractors



Fig. 2. ENNTR architecture

that return score information, U is the set of extractors that perform disam-
biguation. Defining I as the set of input layers of ENNTR, we can identify four
different types of input layer depending on the kind of features being input.

I = IT ∪ IK ∪ IU ∪ IS

|I| = |IT |+ |IK |+ |IU |+ |IS | = |T ∪ U |+ |K|+ 1 + 1

All the input layers works at token level, so that the features at entity level
defined in Section 3 requires a transformation to token-level. The surface form of
an entity w (e.g. Barack Obama) can be tokenised, producing the list of tokens
Xw (e.g. [Barack, Obama]). The feature vector of token x is equal to the one of
an entity w if x is a token in Xw. Otherwise it is equal to a padding vector d,
of the same dimension and containing only 0 values.

In particular, IT receives in input a type features vector txe , computed like:

txe =

{
vwt

e if x ∈ Xwt

dt if x /∈ Xwt
(3)

dt = [0, ..., 0], dim(dk) == dim(vwt

e )

Similarly, IK receives in input a type features vector kx
e , computed like:

kx
e =

{
vwk

e if x ∈ Xwk

dk if x /∈ Xwk

(4)

dk = [0, ..., 0], dim(dk) == dim(vwk

e )

The Wikidata entity uxe for the token x is:



uxe =

{
uw

u

e if x ∈ Xwu

NAN if x /∈ Xwu
(5)

The layers IU receive in input the entity features vector ux, computed for a
token x as:

ux = [S(ux1 , u
x
1), S(ux1 , u

x
2), ..., S(uxP , u

x
P )]

Finally, the input layers IS receive the surface features vector sx without any
further transformation.

Each input layer In is fully connected with a layer Mn. Mn, like O, is com-
posed by H neurons, where H is the number of types in the ground truth. The
activation of neurons in Mn is linear.

In this first part of the network, each In —composed by a different number
of neurons depending on the related features vector— is mapped on H neu-
rons in Mn. This avoids that the neural network privileges features vectors with
higher dimension – it happens directly concatenating different features vectors.
This part of the network can be considered as an alignment block since it
automatically map the types between the extractors and the ground truth tax-
onomy. This is pretty similar to the Inductive Entity Typing Alignment work
described in [7], with the difference that the alignment step is learned by a fully
connected layer. Differently from previous works [9, 10], the approach does not
need any preliminary alignment and recognition, because they are part of the
same network.

The last part of the network is the ensemble block. Mk layers are concate-
nated forming a new layer R. |oGT | is the number of types in the ground truth,
|I| the number of input layers and |P | the number of neurons in R:

|P | = |oGT | · |I|

R is fully connected to the output layer O. The activation of the neurons in
O is linear. This means that ENNTR finally consists in a linear combinations
of features: the key is the way in which the features are generated and entered
in the network. The values vh of the H output neurons in O correspond to
the probability that a given type is correct. We take the highest value vmax
between them and if it is greater than a threshold θ, we set the type related
to its neuron as the predicted one. The final output of the ensemble method is
a list of predicted type lp for each token x. In a final step, sequences of token
which belong to the same type are merged to a single entity, similarly to [9,10].

Ensemble Neural Network for Disambiguation (ENND) We consider a
ground truth GT , similar to the one seen for ENNTR, that this time associates
a Wikidata entity identifier (URI) to each token. We identify the target as Yd.

The ENND architecture is represented in Figure 3. Differently from related
work, the goal of the network would not be to directly predict the right disam-
biguated entity, but to determine if the predicted entity by an extractor e, where



Fig. 3. ENND architecture

e ∈ U , is correct or not. For this reason, the number of samples in target Yd is
not equal to the number of tokens. For each token x, each extractor e returns a
predicted entity ux

e : we call Cx the set of predicted entities for the token x, and
vx the correct entity; |Cx| ≤ |U | because more extractors could predict the same
entity. For each candidate cx,j ∈ Cx, where 0 < j ≤ |Cx|, we generate a target
sample yd ∈ Yd:

yd =

{
1 if cx,j = vx
0 if cx,j 6= vx

The output layer O contains a single neuron that should converge to yd.
The O activation is a sigmoid. Naming I the set of input layers of ENND, two
different types of input can be identified depending on the kind of features.

I = IU ∪ IT
|I| = |IU |+ |IT | = 1 + |T ∪ U |

The entity similarity features enter through IU . We define cx,j as a candidate
entity for the token x. For each target sample yd, we compute a similarity features
sample ux,j as:

ux,j = [S(cx,j , u
x
1)|S(cx,j , u

x
2)|...|S(cx,j , u

x
R)] where R = card(U)



dim(ux,j) = dim(S(w1, w2)) · card(U)

The input layers IT receive in input the the type feature vector twe , computed
with the same method used for ENNTR. IT layers are fully connected to the
layers Mn as in ENNTR. Mn is formed by H neurons, where H is an hyper-
parameter, set to 4 during our experiment. As for ENNTR, the Mn activation
is linear.

After this step, the IU layer and the Mk layers are concatenated in a new layer
R. In this layer, some neurons represent the type information, some other the
entity features. This combination aims to exploit the fact that some extractors
better disambiguate on certain types. The number of neurons in R is equal to
dim(ux,j) + |T ∪ U | ·H.

The last part of the network is composed by two dense layers8 and the output
layer O discussed before. The activation functions of the dense layers cannot be
a softmax function since the number of candidates —and so is the number of
neurons in the output layer— is variable according to each specific token. We so
opted for the Scaled Exponential Linear Units (selu):

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0

The loss function used to train the network is the Mean Square Error, that
gives slightly better results and similar training time if compared to MSE.

The neural network goal is to determine the probability that an entity can-
didate is right. In fact, for each sample, we get an output value that corresponds
to this probability. ox,j corresponds to the output value of the input sample as-
sociated to the candidate entity j for token x. We select the candidate associated
with the highest value ox,max among all output values

{
ox,1, ox,2, ..., ox,card(Cx)

}
.

Defining a threshold τd, if ox,max > τd, we can select as predicted entity for token
x the one related to ox,max. Otherwise, we consider that the token x is not part
of a named entity. This process of candidate selection returns the list zp of
predicted Wikidata entities identifiers at token level. In a final step, sequences
of tokens which belong to the same Wikidata entity identifiers are merged to a
single entity. Ap represents the predicted corpus of annotated fragments.

5 Experiment and Evaluation

We developed an implementation of the two neural networks using Keras.9 In
order to make our approach comparable with the state of the art, our evaluation
relies on well-known corpora and metrics, which have been already applied to
related work. Moreover, we evaluate our approach on a new gold standard that
we provide to the community.

8 A dense layer is a layer fully connected to the previous one.
9 The source code is available at https://github.com/D2KLab/ensemble-nerd, to-

gether with the documentation for accessing the live demo at http://enerd.

eurecom.fr

https://github.com/D2KLab/ensemble-nerd
http://enerd.eurecom.fr
http://enerd.eurecom.fr


– OKE2016: annotated corpus of English textual resources, created for the
2016 OKE Challenge. The types set contains 4 different tags. 10 This ground
truth disambiguates the entities using DBpedia. The ensemble technique we
use for scoring is averaging, but not boosting or bagging.

– AIDA/CoNLL: English corpus and contains assignments of entities to the
mentions of named entities, linked to DBpedia. This dataset does not infer
types for NEs and can only be used for evaluating NED.

– NexGenTV corpus:11 dataset composed of 77 annotated fragments of
transcripts from politician television debates in French.12 Each fragment
lasts in average 2 minutes. The corpus is split in 64 training and 13 test
samples. The list of types includes 13 different labels.13 Entities are disam-
biguated through Wikidata.

TOKEN BASED ENTITY BASED
fsc pre rec fsc pre rec

adel 0,87 0,88 0,87 0,84 0,85 0,83

alchemy 0,79 0,93 0,68 0,88 0,92 0,86

babelfy 0,66 0,88 0,7 0,74 0,79 0,7

dandelion 0,64 0,89 0,51 0,78 0,83 0,75

dbspotlight 0,59 0,75 0,49 0,6 0,77 0,52

meaning cloud 0,59 0,91 0,44 0,72 0,78 0,69

opencalais 0,56 0,97 0,39 0,69 0,71 0,68

textrazor 0,74 0,86 0,65 0,77 0,81 0,74

ensemble 0,91 0,91 0,91 0,94 0,95 0,92

ensemble (I = IT ) 0,88 0,91 0,85 0,88 0,92 0,84

ensemble (I = IS) 0.50 0,53 0,47 0.50 0,52 0,48

ensemble (I = IU) 0.44 0,47 0,41 0.43 0,43 0,43

ensemble (I = IK) 0,37 0,40 0,34 0,38 0,40 0,36
Table 4. OKE2016 corpus NER Evaluation

Type recognition. For each gold standard GT , two different kinds of score
are computed. The token based scores have been used in [9,10]. From GT , a list
of target types lt with dimension |X| is extracted. We can obtain from ENNTR
the list of predicted types lp. For each type tGT in GT , we compute precision
Precision(lt, lp, tGT ), recall Recall(lt, lp, tGT ) and F1 score F1(lt, lp, tGT ). Then,

10 PERSON, ORGANIZATION, PLACE, ROLE.
11 http://enerd.eurecom.fr/data/training_data/nexgen_tv_corpus/
12 The debates are in the context of the 2017 French presidential election.
13 PERSON, ORGANIZATION, GEOGRAPHICAL POINT, TIME, TIME IN-

TERVAL, NUMBER, QUANTITY, OCCURRENCE, EVENT, INTELLECTUAL
WORK, ROLE, GROUP OF HUMANS and OCCUPATION.

http://enerd.eurecom.fr/data/training_data/nexgen_tv_corpus/


we compute micro averaged measures Precisionmicro(lt, lp), Recallmicro(lt, lp)
and F1micro(lt, lp). [8]

The entity based scores follow the definition of precision and recall coming
from the MUC-7 test scoring [2]. Given At and Ap as the annotated fragment
in GT , the computed measures are Precisionbrat(At, Ap), Recallbrat(At, Ap) and
F1brat(At, Ap).

The computed scores for OKE2016 and NexGenTv corpora are reported in
Table 4 and 5. The tables show also the same metrics applied to single extractors,
after that their output types have been mapped to the ones of GT through the
alignment block of ENNTR. For both token and entity scores, the ensemble
method outperforms the single extractors for all metrics.

TOKEN BASED ENTITY BASED
fsc pre rec fsc pre rec

adel 0,68 0,84 0,57 0,75 0,83 0,7

alchemy 0,80 0,83 0,77 0,87 0,97 0,81

babelfy 0,55 0,83 0,41 0,65 0,74 0,59

dandelion 0,26 0.69 0,16 0,51 0,69 0,42

dbspotlight 0,48 0,75 0,34 0,5 0,61 0,45

meaning cloud 0,82 0,88 0,77 0,8 0,87 0,76

opencalais 0,58 0,81 0,45 0,81 0,9 0,76

textrazor 0,81 0,89 0,74 0,75 0,8 0,72

ensemble 0,94 0.97 0,91 0,92 0,98 0,87

ensemble (I = IT ) 0,87 0,91 0,83 0,89 0,93 0,85

ensemble (I = IS) 0.54 0,58 0,50 0.53 0,56 0.50

ensemble (I = IU) 0.47 0,49 0,45 0.46 0,47 0,45

ensemble (I = IK) 0,40 0,42 0,38 0,39 0,40 0,38
Table 5. NexGenTv corpus NER Evaluation

In order to identify the most impacting features in the obtained results,
ENTTR has been sequentially adapted and retrained in order to receive in input
only a specific kind of features, i.e. only IT , IK , IU or IS . The tokens based
scores for these new trained networks reveals that the type features IT are the
only ones that, used alone as input, continue to make ENTRR outperforming
single extractors, as can be expected given the type recognition goal. The other
feature kinds, while having a lower impact, are still improving the final results
when combined in the ensemble.

Entity Linking. We evaluate the entity linking for both OKE2016, AIDA/CoNLL
and NexGenTv corpora using the GERBIL framework14 and in particular micro

14 GERBIL is a general Linked Data benchmarking that offers an easy-to-use web-
based platform for the agile comparison of annotators using multiple datasets and
uniform measuring approaches.



and macro scores for the experiment type “Disambiguate to Knowledge Base”
(D2KB). The computed scores are reported in Table 6 and 7; the ensemble
method outperforms again the single extractors that it integrates for all metrics.
As for type recognition, we repeated the experiment using only a specific kind of
features, in order to show the feature impact. In such case, the most influential
features are the entity ones IU . However, the impact of type features IT is still
crucial because its absence reduce drastically the improvement of the ensemble
method with respect to the single extractors.

Table 8 and 9 compare the NED extractors presented on GERBIL with our
ensemble. For OKE2016, PBOH is the only tool which obtains a better score
However this extractors reaches very low scores for AIDA/CoNLL, while our
ensemble still continues to have good performances. For the NexGenTV dataset,
we cannot compare the other NERD extractors because the majority of them
perform NED only for the English language.

6 Conclusion and Future Work

In this paper, we presented two multilingual ensemble methods which combine
the responses of web services (extractors) performing Named Entity Recognition
and Disambiguation. The method relies on two Neural Networks that outper-
form the single extractors respectively in NER and NED tasks. Furthermore, the
NER network allows to avoid the manually type alignment between the type tax-
onomies of each extractor and the ground truth taxonomy. We demonstrated the
importance of the features generation for the success of these ensemble methods.
In terms of NER, the type features play most of the work in the ensemble. For
the NED task, while entity features have the greater impact, only a combination
with type features really improve the effectiveness of the ensemble method with
respect to single extractor predictions.

As future work, we plan to enhance the input feature set with Part of Speech
tags features that would be assigned to each token. We also aim to vary the
neural network architecture, and in particular, we are planning to replace the
dense layer receiving the surface features with a BiLSTM, which would also take
in consideration the context in which the tokens are sequentially appearing.
Finally, all the neural networks models have been trained when all extractors
APIs were reachable. A training that involves some samples which simulates
the extractors failures and unavailability would make the network models more
robust to API failures.
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OKE2016 NEXGEN AIDA
fsc pre rec fsc pre rec fsc pre rec

babelfy 0,54 0,64 0,47 0,51 0,51 0,51 0,66 0,70 0,62

dandelion 0,59 0,77 0,48 0,34 0,50 0,26 0,45 0,66 0,34

dbspotlight 0,39 0,53 0,30 0,38 0,29 0,54 0,47 0,65 0,36

textrazor 0,53 0,78 0,40 0,61 0,55 0,69 0,62 0.57 0.53

ensemble 0,66 0,88 0,52 0,69 0,70 0,64 0,68 0,79 0,60

ensemble (I = IU) 0,59 0,80 0,47 0,59 0,60 0,58 0,55 0,60 0,50

ensemble (I = IT ) 0,41 0,45 0,38 0,42 0,47 0,38 0,48 0,52 0,45

Table 6. GERBIL Micro scores on OKE2016, NexGenTV and AIDA/CoNLL corpus

OKE2016 NEXGEN AIDA
fsc pre rec fsc pre rec fsc pre rec

babelfy 0,54 0,65 0,47 0,51 0,52 0,51 0,60 0,65 0,57

dandelion 0,59 0,76 0,49 0,35 0,50 0,27 0,43 0,52 0,37

dbspotlight 0,39 0,52 0,32 0,38 0,29 0,55 0,45 0,63 0,37

textrazor 0,54 0,77 0,42 0,61 0,54 0,71 0,57 0,78 0,45

ensemble 0,65 0,86 0,53 0,67 0,69 0,64 0,68 0,76 0,61

ensemble (I = IU) 0,59 0,77 0,48 0,59 0,59 0,59 0,55 0,59 0,51

ensemble (I = IT ) 0,42 0,44 0,40 0,41 0,42 0,40 0,49 0,51 0,47

Table 7. GERBIL Macro scores on OKE2016, NexGenTV and AIDA/CoNLL corpus

Micro scores Macro scores
fsc pre rec fsc pre rec

agdistis 0,50 0,50 0,50 0,52 0,52 0,52

aida 0,49 0,63 0,41 0,5 0,64 0,42

dexter 0,44 0,92 0,29 0,43 0,81 0,31

fox 0,48 0,77 0,35 0,47 0,69 0,37

freme ner 0,31 0,57 0,21 0,26 0,27 0,25

kea 0,64 0,67 0,61 0,63 0,66 0,61

pboh 0,69 0,69 0,69 0,69 0,69 0,69

ensemble 0,66 0,88 0,52 0,65 0,86 0,53
Table 8. GERBIL scores on OKE2016

Micro scores Macro scores
fsc pre rec fsc pre rec

agdistis 0,58 0,58 0,58 0,59 0,59 0,59

aida 0,00 0,00 0,00 0,00 0,00 0,00

dexter 0,51 0,76 0,38 0,47 0,75 0,36

fox 0,57 0,63 0,51 0,56 0,64 0,51

freme ner 0,38 0,62 0,27 0,29 0,30 0,27

kea 0,60 0,65 0,56 0,59 0,63 0,56

pboh 0,00 0,00 0,00 0,00 0,00 0,00

ensemble 0,68 0,79 0,60 0,68 0,76 0,61
Table 9. GERBIL scores on AIDA-CoNLL
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