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Abstract
The state-of-the-art in automatic speaker verification (ASV) is
undergoing a shift from a reliance on hand-crafted features
and sequentially optimized toolchains towards end-to-end ap-
proaches. Many of the latest algorithms still rely on frame-
blocking and stacked, hand-crafted features and fixed model
topologies such as layered, deep neural networks. This paper
reports a fundamentally different exploratory approach which
operates on raw audio and which evolves both the weights and
the topology of a neural network solution. The paper reports
what is, to the authors’ best knowledge, the first investigation of
evolving recurrent neural networks for truly end-to-end ASV.
The algorithm avoids a reliance upon hand-crafted features and
fixed topologies and also learns to discard unreliable output
samples. Resulting networks are of low complexity and mem-
ory footprint. The approach is thus well suited to embedded
systems. With computational complexity making experimen-
tation with standard datasets impracticable, the paper reports
modest proof-of-concept experiments designed to evaluate po-
tential. Results equivalent to those obtained using a traditional
GMM baseline system and suggest that the proposed end-to-
end approach merits further investigation; avenues for future
research are described and have potential to deliver significant
improvements in performance.

1. Introduction
Deep learning approaches to automatic speaker verification
(ASV) have emerged in recent years and are now at the state
of the art. Deep learning techniques have been explored in
the context of: feature extraction [1, 2]; the learning of pos-
teriors in a joint factor analysis framework [3]; the extraction
of phonetically-aware frame posteriors as a replacement for the
universal background model in an i-vector framework [4]; an
alternative to i-vectors within a probabilistic linear discrimi-
nant analysis (PLDA) framework [5]; the estimation of hidden
Markov model state posterior probabilities [6, 7]; PLDA back-
end scoring [8].

A common characteristic to the above works is the use of
deep learning techniques as a means of replacing specific, and
often single elements of a more complex toolchain. While it has
demonstrated the benefit of deep learning, this work may not be
capitalizing on the true potential whereby deep learning is ap-
plied in a so-called end-to-end approach; current techniques,
e.g. [9], still rely on hand-crafted features or pre-determined
topologies whereas evolutive learning techniques can facilitate
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the application of neural networks to raw inputs and automati-
cally optimize the topology according to the task at hand.

A growing number of attempts have been made to over-
come the reliance on hand-crafted features. Most operate on
spectral representations, e.g. [10, 11, 12]. While spectral repre-
sentations stem from a linear transformation of the raw audio,
and thus serve as an equivalent representation, these solutions
still rely upon the frame-blocking of speech signals into fixed-
length windows. While recurrent neural networks, e.g., long
short-term memory (LSTM) architectures, can exploit speech
dynamics [13], frame-blocking remains a perhaps-questionable
constraint. In this sense, the avoidance of frame-blocking may
offer some potential to improve on current approaches. While
the literature shows successful attempts to apply deep learning
techniques to raw audio, e.g. [14, 15, 16, 17, 18], these works
relate to speech and emotion recognition in addition to spoofing
detection. To the best of the authors’ knowledge, there is no
equivalent work in ASV.

Also characteristic to almost all attempts to use deep learn-
ing for ASV is the use of pre-determined topologies, namely
topologies chosen manually and empirically optimized. Most
deep learning solutions involve a layered, hierarchical ap-
proach [19, 20] in which the number of layers, their connectivity
(local or full), the number of units per layer and their activation
function (linear, rectified, etc.) are all predetermined. Research
from beyond the field of speech processing, e.g. [21], suggests
that the use of pre-determined topologies may be a limitation.
Studies related to image classification, for example, show that
topologies can be learned automatically [22], albeit still in hier-
archical fashion.

Solutions to these limitations are already available. A par-
ticular class of techniques known as topology and weight evolv-
ing artificial neural networks (TWEANNs) [23] use genetic
learning algorithms to optimize not only the weights of a net-
work but also its topology. This paradigm embraces the princi-
ples of natural evolution and selection and allows connections
between any units, thereby completely avoiding the notion of
hierarchical layers.

Motivated by recent work on evolving recurrent neural net-
works for audio processing and classification [24], by the in-
creasing popularity of end-to-end learning [9, 19, 25, 26] and
to address the limitations of hand-crafted features and pre-
determined topologies, this paper reports what is believed to
be the first application of TWEANNs to ASV. The approach
operates directly on unprocessed, raw audio which is treated
subsequently by evolving network structures before final classi-
fication, making for a truly end-to-end pipeline.

Accordingly, the objective of the work presented in this
paper was not to outperform the existing state of the art, but
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Figure 1: An illustration of one iteration of evolution: the per-
formance of each network in a population is assessed by the
means of a fitness function and the best individuals are selected
to form a new generation of networks.

more specifically to investigate the longer term potential of the
idea. The paper reports investigations with a particular form of
TWEANN algorithms known as neuroevolution of augmenting
topologies (NEAT) [27].

With the computational complexity of the algorithm far
exceeding that of the established approaches to ASV (train-
ing only), experimentation with standard databases is currently
impracticable. Implementation of the approach using efficient
graphics processors is also far from being straightforward. In
order to assess the potential of the idea, the paper reports mod-
est proof-of-concept experiments designed to evaluate potential.
The authors fully accept that the statistical significance afforded
by such analysis is limited. With the algorithm representing
something of a departure from current research directions and
with results showing potential, the authors have elected to sub-
mit, admittedly early, the idea to the scrutiny of the scientific
community.

Section 2 introduces the NEAT algorithm and its applica-
tion to acoustic signals. Section 3 describes its adaptation and
additional developments which are necessary such that the al-
gorithm can be applied successfully to the ASV task. Experi-
ments and results are described in Section 4. Conclusions are
presented in Section 5.

2. Neuroevolution of augmenting topologies
The NEAT algorithm was introduced by Stanley and Miikku-
lainen in 2002 [27]. This section describes the main ideas be-
hind the original work and then its previous application to audio
classification problems.

2.1. Original algorithm

At a higher level, NEAT is a classical neuro-evolution algorithm
which evolves a population of solutions (networks or individu-
als) according to an iterative process and a defined fitness func-
tion. Each iteration produces a new generation of solutions and
the fitness function controls which among them serve as a basis
to produce the next generation of solutions as shown in Fig 1.

At a lower level, however, NEAT is quite unique. One cru-
cial aspect centers around the incremental evolution of struc-
ture. Even if the algorithm does not incorporate an explicit
measure of complexity, networks tend to remain comparatively
simple in structure compared to deep neural network solutions.
Topologies are augmented iteratively in order to introduce di-
versity through the addition of new nodes and connections
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Figure 2: Mutation of weight (here symbolized by connection
thickness), node adding and crossover: the three forms of net-
work evolution.

thereby following a complexifying principle. This is achieved
through the usual biological analogies of mutation and cross-
over. These processes, in addition to that of weight mutation,
are illustrated in Fig. 2.

NEAT provides an elegant and efficient solution to a num-
ber of previously identified technical challenges such as the per-
mutations problem [28]. These are addressed through the in-
troduction of a genotype direct encoding scheme that features
historical markings which track structural augmentations (see
Fig. 3). Historical markings also serve a crucial purpose when
performing crossover, as they provide a systematic means to
align genes. Topology diversity is ensured by speciation, an-
other biological analogy which protects structural innovation
(i.e. by selecting the fittest networks within the same species).

With TWEANNs, weight and structural changes occur at
random (within set boundaries) during evolution through
mutation. The fitness function is an evaluation metric that
aims to reward network changes which lead to improved
performance. Hence the optimization process is not based
on gradient descent and back-propagation, but instead con-
sists in evaluating each network in the population according
to the fitness function. To do so, training inputs are pro-
cessed through the network exactly as they would be during
inference, thereby yielding output values that serve to eval-
uate the network fitness. Then the best performing (i.e., the
fittest) networks of the current population are selected to
produce offspring for the next generation.

Since its conception, NEAT has been applied successfully
to a multitude of tasks such as bipedal locomotion [29] and au-
tomated computer game playing [30]. NEAT continues to at-
tract attention; shortly before the submission of this article, the
authors became aware of recent, successful attempts to utilize
NEAT for audio-related tasks such as audio effect creation [31]
and sound event detection [32]. In view of the computational
demands, however, in the former work NEAT was applied us-
ing a variety of classic spectral/cepstral frame-based features
instead of raw audio, while the latter used wavelet representa-
tions.

2.2. Application to audio classification

Whereas the use of some form of frame-blocked spectral or
filter-bank representation is characteristic to all previous work,
Daniel [24] reported the first application of NEAT to audio clas-
sification which operates directly on time-domain inputs. NEAT
is applied with networks constrained to a specific input/output
setup and propagation scheme. As illustrated in Fig. 4, inputs
consist of one or more streams of raw audio. Each stream is
mapped to an input unit and is propagated through the network
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Figure 3: A NEAT genotype is a direct and self-contained tex-
tual representation of a unique network, which contains (as
in nature) more information than that which can be observed
in the resulting structure. Figure reproduced with permission
from [27].

sample-by-sample with one activation step for every sample.
An additional bias unit is set and held to unity. Network out-
puts consist of one or more score units whose outputs yd are
multiplied by the output of a binary gate unit yr . Except for
the score and gate output units, which have identity and binary
step activations respectively, all units have rectified linear acti-
vation functions. The rate of the output (of any unit) is identical
to that of the input, hence the networks perform one activation
step per sample (see Fig. 4). In fact, the score output can be
viewed as a new audio signal, the result of the network learning
and applying to the input a transformation defined by the class
to which the input belongs. The gate will thus evolve to dis-
card output scores which are deemed to be unreliable, so that
the network places emphasis on samples that are most helpful
to discriminate between different audio classes. Alternatively,
the gate can be replaced by a reliability output yielding a non-
negative, non-binary weighting factor yr . The operation of the
gate/reliability output is similar in principle to that of atten-
tion mechanisms [33] which have been applied previously to
speech recognition [34]. For each time sample i, the weighted
mean over K samples of the product of yd and yr yields final
weighted score yw:

yw[i] =

∑K−1
j=0 yd[i− j]× yr[i− j]∑K−1

j=0 yr[i− j]
(1)

The behavior of each network is assessed according to a
generic squared-error-based fitness function F :

F (yw, g) = 1/

[
1 +

N−1∑
i=0

(g[i]− yw[i])
2

]
(2)

which reflects the distance between N weighted scores yw and
a ground truth signal g of classification labels, e.g. 0 or 1, mak-
ing for a supervised approach. Connections can be made freely
between any pair of units. As a result, evolved networks may
contain cyclical unit connections (e.g. units connected to them-
selves or to other units which influence their input). This clas-
sifies NEAT structures as recurrent neural networks.

3. End-to-end automatic speaker
verification

This section reports the application of NEAT to conceive a truly
end-to-end ASV system. In the work of [24], all networks are
constrained to share the common setup and propagation scheme

illustrated in Fig. 4: there is one input stream, one bias, one
output stream and a binary gate. The process described in Sec-
tion 2.2 is applied to generate networks which distinguish be-
tween a given target speaker and a set of background speak-
ers. Each iteration of the algorithm corresponds to one indepen-
dent evolutionary process applied in speaker-dependent fashion.
This process will produce a population of increasingly discrim-
inative, speaker-dependent networks.

The evolutionary process is driven according to a new fit-
ness function which is introduced below. Also described in this
section is a mini-batch procedure which was found to be ben-
eficial to the evolution process. Specific training and testing
procedures are also presented.

3.1. Fitness function

The fitness function in Eq. 2 does not necessarily reward separa-
tion between class distributions, but rather proximity to ground
truth scores (e.g. 0 and 1). This behaviour becomes an evi-
dent problem when, after several generations, the two classes
have only a minimal degree of overlap: a distance-based fitness
function would reward a network that pushes the bulk of the
distributions farther apart, without necessarily correcting previ-
ous classification errors; conversely, a network which fully sep-
arates classes but which produces noisier distributions would
be attributed less reward than another network which produces
pure Gaussian, but slightly overlapped distributions. An early
search for an alternative, better suited to classification tasks
such as ASV, investigated a fitness function based on the equal
error rate (EER). The EER, though, only reflects the reliability
of a classifier at a single operating point, i.e., a fixed thresh-
old. The area under the receiver operating characteristic curve
(AUROC), in contrast, gives a measure of reliability which is
independent from the operating point; it reflects the probabil-
ity that the network will give a randomly chosen target sample
a higher score than a randomly chosen impostor sample [36].
With notably better results, all work reported in this paper was
performed by replacing Eq. 2 with an AUROC function calcu-
lated using the trapezoid rule [37].

3.2. Mini-batching

Inspired by a similar approach used in the stochastic gradient
descent algorithm [38] to avoid over-fitting and convergence
to local-optima, training is performed with a mini-batch pro-
cess. The mini-batch process ensures that each generation of
networks is trained using a different subset of data. This strat-
egy promotes novelty during evolution since the training ob-
jective is changed every iteration. The same strategy also en-
courages generalization, namely networks which perform well
across inter-session data. Finally, mini-batching also helps to
reduce computational demands.

Each mini-batch consists of a fraction Mt of total target
data and a fraction Mi of total impostor data. By way of
example, with Mt=Mi=100%, every training iteration is per-
formed using the same data; there is no mini-batching. With
Mt=Mi=50%, training data is randomly shuffled and parti-
tioned into two mini-batches. They are used in two subsequent
iterations after which this process is repeated.

3.3. Training

The initial generation contains a population of 150 minimal,
perceptron-like networks, each of which is configured accord-
ing to the setup described in Section 2.2. The network weights
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are randomly initialized and constrained within a [−4, 4] range.
Audio signals are normalized to within [-1, 1] in order to pre-
vent saturation. This is more likely when using rectified lin-
ear activation functions as opposed to sigmoids, as in the orig-
inal work. Rectified linear activation functions were found to
be more efficient while giving similar performance. Every net-
work in a given population is trained with the same mini-batch
of data. Data containing either target or impostor speech is pre-
sented to each network in the form of non-contiguous segments
of K samples. The system assigns to each segment a weighted
mean score corresponding to yw[K − 1] in Eq. 1. Networks are
reset after the processing of each segment.

The fitness of each network is then determined according
to the AUROC metric described in Section 3.1. The fittest net-
works of the population are then used to produce the next gen-
eration according to the procedure outlined in Section 2. The
evolutionary process is applied iteratively until the fitness has
converged.

Fig. 5 illustrates the evolution in fitness over 200 genera-
tions for an arbitrary target speaker. Each point on the graph
corresponds to the population’s fittest network for that genera-

tion. The solid blue profile illustrates evolution for the training
procedure described above. Its non-monotonic nature is due
to mini-batching; the data used at each iteration is different.
The dashed red profile shows evolution with no mini-batching
(Mt=Mi=100%); data used at each iteration is the same, hence
the monotonic profile. While reducing processing time, mini-
batching also results in faster learning.

3.4. Network selection for evaluation

Once training is complete, it is necessary to select and eval-
uate the single best network. First, the 10 best networks of
each generation are identified according to the AUROC fitness
function. Second, the performance of each of the 10 best net-
works from each generation is reassessed using the full train-
ing set. Since it gives a more intuitive interpretation of perfor-
mance in a practical application, selection is performed using
the application-neutral EER metric. The network which pro-
duces the lowest EER among the 10 is designated as the gen-
eration champion. Finally, the generation champion associated
with the lowest EER is designated as the grand champion, and
selected for evaluation. Evaluation is performed using an inde-
pendent test set.

Aside from the fitness function and minor differences,
this setup is also adopted in our own ongoing work in anti-
spoofing [35].

4. Experiments
This section describes experiments which aim to test the poten-
tial of the end-to-end ASV system described in section 3.

4.1. Baseline system

The baseline system is a standard 64-component Gaussian mix-
ture model (GMM) system [39]. Features are standard 19th or-
der Mel-scaled frequency cepstral coefficients (MFCCs). These
are appended with delta and double-delta parameters thereby
giving features of 57 coefficients. Speaker models are derived
from the maximum a posteriori adaptation of a universal back-
ground model (UBM). Scores are log-likelihood ratios given the
speaker model and the UBM.
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Table 1: Results for the GMM and end-to-end systems in terms
of EER for the training and test set for the two target speakers.

GMM Baseline End-to-end system

Training Test Training Test

Speaker #1 0% 9.52% 0.79% 5.30%
Speaker #2 0% 6.90% 0.98% 9.44%

4.2. NXP database and experimental protocols

Experimentation with standard NIST Speaker Recognition
Evaluation (SRE) datasets [40], RSR [41] or RedDots [42] are
currently impracticable on account of computational complex-
ity. Being consistent with the objective to evaluate the potential
of the algorithm, the paper reports a set of proof-of-concept ex-
periments using a non-standard, proprietary database of speech
signals collected from 10 male speakers. Text content consists
of 10 of the 30 Harvard sentences which comprise the TIMIT
database [43]. Each speaker provides approximately 5-6 min-
utes of speech which is recorded in 9 sessions over the course
of one month. Recordings were collected in a quiet office with
a laptop at a sampling rate of 16 kHz and 16-bit precision. Ut-
terances were normalized by the active speech level estimated
according to the ITU-T P.56 standard [44].

Among the 10 speakers, 2 are enrolled as targets. The train-
ing set consists of 6 of the 10 sentences uttered by the target
speaker and the first 5 impostors. The test set consists of the
other 4 sentences uttered by the target speaker and the remain-
ing 3 impostors, thus achieving considerable phonetic separa-

tion between sets. Total target training data amounts to approx-
imately 3.5 minutes of speech per speaker. Total impostor train-
ing data is in the order of 14 minutes duration.

For the end-to-end system, target data is partitioned into
two mini-batches (Mt=50%). Since impostor data is more
plentiful, it is partitioned into five mini-batches (Mi=20%) and
used as background data for the baseline system. The average
training recording is 3.25 seconds long. For the assessment
and testing of both systems, one trial corresponds to one entire
recording. Accordingly, K is set to 3.25×16000 = 52000 sam-
ples for training, and to each trial length at testing. Audio
files used by the GMM system are preprocessed with silence
removal. This step is not performed for the end-to-end system.

4.3. End-to-end system: augmentation and generalization

The training process took 17 and 13 hours for speaker 1 and
2, respectively, on an 8-core CPU running at 3.5 GHz. Several
NEAT parameters influence the training time, e.g. without mini-
batching, and with an otherwise identical setup, training takes
several days.

Results obtained according to the evaluation procedure de-
scribed in Section 3.4 are depicted in Fig. 6. Results are il-
lustrated independently for the two target speakers and for 500
generations. The solid magenta (dark) profile in each plot shows
the EER obtained by each generation champion assessed us-
ing the training data. EER profiles exhibit the expected evolu-
tion trend, namely a steady decrease from above 30% to less
than 5% within 150 generations. The lowest EERs obtained
by grand champion networks are 0.79% for speaker 1 (genera-
tion 329) and 0.98% for speaker 2 (generation 464) marked by
black dots. Solid yellow (light) profiles show EERs for genera-
tion champions assessed on test data. As expected, performance



on independent data is worse. Nonetheless, the selected grand
champions are among the best performing networks on test data.

A summary of performance for both GMM and end-to-end
systems is presented in Table 1. For the latter, results for both
train and test datasets concern the grand champion network se-
lected for each speaker. For the test set, grand champions yield
EERs of 5.30% and 9.44%, whereas the GMM system deliv-
ers EERs of 9.52% and 6.90%. The gates of the grand cham-
pion networks prune an average of 46% of output data (in both
speech and non-speech intervals) — the average for speaker 1
is 40% whereas that for speaker 2 is 53%. This percentage is
consistently higher than than for the GMM system for which si-
lence removal prunes an average of 35% of data. The effective
behaviour of the gate was observed on a just few trials, depict-
ing a periodic opening and closing as opposed to an energy- or
amplitude-related activation. These findings show that (i) the
performance of the end-to-end system is competitive with that
of the GMM system and (ii) the two systems exploit data in a
different way.

The upper green dashed profiles in Fig. 6 show the num-
ber of connections of each generation champion. As evolu-
tion proceeds, networks are steadily augmented with new nodes
and connections. In general, network augmentations cause de-
creases in EERs for the training set, with 112 and 138 connec-
tions for speaker 1 and 2 grand champions, respectively. These
networks are orders of magnitude less complex than usual, deep
layered structures (c.f. ∼ 200k connections for the most com-
pact model reported in [20]). Networks with such a reduced
parameter space are inherently less prone to over-fitting since
they do not have the capacity to learn a direct input-output cor-
respondence.

5. Conclusions and future work
This paper reports an end-to-end approach to automatic speaker
verification (ASV) based on the neuroevolution of augment-
ing topologies (NEAT) algorithm. In contrast to the existing
state of the art, the proposed algorithm avoids the use of hand-
crafted features by processing raw audio and optimizes network
weights and topologies in an entirely end-to-end fashion. Less
complex topologies with a low memory footprint are well suited
to embedded implementations. While reporting results for two
speakers is not sufficient—and was neither intended—to pro-
vide a statistically reliable comparison between two systems,
the proposed end-to-end approach is found to be at least com-
petitive with a GMM baseline system.

These findings suggest that the end-to-end approach mer-
its further attention and experimentation with larger, standard
datasets. This work will require the reduction of computa-
tional efficiency; computational demands of the current algo-
rithm make larger-scale experimentation impracticable.

In addition to the investigation of efficient implementations
which exploit hardware acceleration, future work should con-
sider non-binary gates for soft, rather than hard weighting of
output score samples, and experimentation with longer duration
training and testing. This work may well bring improvements in
end-to-end system performance and/or expose application set-
tings for which the proposed approach may excel.
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