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ABSTRACT

We present a novel and efficient approach for estimating the max-
imum likelihood (ML) estimates of the angles-of-arrival (AoAs) of
multiple sources. The approach is iterative and is based on orthog-
onal projections in order to optimise the ML cost function, thus the
name OPML. As will be shown, the advantage of using an orthog-
onal basis of the signal manifold would allow solving the ML cost
function in an iterative manner. In fact, we propose two algorithms
based on OPML, i.e. OPML-1 and OPML-2, which exhibit lower
computational complexity and faster convergence than existing ML
algorithms. In this paper, we discuss the idea of OPML and its two
implementations, followed by simulation results to demonstrate their
performance.

Index Terms— Maximum Likelihood, Angle of Arrival, Or-
thogonal Projections, Alternating Optimization

1. INTRODUCTION

The estimation of the angles of arrival, or AoAs, of multiple sources
is a well known problem in the context of array signal processing. In
fact, this problem emanates in many engineering applications such
as navigation, tracking of objects, radar, sonar, and wireless commu-
nications [1]. One of the first investigated techniques to deal with the
AoA problem was by using Maximum Likelihood [2]. Nonetheless,
it didn’t receive much attention due to the high computational load
of the multivariate nonlinear maximisation problem involved, since
it requires a q-dimensional search, where q is the number of signals.
To cope with this issue, a tradeoff has been done between complexity
and performance, hence suboptimal techniques with reduced com-
plexity have dominated the field. The most famous ones are: Mini-
mum Variance Distortionless Response (MVDR) by Capon [3], fol-
lowed by Multiple Signal Classification (MUSIC) developed in [4]
and [5], independently. Also, less complex algorithms were imple-
mented to replace the 1-D search of MUSIC by a polynomial root
finding process [6], or a least squares fit [7]. The performance of
these algorithms are inferior to the ML technique. In addition, these
suboptimal methods can not resolve coherent sources, which is the
case of a specular multipath channel. Therefore, if a single user was
transmitting a signal in such a channel, then all the above techniques
(except for ML) couldn’t properly estimate the signal parameters,
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unless a preprocessing of the data is done, such as spatial smooth-
ing [8].

In the literature, existing techniques for obtaining ML estimates
of the AoAs have been proposed. The iterative quadratic ML tech-
nique (IQML) was developed [9] to compute the ML estimates of the
signal parameters such as AoAs, but the technique is only applicable
to uniform linear antenna arrays. Also, the alternating projections
method in [10] was used to obtain ML estimates of the AoAs. The
expectation maximisation (EM) technique in [11] was used to up-
date the signal parameters simultaneously to maximise the ML cost
function. This may lead to slow convergence and a difficulty in max-
imisation steps due to coupling when smoothness penalties are used.
These two problems were a motivation to the space-alternating gen-
eralised EM (SAGE) algorithm in [12] where the signal parameters
are updated sequentially in small groups. Furthermore, an iterative
method was developed in [13] to estimate the AoAs of incoming
signals, but it is only applicable to signals with known waveforms.
Other recent ML methods devoted to AoA estimation, mostly based
on optimization heuristics, can be found in [14–22].

In this paper, we take a different approach. We express the sig-
nal manifold in an orthogonal basis, which allows implementing it-
erative algorithms to update the signal parameters, i.e. the AoAs,
depending on the orthogonal basis chosen. In other words, we it-
eratively update the AoAs using Orthogonal Projections to optimise
the ML cost function (OPML). The performance of the algorithm
would depend on the choice of the orthogonal basis. For this rea-
son, we have implemented two versions of OPML, i.e. OPML-1
and OPML-2. It turns out that OPML-1 gives the same estimates as
the alternating projections method in [10]. Also, we propose a com-
plexity reduction of OPML-1. Furthermore, simulations have shown
that OPML-2 converges faster than OPML-1, and in some scenari-
ons OPML-2 requires only 1 iteration to converge.

This paper is organised as follows. First, the general system
model of the AoA problem is stated. In Section 3, a review of the
deterministic ML estimator of the AoAs is presented. Then, the con-
cept of using Orthogonal Projections for ML estimation (OPML) is
introduced in Section 4, where both implementations OPML-1 (with
its complexity reduction) and OPML-2 are described. In Section 5,
a short discussion on OPML is given, followed by simulation results
comparing the performance of OPML-1 and OPML-2 per iteration.
We conclude the paper in Section 7.

Notations: Upper-case and lower-case boldface letters denote
matrices and vectors, respectively. (.)T and (.)H represent the trans-
pose and the transpose-conjugate operators. The matrix IN is the
identity matrix of dimensions N × N . The operators ”tr{X}” and
‖X‖ denote the trace and Frobenius norm of a square matrix X.



2. SYSTEM MODEL

Assume a planar arbitrary array of N antennas. Furthermore, con-
sider q < N narrowband sources attacking the array from different
angles, i.e. Θ = [θ1 . . . θq]. Collecting L time snapshots and fol-
lowing [23], we can write

X = AS + N (1)

where X ∈ CN×L is the data matrix with lth time snapshot, x(tl),
stacked in the lth column of X. The matrix S ∈ Cq×L is the source
matrix. The steering matrix, or signal manifold, A ∈ CN×q is com-
posed of q steering vectors, i.e. A = [a(θ1) . . .a(θq)]. Each vector
a(θi) is the response of the array to a source impinging the array
from direction θi. The form of a(θi) depends on the array geometry.
The matrix N ∈ CN×L is background noise. The noise is mod-
elled as a white circular complex Gaussian process of zero mean and
covariance σ2IN and independent from the source signals. Before
stating the problem, we admit that the number of sources q is known
a priori. The problem of estimating the number of sources is, in fact,
a detection problem in signal processing. Techniques for estimating
q are found in [24–27]. Now, we are ready to address our estima-
tion problem: ”Given the available snapshots X and the number of
sources q, estimate the angles of arrival of the incoming signals, i.e.
Θ.”

3. THE DETERMINISTIC MAXIMUM LIKELIHOOD
ESTIMATOR

This section serves as a review of the deterministic ML estimator of
the angles of arrival of the transmitting sources. For detailed deriva-
tions, the reader is referred to [10].
In a deterministic approach, the signal parameters (i.e. S and Θ) are
modelled as unknown deterministic sequences, i.e. the signal param-
eters are assumed to be nonrandom and unknown. These quantities
are jointly estimated through the criterion:

[Θ̂ML, ŜML] = argmin
Θ,S

‖X−AS‖2 (2)

The ML estimate of Θ, obtained by optimising (2) over S first, is
given by

Θ̂ML = argmax
Θ

tr
{

PAR̂
}

(3)

where PA is the projector onto the signal subspace, i.e. the space
spanned by columns of PA

PA = A(AHA)−1AH (4)

The matrix R̂ = XXH is the sample covariance matrix of the re-
ceived snapshots. The issue, here, is that the optimisation problem
in (3) is computationally exhaustive, i.e. to obtain an ML estimate
of Θ, one should go through a q-dimensional search, which is some-
what impossible. In the following section, we propose an approach
to solve the problem using orthogonal projections.

4. ORTHOGONAL PROJECTIONS FOR ML ESTIMATION
(OPML)

In this section, we present the OPML approach for estimating the
angles of arrival of the incoming signals. We begin the section by
exploiting a property of the projector matrix, i.e. PA. It is easy to
see that

PAA = A(AHA)−1AHA = A (5a)

or, equivalently

PAa(θi) = a(θi), i = 1 . . . q (5b)

Equation (5) tells us that PA has q eigenvalues equal to 1, with cor-
responding eigenvectors being the columns of A. Note that the rank
of PA is q, which means that the dimension of the null space of PA

is N − q. The null space of PA is called the noise subspace. Since
the columns of A are linearly independent, they could be expressed
in an orthonormal basis of dimension q. Using the spectral represen-
tation theorem, we could write PA = VVH where V = [v1 . . .vq]
and VHV = IN. Plugging this representation of PA in (3), we can
say

Θ̂ML = argmax
Θ

tr
{

VVHR̂
}
= argmax

Θ

q∑
i=1

vH
i R̂vi (6)

We have made implicit that {vi}qi=1 are, indeed, functions of Θ.
Referring to the second equality in (6), one could see that we have
decoupled the q-dimensional maximisation problem into q positive
and quadratic functions in vi’s. The OPML approach is based on
solving (6) by maximising each term of the form vH

i R̂vi, iteratively.
In the two subsections that follow, we propose two different imple-
mentations of the OPML approach, OPML-1 and OPML-2. Each
approach is based on a different choice of the orthogonal basis V.

4.1. First Implementation of OPML (OPML-1)

Since the columns of A are linearly independent and span the signal
subspace, it turns out that we could orthonormalise the column vec-
tors of A via sequence of matrix operations that can be interpreted as
multiplication on the right by upper-triangular matrices [28]. These
matrix operations could be done sequentially through Gram-Schmidt
projections, i.e.

vk =

(IN −
k−1∑
i=1

viv
H
i )a(θk)

‖(IN −
k−1∑
i=1

vivH
i )a(θk)‖

(7)

starting from k = 1 till q. OPML-1 aims at maximising (6) using a
Gram-Schmidt representation in (7), in an iterative fashion. Like any
other iterative algorithm, an initialisation is needed to run the main
loop of the algorithm. Before presenting OPML-1, we fix a notation
that we use throughout the paper: let Y

(k)
i be a matrix of a defined

dimension that denotes the value (or estimate) of the quantity Yi at
iteration k and sub-iteration i. For the initialisation phase, we use
k = 0.

4.1.1. Initialisation of OPML-1

In the initialisation phase of OPML-1, the estimate of θ(0)1 is ob-
tained by solving

θ̂
(0)
1 = argmax

v1

vH
1 R̂v1 = argmax

θ1

aH(θ1)R̂a(θ1)

‖a(θ1)‖2
(8)

Note that θ̂(0)1 is nothing other than the conventional Bartlett [29]
beamformer estimate of θ1. In an attempt of estimating θ(0)2 , one
needs v

(0)
1 to proceed. This vector is obtained as

v
(0)
1 =

a(θ̂
(0)
1 )

‖a(θ̂(0)1 )‖
(9)



In general, one has the estimates {θ̂(0)j }j<i and the vectors {v(0)
j }j<i

in order to get an estimate of θ(0)i and the vector v
(0)
i , which is done

by

θ̂
(0)
i = argmax

vi

vHi R̂vi = argmax
θi

aH(θi)P
(0)
i R̂P(0)

i a(θi)

‖P(0)
i a(θi)‖2

(10a)

where

P(0)
i = IN −

i−1∑
j=1

v
(0)
j v

(0)H
j with v

(0)
i =

P(0)
i a(θ̂

(0)
i )

‖P(0)
i a(θ̂

(0)
i )‖

(10b)

4.1.2. Main Loop of OPML-1

After the initialisation phase, one has access to the quantities θ̂(0)i ,
v
(0)
i , and P(0)

i for all i = 1 . . . q. In what follows, we omit the
superscript (k) from v

(k)
i , i.e. vi, because we update all these

quantities, jointly, per sub-iteration. Now, in order to estimate θ̂(k)i ,
one should apply Gram-Schmidt orthogonalisation to the vectors{
a(θ̂

(k)
1 ) . . .a(θ̂

(k)
i−1),a(θ̂

(k−1)
i+1 ) . . .a(θ̂

(k−1)
q )

}
, then treat a(θ̂

(k)
i )

as if it were the last vector to be orthogonalised, viz.

θ̂
(k)
i = argmax

θi

vH
i R̂vi = argmax

θi

aH(θi)P
(k)
i R̂P(k)

i a(θi)

‖P(k)
i a(θi)‖2

(11a)

where

P(k)
i = IN −

q∑
j=1
j 6=i

vjv
H
j (11b)

and, sequentially compute
{

vp
}q
p=1
p6=i

as

vp =

(IN −
p−1∑
j=1

vjv
H
j )a(θ̂

(k)
p )

‖(IN −
p−1∑
j=1

vjvHj )a(θ̂
(k)
p )‖

, if p < i

vp =

(IN −
p−1∑
j=1
j 6=i

vjv
H
j )a(θ̂

(k−1)
p )

‖(IN −
p−1∑
j=1
j 6=i

vjvHj )a(θ̂
(k−1)
p )‖

, if p > i

(11c)

The operations in equation (11) are done sequentially from i = 1
till q, at iteration k. After updating all quantites, one could move
to the next iteration (k ← k + 1). The algorithm terminates upon
‖Θ(k+1) − Θ(k)‖ < ε, with Θ(k) = [θ̂

(k)
1 . . . θ̂

(k)
q ]T and ε be-

ing a pre-defined threshold. It is important to note the following:
one could analytically prove that OPML-1 gives the same estimates
per iteration and sub-iteration of θ̂(k)i as the alternating projections
method in [10]. The proof has been omitted due to lack of space.

4.1.3. Reduced Complexity of OPML-1

In the main loop of the OPML-1 algorithm, we notice that a
Gram-Schmidt orthogonalisation for q − 1 vectors of dimension

N is needed in order to estimate the angle of arrival of the ith

source at the kth iteration, i.e. θ̂
(k)
i . To be more precise, these

vectors are
{
a(θ̂

(k)
1 ) . . .a(θ̂

(k)
i−1),a(θ̂

(k−1)
i+1 ) . . .a(θ̂

(k−1)
q )

}
. The

Gram-Schmidt process to q − 1 vectors of dimension N costs
O
(
N(q − 1)2

)
operations.

At an iteration k and sub-iteration i, it is possible to update the
orthogonal vectors

{
v1 . . .vi−1,vi+1 . . .vq

}
by a technique that

demandsO
(
N(q−1)

)
operations. The updates are based on Givens

matrices and the Gram-Schmidt process with reorthogonalisation.
We refer the reader to [30] for details on QR updates with real-valued
vectors. An extension to the complex case is straightforward.

4.2. Second Implementation of OPML (OPML-2)

One could, indeed, choose another orthogonal basis U = [u1 . . .uq]
(we use U instead of V to avoid confusion) that spans the signal
subspace to solve (6) in an iterative fashion. Consider the following
basis

uk =

(IN −
q∑
i=1
i 6=k

uiu
H
i )a(θk)

‖(IN −
q∑
i=1
i6=k

uiuH
i )a(θk)‖

, ∀k = 1 . . . q (12)

We claim that the basis in (12) is an orthogonal basis of the columns
of A. The proof has been omitted due to lack of space. Note that (12)
corresponds to a 2-sided orthogonalisation of the array responses,
compared to the 1-sided orthogonalisation in (7). We use the same
initialisation for OPML-2 as OPML-1, thus we have the following
quantities θ̂(0)i , u

(0)
i = v

(0)
i , and P(0)

i for all i = 1 . . . q. In order
to solve (6) using the orthogonal basis in (12), we propose to do the
following at iteration k and sub-iteration i:

θ̂
(k)
i = argmax

θi

uH
i R̂ui = argmax

θi

aH(θi)P
(k)
i R̂P(k)

i a(θi)

‖P(k)
i a(θi)‖2

(13a)

where

P(k)
i = IN −

i−1∑
j=1

u
(k)
j u

(k)H
j −

q∑
j=i+1

u
(k−1)
j u

(k−1)H
j (13b)

and

u
(k)
i =

P(k)
i a(θ̂

(k)
i )

‖P(k)
i a(θ̂

(k)
i )‖

(13c)

5. DISCUSSION

We see that the concept of OPML is to update θ̂(k)i in a successive
manner through the orthogonal basis chosen. The orthogonal ba-
sis of the signal manifold used for OPML-1 is given in (7), i.e. a
Gram-Schmidt basis. For OPML-2, the orthogonal basis chosen is
expressed in (12). We have noticed that not only does this basis
(used for OPML-2) reduce the complexity operations per subitera-
tion, but also converges faster than OPML-1. It is important to state
that other implementations of OPML are possible due to the fact that
an orthogonal basis of an arbitrary subspace is not unique. In the
next section, we present our simulation results, where it is shown
that the performance of OPML-2 at iteration 1 is close to that of
iterations 3 and 5 of OPML-1.



Fig. 1: Two sources impinging the array from directions 0◦ and
20◦. The number of snapshots is 10.

Fig. 2: Two sources impinging the array from directions 0◦ and
20◦. The SNR is 20 dB.

Fig. 3: Two sources impinging the array from directions 0◦ and
20◦. The SNR is 20 dB. The number of snapshots is 100.

Fig. 4: Four sources impinging the array from directions 0◦,20◦,50◦,
and 70◦. The SNR is 20 dB. The number of snapshots is 100.

6. SIMULATION RESULTS

In the first three experiments, the array was linear and uniform with
3 antennas spaced half a wavelength apart. Also, two un-correlated
and narrow-band sources impinging the array from directions θ1 =
0◦ and θ2 = 20◦ were fixed, and the noise was additive complex
Gaussian with average power σ2. The SNR (in dB) is defined as
10 log P

σ2 , where P is the power of both signals. Finally, 100 Monte-
Carlo simulations were done in order to compute the Mean Squared
Error (MSE) of the angles of arrival, θ1 and θ2.

In the first experiment, i.e. figure 1, we have plotted the MSE of
the estimates of θ1 and θ2 produced by both OPML-1 and OPML-2
at iterations 1,3, and 5. The number of snapshots is L = 10. Recall
that iteration 1 is the first iteration, after initialisation. Also, recall
that the same initialisation is used for OPML-1 and OPML-2. We
notice that there is an MSE difference of about 1 dB between the 1st

iteration of OPML-2 and the 3rd or 5th iteration of OPML-1 and
OPML-2.

In the second experiment, i.e. figure 2, the MSE has been plotted
with respect to the number of snapshots at SNR = 20 dB. We observe
the same phenomena as in experiment one, i.e. the 1st iteration of
OPML-2 performs as good as the 3rd or 5th iteration of OPML-1
and OPML-2. This means that OPML-2 offers a faster convergence
in this scenario.

In the third experiment, we have plotted the likelihood function
(equation (3)) as a function of iteration number in figure 3. We have
done the same plot in experiment four (see figure 4), but this time
4 sources with 6 antennas were used. The sources imping the array
from directions 0◦,20◦,50◦, and 70◦. One can see that one iteration
of OPML-2 is close to the convergence point.

7. CONCLUSION

This paper presents a novel and efficient approach to compute the
maximum likelihood estimates of the angles of arrival of the incom-
ing signals. The approach sugguests to use an orthogonal basis of
the signal manifold and to solve iteratively for the signal parameters,
in a successive manner. Furthermore, we have implemented two al-
gorithms based on OPML, i.e. OPML-1 and OPML-2, even though
other implementations are possible by representing the signal mani-
fold in another arbitrary orthogonal basis and updating the signal pa-
rameters, accordingly. OPML-1 turns out to give the same estimates
per iteration as the alternating optimization method. Finally, the
second implementation, OPML-2, corresponding to two-sided or-
thogonalization, converges faster than OPML-1, which is one-sided
(Gram-Schmidt) orthogonalization.
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