
Transforming the JSON Output of SPARQLQueries
for Linked Data Clients

Pasquale Lisena
EURECOM

Sophia Antipolis, France
pasquale.lisena@eurecom.fr

Raphaël Troncy
EURECOM

Sophia Antipolis, France
raphael.troncy@eurecom.fr

ABSTRACT
SPARQL endpoints are one possible access method to linked data.
The results of SPARQL queries serialized in JSON are, however,
not suitable to be directly used by web developers in end-user
applications who often need to merge the values resulting from
variable bindings. In this work, we propose a generic approach
implemented in a JavaScript module that takes as input a JSON file
describing both the SPARQL query and the shape of the expected
output at the same time.

CCS CONCEPTS
• Information systems→Data accessmethods; Semanticweb
description languages; Query languages; Extraction, transforma-
tion and loading;

KEYWORDS
SPARQL, JSON, JSON-LD, transformer, JavaScript

ACM Reference Format:
Pasquale Lisena and Raphaël Troncy. 2018. Transforming the JSON Output
of SPARQL Queries for Linked Data Clients. In WWW ’18 Companion: The
2018 Web Conference Companion, April 23–27, 2018, Lyon, France. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3184558.3188739

1 INTRODUCTION
The SPARQL W3C recommendation [5] defines not only a query
language for data represented in RDF, but also the protocol for
retrieving the data, including a standardised format for the answers
in XML, CSV/TSV and in JSON [9]. The latter one, in particular, has
been introduced with the purpose of easing the consumption of
the data by web (and not only) applications, through its complete
compatibility with JavaScript. However, the nature of data models
between the Web of Data (RDF, graph-oriented) and the Web of Ap-
plications (JSON, document-oriented) is very different. In practice,
the output of SPARQL endpoints is a set of all possible bindings (of
the form <variable, value>) that satisfies the query, which is not
handy for efficient client processing. Current habits, expertise and
coding technologies for web applications make the manipulation
of nested objects easier for developers than the manipulation of
triples.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3188739

As an example, let’s retrieve a list of Italian cities, with their
name and an illustration from DBpedia1, limited to the first 100
results.
SELECT *

WHERE {

?city a dbo:City ;

dbo:country dbr:Italy ;

foaf:depiction ?image ;

rdfs:label ?name .

} LIMIT 100

The output – of which Figure 1 contains an extract – is hard to
read and manipulate.

The output described in Figure 2, in which the number of results
and the different values belonging to each result are clearly visible,
is much compact and ready to be consumed.

1.1 Web developer requirements
We describe four different needs that developers face when manip-
ulating SPARQL JSON output:
1. Skip irrelevant metadata. A typical SPARQL output contains
a lot of metadata that are usually not useful for web developers.
This is the case of the head part that contains the list of variables
that one might find in the results. In practice, the developer ignores
completely this part and he checks for the availability of a certain
property directly in the JSON tree.
2. Reducing and parsing. The value of a property is always
wrapped in an object with at least the attributes type (uri or literal)
and value, that contain the information. As a consequence, this
information is bounded at a deeper level in the JSON structure than
the one the developer expects. This makes the manipulation more
clumsy. In addition, each literal is expressed as a string value with
a datatype. The consequence is that numbers and booleans need to
be casted for being used.
3. Merging. Taking as example a visualisation interface, displaying
the various names of Bologna in different languages means merging
the results of the first two elements of the bindings, being careful to
keep all the different names of the city and the unique but repeated
value for the image. A merge becomes mandatory especially when
the number of properties that have multiple values grows (i.e. mul-
tilingual names, multilingual descriptions, a set of images) and the
endpoint output contains a result for each combination of values.
This task becomes even harder when the required output foresees a
deeper structure – i.e. the names and surnames of the most famous
citizens for each city can not be merged in two distinct arrays, but
do better fit in an array of objects.
1http://dbpedia.org/sparql

https://doi.org/10.1145/3184558.3188739
https://doi.org/10.1145/3184558.3188739
http://dbpedia.org/sparql

Figure 1: Extract of a JSON output from a SPARQL query. It
includes 3 results, among which 2 (A, B) refers to the same
entity (dbr:Bologna).

4. Mapping. The web developer may want to map the results to
another structure or vocabulary such as schema.org.

1.2 Transforming the output
In this paper, we present a JavaScript module called SPARQL Trans-
former, with the goal of transforming the JSON output to a chosen
structure. The approach relies on a novel query language – based
on JSON – that is able to specify both the query and the result
structure at the same time.

Figure 2: Desired JSON-LD output of a SPARQL query.

The implementation is strongly inspired by the JSON-LD syn-
tax. This version of JSON defines in its standard some interesting
Linked Data possibilities, such as the ability of assigning an URI
that identifies an entity (@id), defining its class (@type), declaring
the language of a literal (with the couple @language/@value). Nev-
ertheless, SPARQL Transformer is able to generate JSON with any
shape, among which JSON-LD occupies a privileged position.

Among the two available query syntax (plain JSON and JSON-
LD), we will use examples using the JSON-LD one, while the repos-
itory README fully explained how to use the JSON one. The mod-
ule, with the full documentation and more examples is available at
https://github.com/D2KLab/sparql-transformer.

2 RELATEDWORK
Issues about the usage of SPARQL output in real-life applications
have been explored in [1], where the proposed solution is specific
to the generation of HTML reports.

Various works have provided bridges between the Web of Data
and the developers. Among these, we can cite grlc, a software for
the automatic generation of web API from SPARQL query contained
in GitHub repositories [7].

Wikidata SDK [6] addresses the problem of the complexity of the
SPARQL JSON output through a precise function2 that transform
the JSON output to a simplified version by reading the variable
names. The implementation takes care of the reduction and parsing
tasks, but it does not address the problem of merging.

The provision to JavaScript developers of an easier way to deal
with RDF is also capturing the effort of the W3C RDFJS Community
Group3, that produced a low level interface specification for the
interoperability of RDF data in JavaScript environments [2]. Their
approach tries to preserve the triple format of the information and
the graph-oriented model of RDF.

2https://github.com/maxlath/wikidata-sdk/blob/master/docs/simplify_sparql_
results.md
3https://www.w3.org/community/rdfjs/

https://github.com/D2KLab/sparql-transformer
https://github.com/maxlath/wikidata-sdk/blob/master/docs/simplify_sparql_results.md
https://github.com/maxlath/wikidata-sdk/blob/master/docs/simplify_sparql_results.md
https://www.w3.org/community/rdfjs/

The attempt of converting and mapping RDF sources has led to
SPARQL Template Transformation Language (STTL) [3]. This lan-
guage allows to define transformation templates (as strings) in
which the results of the SPARQL query will find place. Moreover, it
exposes a significant number of functions, especially when com-
bined with LDScript [4]. Despite transformation being a goal of
STTL, it does neither focus on the conversion to JSON-LD, nor on
the merging binding results as exposed in Section 1.

The W3C SPARQL Specification itself includes a query format
called CONSTRUCT for extracting from the endpoint a set of triples,
which is eventually different from its actual content and can also
consist in a mapping [5]. It returns in output a graph, following
one of the standard SPARQL outputs, including a JSON-LD version.
As a limit, literals are not parsed, and they are always represented
as objects. This format is less popular than the SELECT one among
developers, who are consequently less used to it. Moreover, it does
not allow the use of aggregate functions. For this reason, it is no
possible to rely on the sole CONSTRUCT for shaping JSON with pre-
defined structure. This is demonstrated also by sparql-to-jsonld,
a command-line library that aims to pass from SPARQL to JSON-LD
requiring on 3 different inputs: a SELECT query, a CONSTRUCT or
DESCRIBE query and a JSON-LD frame [8].

Finally, JSON Schema is a format for defining the structure of
a JSON object. Although it is a powerful tool for validation – for
example – of forms and APIs, there are not evident benefits for
JSON reshaping purposes [10].

3 TEMPLATING THE RESULT WITH THE
QUERY

The strategy of this work relies in the use of a single JSON object
for defining the query and the expected structure (or prototype)
of the output. Different from SPARQL CONSTRUCT, the query and
the final structure are not two distinct parts of the query, but they
are expressed together at the same time. This union of intent is
strengthen by the adoption of the expecting result format – JSON –
as query dialect itself.

Two formats (and two types of output) are supported: plain JSON
and JSON-LD. When not differently specified, the former use the
same keys of the JSON-LD one, without prepending them with the
@ sign. The syntax of both formats is composed by two main parts:
the prototype definition and the root $-properties.

For the JSON-LD version, a @context property is foreseen for
specifying the context.

3.1 The prototype definition
The @graph property (or proto, for plain JSON syntax) contains
the prototype of the result as expected by the user. Values in the
prototype can start with:

• an interrogative point "?" (like ?id or ?city), suggesting that
the value should be replaced by the one of the homonym
SPARQL variable;

• a "$" sign, that identifies the parts that requires to be processed
by the software;

• any valid value, that will be present in the output as is and
which do not depend from the query result.

{
"@context": "http:// schema.org/",
"@graph": [{

"@type": "City",
"@id": "?id",
"name": "$rdfs:label$required$lang:it",
"image": "$foaf:depiction$required"

}],
"$where": [

"?id a dbo:City",
"?id dbo:country dbr:Italy"

],
"$limit": 100

}

Listing 1: A query in the JSON-LD format

{
"@context": "http:// schema.org/",
"@graph": [{

"@id": "?city",
"name": "$rdfs:label",
"containedInPlace":{

"@id" : "? region",
"name": "$rdfs:label$lang:it"

}
}],
"$where" : "?id dbo:region ?region"

}

Listing 2: The query can contain nested objects. The two
rdfs:labels refer respectively to ?city and ?region.

When the value should be taken from the query result, it is
declared using the following syntax:

$<SPARQL PREDICATE>[$modifier[:option]...]

The main part is the SPARQL predicate (a property or a path, e.g.
rdfs:label, foaf:depiction, etc.). The object of the predicate is
automatically assigned, unless the presence of the $var modifier.

The subject of the predicate is the variable of the closest @id in
the structure. If this variable does not exist, it is set to ?id by default.
This allows to go beyond a flat set of primitive properties, and have
objects at different levels in the JSON structure: each object, as soon
as it owns an @id, behaves as a nested prototype.

Listing 2 shows a practical example, by representing the relative
region of each city in a containedIn property. This property is
valorised by an object that contains the id and the label. In this
case, the subject of the predicate rdfs:label is not ?city (root
@id) but ?region (closer @id), and this would happen to any other
eventual property of the object. This allows to avoid to write paths
of properties longer the what is necessary.4

Some modifiers can be present after the predicate, separated by
an equal number of $ sign. These modifiers will be used in the

4See the full example at https://github.com/D2KLab/sparql-transformer/blob/master/
query.examples.md

https://github.com/D2KLab/sparql-transformer/blob/master/query.examples.md
https://github.com/D2KLab/sparql-transformer/blob/master/query.examples.md

PROPERTY INPUT DESCRIPTION
$where string, array Add where clause in the triple format.
$values object Set VALUES for specified variables as a map.
$limit number LIMIT the SPARQL results
$distinct boolean (default true) Set the DISTINCT in the select
$orderby string, array Build an ORDER BY on the variables in the input.
$groupby string, array Build an ORDER BY on the variables in the input.
$having string, array Allows to declare the content of HAVING.
$filter string, array Add the content as a FILTER.
$prefixes object set the prefixes in the format "foaf": "http://xmlns.com/foaf/0.1/".

Table 1: Supported root $-properties

query step and have a default values chosen in order to make the
developer to retrieve the maximum information. For example, all
the values are optional, unless specified as $required.

A special role is given to the $var modifier, because it allows
to assign a specific SPARQL variable as object (e.g. $var:?myVar),
so that it can be addressed in other modifiers. Other possibilities
include filtering by language ($lang:it) or sample those values
($sample).

As stated before, some properties can have as value a SPARQL
variable (e.g. ?id), that will be transferred to the output replaced
by its query result value. Also these properties can have modifiers
as the previous ones, for example for making them required.

3.2 The root $-properties
Some root properties – identified by a key starting with a $ – give
access to different SPARQL features. They will not be transferred
to the output, being considered only at query level. The names of
those properties maps exactly to the reserved keywords in SPARQL
($limit, $filter, $groupby, $orderby, etc.), so that their interpre-
tation is immediate for developers who are familiar with the query
language. They often support both a single value or an array. For
example, this is the case of $where, that enables to specify WHERE
clauses – in the triple format – which will be added to the ones
automatically generated by the prototype.

Table 1 shows the currently implemented $-properties.

4 IMPLEMENTATION
SPARQL Transformer is a library that receives as input the query
in JSON described in Section 3, translates it in a SPARQL query,
performs the request to the endpoint and returns a JSON output
with the desired shape. Implemented as a JavaScript module, it can
run both in the browser and in Node.JS environments. It is made of
three parts that work in sequence, as shown in Figure 3.

The input is read by the Parser, that has the goal of extracting
from it the SPARQL SELECT query and the prototype. The reason
for which we rely on SELECT instead of CONSTRUCT is detailed in
Section 2.

The root $-properties are collected and transformed to match
the SPARQL syntax. For the prototype, it requires that for each
property:

• It reads the assigned SPARQL variable or generates one auto-
matically (e.g. ?v0);

Figure 3: The application schema of SPARQL Transformer.

• It adds it to the list or variable in the SELECT;
• It reads and interprets the modifiers;
• If a predicate is declared, it assigns to it the object and the
subject, taken from the closest @id;

• Considering the previous points, it generates WHERE clauses,
FILTERs, etc..

The two outputs of this part are a SPARQL query and a cleaned
prototype, in which all the values are SPARQL variables (e.g. "@id":
"?id", "name":"?v0"), that will be used as placeholders later.

The SPARQL query is passed to the Query Performer that is
in charge of making an HTTP request to the SPARQL endpoint
(that can be specified in input) in order to collect the results.5 In
case of particular needs, this part can be entirely replaced by the
end developer with a custom function, that receives as input the
generated SPARQL query and return the results through a Promise.
5It internally relies on Virtuoso SPARQL Client, https://github.com/crs4/
virtuoso-sparql-client.

https://github.com/crs4/virtuoso-sparql-client
https://github.com/crs4/virtuoso-sparql-client

The last part is the Shaper. First, it creates as many instances of
the prototype as the result items are, replacing the placeholders with
the real data. If some results does not contain a certain value –which
happens when the variable is OPTIONAL –, it is removed from the
instance. Then, it merges the object with the same @id, transforming
the property values in array when needed and appending all the
distinct values. Nested objects are also involved in this step: they
are merged in the same way if they share the @id or alternatively
the value of all properties, otherwise they are considered distinct
and aggregated in an array.

If the query object used the JSON-LD syntax, the module packs
the results in a JSON-LD structure, by wrapping it in a @graph and
adding the desired @context.

Finally the result is returned in output.

5 CONCLUSION AND FUTUREWORK
The need of easing the manipulation of SPARQL results in web envi-
ronments led us to define a new strategy of querying the endpoints
based on the use of JSON. This strategy found an implementation
in a JavaScript module called SPARQL Transformer.

This work aims to give a solution to some of the problems that
developers are used to face with SPARQL json results. Among
them:

• Writing a query and the expected output at the same time;
• Parsing the values according to the datatype;
• Give to the results a different structure than the flat set of
<variable, value> items retrieved by default;

• Merging the results that describe the same entity;
• Map the results to a different vocabulary;
• Realise a JSON-LD middleware for RDF data.
Considering that it makes use only of JS and JSON, its use cases

easily include Node.JS environments (e.g., for realising a web API)
or directly the browser (for directly retrieving and consuming data
coming from the endpoint).

SPARQL Transformer is designed to fulfil the most common needs
of developers, with the clear limit of the difficulty in getting the
same expressiveness of a mature query language as SPARQL. Its

implementation covers different features of SPARQL specification,
while further ones are foreseen as future work.

Further studies will investigate if it would be eventually possible
to cover other kind of SPARQL operation, like ASK, INSERT and
DELETE.

Finally, we plan to better evaluate the library. This goal will be
reached in two different ways. On one side, we will try to apply
SPARQL Transformer to existing collection of queries, for evaluating
its coverage. On the other side, we will realise a web interface that
enables final developers to test the library, making also use of
examples coming from the documentation.

ACKNOWLEDGMENTS
This work has been partially supported by the French National
Research Agency (ANR) within the DOREMUS Project, under grant
number ANR-14-CE24-0020.

REFERENCES
[1] Sunitha Abburu and G Suresh Babu. 2013. Format SPARQL Query Results into

HTML Report. International Journal of Advanced Computer Science and Applica-
tions (IJACSA) 4, 6 (2013), 144–148.

[2] Thomas Bergwinkl, Michael Luggen, elf Pavlik, Blake Regalia, Piero Savastano,
and Ruben Verborgh. 2017. Interface Specification: RDF Representation, Draft
Report. Technical Report. W3C.

[3] Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon. 2015. A generic RDF
transformation software and its application to an online translation service for
common languages of linked data. In 14th International Semantic Web Conference
(ISWC). Bethlehem, Pennsylvania, USA, 150–165.

[4] Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon. 2017. LDScript: a
Linked Data Script Language. In 16th International Semantic Web Conference
(ISWC). Vienna, Austria, 208–224.

[5] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language – W3C
Recommendation. Technical Report. W3C.

[6] Maxime Lathuilière. 2015. Wikidata SDK. GitHub repository, https://github.
com/maxlath/wikidata-sdk. (2015).

[7] Albert Meroño-Peñuela and Rinke Hoekstra. 2016. grlc Makes GitHub Taste Like
Linked Data APIs. In The Semantic Web – ESWC 2016 Satellite Events. 342–353.

[8] Jindřich Mynarz. 2016. sparql-to-jsonld. GitHub repository, https://github.
com/jindrichmynarz/sparql-to-jsonld. (2016).

[9] Andy Seaborne. 2013. SPARQL 1.1 Query Results JSON Format – W3C Recommen-
dation. Technical Report. W3C.

[10] Austin Wright and Henry Andrews. 2017. JSON Schema: A Media Type for
Describing JSON Documents. Technical Report. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/draft-handrews-json-schema/

https://github.com/maxlath/wikidata-sdk
https://github.com/maxlath/wikidata-sdk
https://github.com/jindrichmynarz/sparql-to-jsonld
https://github.com/jindrichmynarz/sparql-to-jsonld
https://datatracker.ietf.org/doc/draft-handrews-json-schema/

	Abstract
	1 Introduction
	1.1 Web developer requirements
	1.2 Transforming the output

	2 Related Work
	3 Templating the Result With the Query
	3.1 The prototype definition
	3.2 The root $-properties

	4 Implementation
	5 Conclusion and Future Work
	Acknowledgments
	References

