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Abstract—In this paper, we are proposing a map-based ap-
proach for the optimal placement of multiple UAV-based flying
wireless relays in a cellular network. The tackled problem is
two-fold, involving a joint UAV-user association problem and
3D placement problem. While related problems were addressed
before, the novelty of our approach lies in the fact it builds
on a combination of probabilistic and deterministic line-of-sight
(LoS) classifiers which exploits the availability of a 3D city map.
While the original problem is very challenging in its dimension,
we give a low-complexity approach to the placement problem
by approximating the optimum UAV positions with a suitably
weighted combination of user positions. Our simulations suggest
a performance close to that obtained with high complexity
exhaustive search for placement.
Index Terms—UAV, drone, placement, wireless, relay, associa-

tion, networks

I. INTRODUCTION

The exploitation of drones, a.k.a unmanned aerial vehi-
cle (UAV) for future wireless cellular communication net-
works has recently gained significant attention under so-called
Drone-as-a-Terminal (DaaT) and Drone-as-a-Relay (DaaR)
scenarios. In the DaaR context, the UAV is envisioned as a
complement to classical fixed infrastructure by allowing ultra-
flexible deployments, with use cases ranging from disaster
recovery scenarios, servicing of temporary cultural or sporting
events, and hot-spots coverage [11], [16]. Much of prior works
dealing with UAV-aided networks has focused on gain analysis
such as e.g. [15], placement and path planning problems e.g.
[9], [13]. In its widest generality, the placement problem
considers seeking a location (or a cyclic path) for a UAV-
based relay so as to optimally serve one or more ground users
given specific user locations and traffic density distributions.
Note that while the problem of placement a single flying

relay was previously considered in e.g. [3], an additional
challenge for the multiple UAV case lies in the fact that
users must be associated to one of the UAVs before being
relayed to the BS. The user-UAV association rule depends
on the UAV location while the optimal position for the UAV
itself depends on which users are to be served by each
UAV, making placement and association two tightly coupled
problems. This fact was recently highlighted in [13]. However
there are several differences between [13] and this work in that
(i) we are interested in the static placement problem while
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Fig. 1: An illustration of map-based simultaneous users asso-
ciation and placement of multiple UAV-based flying wireless
relays.

[13] is addressing a path planning problem under a fixed
flight time constraint and more importantly (ii) we propose
to exploit the availability of a 3D city map so as to provide
deterministic rate guarantees based on accurate LoS prediction
to the ground users, while purely statistical channel models
considered in most previous works [2], [10], [11], [13] aim at
giving probabilistic guarantees.

II. SYSTEM MODEL

This study considers an urban area consists of a set of
N ground level outdoor users carrying radio transmitting
equipments which are scattered randomly in the city and
surrounded by a number of city buildings. Moreover, a set
of M UAVs are flying over the city and functioning as
communication relays between base station (BS) and users as
is shown in Fig. 1. The 3D map of the city is assumed to be
known (estimated) in advance which can be obtained using ei-
ther photogrammetry or radio (including recently UAV-aided)
based reconstruction approaches [6], [8]. This paper aims to
develop a strategy for intelligent placement of the multiple
UAVs so as to maximize a system communication performance
metric. In our scenario, we choose to optimize the data rate
offered to the worst off user, so as to enhance traffic while
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maintaining user fairness1. The ground users have GPS-tracked
2D positions denoted by Xn

U = (x
n
U , y

n
U ) ∈ R2, n = 1 . . . N .

In particular the path loss between the n-th user at the UAV
locations Xm

D = (xmD , ymD , zmD ) ∈ R3,m = 1, · · · ,M is
denoted by γnm. Finally we assume orthogonal time/frequency
slots are used to communicate with the M drones and also
within the users associated to the same drones. Note that this
assumption could be relaxed for the sake of spectral efficiency,
however emphasis is placed on the placement problem in this
paper rather than the well researched interference mitigation
problem.

A. Channel Models
The air-to-ground mobile channel has been studied ex-

tensively in the recent years (see for instance [1], [12]).
Classically the channel path loss between the user and the
UAV in dB is modeled as

γs = βs + 10αs log10 d , s ∈ {LoS,NLoS} (1)

Where αs is the path loss exponent, d is the distance between
the transmitter (ground user) and the receiver (UAV), βs is the
average channel path loss at a reference point. The subscript
s emphasizes the strong dependence of the propagation pa-
rameters on the LoS or non-line-of-sight (NLoS) nature of the
channel [14]. Hence for one given UAV position, we have two
cases s = ”LoS” or s = ”NLoS” for each ground user taken
separately. Note we assume that the base station always is LoS
to the UAV. We also assume that the parameters {αs, βs} have
been pre-estimated based on prior measurements [4].

B. 3D Map-based User Classification

For every possible UAV location, we seek to classify each of
the N users in LoS or NLoS mode. For this, we propose to ex-
ploit the availability of 3D city map. Note that the 3D map can
be obtained from external information sources or potentially
obtained (or enhanced) from the RSSI measurements made
with the drone itself [6]. From a trivial geometry argument
we can predict LoS (un)availability on any given UAV-user
link. Let’s assume that the UAV is hovering at position XD,
then user U is considered in LoS to the UAV if the straight line
passing through both the UAV and the user lies unobstructed
from any building in between.

III. MULTI-UAV PLACEMENT

A. System Performance Metric

We consider an up-link scenario where the M drones or
UAVs form a flying networks of relays and where each user
communicates through one of the available relays. Let us
assume the n-th user is served by the m-th UAV and this
link has LoS/NLoS status s. By virtue of orthogonal channel
access, for simplification, the interference-free capacity of the
drone to user link is approximated (upper bounded) by

Cnm
D−U = log2

(
1 +

PU
γnms σ2

)
(2)

1Other system performance metrics can also be considered such as maxi-
mum sum throughput etc..

where γnms is the predicted path loss between user n and
UAV m under LoS class s. Similarly the capacity of m-th
UAV-BS link is

Cm
D−BS = log2

(
1 +

PD
γmBS σ

2

)
(3)

where PU , PD are the up-link transmit power of the user
and UAV respectively and where the upper-bounding argument
originates in the Jensen’s inequality applied to the concave log
function in the actual Shannon capacity expression [5]. The
additive white Gaussian noise at the receivers is denoted by
σ2, and γmBS stands for the path loss between m-th UAV and
base station.

B. Joint Association and Placement

We now are interested in developing an algorithm for joint
placement and UAV-user association which can operate on the
basis of the available data only, that is (i) the propagation
parameters (αs, βs ; s ∈ {LoS,NLoS}), (ii) the 3D city map,
and (iii) the GPS coordinates of the BS and ground users.
Finally, we are interested in numerically-friendly methods that
avoid exhaustive search of positions in the full 3D flying
volume.
The UAV placement and association algorithm is largely

dependent on the nature of the quality of service (QoS) we
wish to offer to users. In this paper, we take the example of a
fairness-oriented QoS scenario whereby the network seeks to
maximize the rate of the worst-off users. Hence in a system
with backlogged traffic and assuming a simple decode-forward
relay protocol, the drones’ positions and users association are
selected according to:

max
XD, Q

{
min

n∈[1,N ]

[
M∑
m=1

qnmmin
(
Cnm
D−U , C

m
D−BS

)]}
(4)

Where XD =
{
Xm
D ∈ R3, ∀m}

is the UAV location vector
and Q = {qnm, ∀n, m} is the binary association solution
where qnm = 1 indicates that user n associates to the m-th
drone (and only that one) and qnm = 0 otherwise. Note that
the inner ”min” operator reflects the fact that in a standard
decode-forward the capacity of the relay channel is limited by
the segment with lowest capacity. Classically, problem (4) can
be reformulated by relaxing the binary association constraint
(see e.g. [13]).

max
XD, Q

μ (5)

s.t.
∑M

m=1 qnm log2

(
1 + PU

γnms σ2

)
≥ μ , ∀n

log2

(
1 + PD

γmBSσ
2

)
≥ μ , ∀m∑M

m=1 qnm = 1, ∀n
0 ≤ qnm ≤ 1, ∀n, m

where μ can be interpreted as the worst channel capacity
among all the network links. Problem (5) is hard to solve as
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it combines the association problem with the UAV placement
problem. To simplify further , we can split up the problem
(5) into two optimization sub-problems and classically iterate
between them (i.e. associating users to UAV with a given
position and updating the UAV positions given the preceding
association solution).

C. User Association

Given a set of candidate positions X ∗D for the M drones,
the association can be optimized in a standard fashion along
the following lines:

max
Q

μ (6)

s.t.
∑M

m=1 qnm log2

(
1 + PU

γnms σ2

)
≥ μ , ∀n

log2

(
1 + PD

γmBSσ
2

)
≥ μ , ∀m∑M

m=1 qnm = 1, ∀n
0 ≤ qnm ≤ 1, ∀n, m

Note that because there in no interference nor load balancing
constraint in this scenario, the association problem is easily
solved by associating any user to the UAV exhibiting the
highest RSSI, hence:

qnm =

{
1 m = argmin

k
γnks

0 otherwise
(7)

D. Multi-UAV Placement

In this section we consider the problem of Multi-UAV
placement exploiting 3D maps for a given association solution.
Up to our knowledge this problem was never addressed before.
Note that the search for all drone positions decouples into
M independent position searches thanks to the orthogonal
multiple access across all users. While the optimal position for
one drone involves a 3D search, we simplify it by decoupling
the search for a UAV position in the 2D horizontal plane from
the search from an optimized flying altitude, as follows:
1) Optimal Horizontal UAV Position : Let us assume a fixed

flying altitude zmD for the m-th UAV. Due to the segmented
nature of the channel model, i.e. the notion that LoS status
can change completely when going around a street corner, the
search for the optimum 2D UAV position is highly non-convex
and a heuristic method is our best hope for a solution. In this
paper, we propose a practical strategy placing the UAV as a
suitably weighted center of gravity of all its associated users’
positions. Specifically, we propose:

(xm∗
D (zmD ), ym∗

D (zmD )) =

∑N
n=1 (1 − ln(z

m
D )) qnmX

n
U +X

′
BS

∑N
n=1 (1 − ln(zmD )) qnm

, ∀m
(8)

where X
′
BS = (xBS , yBS) is the projection of base station

position onto the ground and 0 ≤ ln(z
m
D ) ≤ 1 is a weight

to be selected and where zmD expresses the dependence on
the assumed UAV altitude (the altitude will be optimized as a
second step). In accordance to the chosen system performance

Fig. 2: Path loss pertaining to users with different distances
(r) from drone versus drone altitude.

metric, a possible strategy is to favor the weakest user. Note
that in the case of homogeneous propagation (such as all LoS-
based propagation) the solution would be to minimize the
distance between the UAV and the most distant associated
user. In the segmented channel model case however, the
weakest user is the one which is also most impaired from LoS
obstructions. In order to capture this intuition and build on
the available 3D map, we introduce ln(z

m
D ) to be an altitude-

dependent ”LoS factor”. This factor is defined by the ratio of
LoS region area at altitude zmD over the total area of search. In
practice, this factor is estimated using the 3D map by taking P
(P large enough) random uniform UAV points at altitude zmD
and counting how many of these are in LoS from the target
user n. For instance, a user surrounded by tall and close-by
structures would require the UAV to fly right on top of it to
experience LoS and hence has a LoS factor of nearly 0, while
a user located in the middle of a large flat park would have a
factor l closer to 1. Note that in order to take the base station
into account for placement, we also consider the base station
as an user with the LoS factor equals to 1 by assuming same
transmit power for drones and users.
2) Optimal UAV Altitude: Now we proceed to optimize the

UAV altitude for given horizontal UAV coordinates. While
this problem is again challenging by nature of the segmented
channel model, we relax the segmentation by resorting to a
classical probabilistic model, where the LoS probability of n-
th user with respect to m-th UAV can be for instance predicted
from [2]:

Pnm
LoS (r, zD) =

1

1 + a exp
(−b

[
arctan

(
zD
r

)− a
]) (9)

where r is the ground projected distance between the drone
and the user, and a, b are called S-curve parameters and
computed according to [2], and zD denotes the respective
drone altitude. Based on this, the average path loss for one
UAV-user link can be obtained for a given drone altitude zmD
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(a) (b)

Fig. 3: (a) Computed optimal UAVs’ positions in each iteration over the city and associated users for the last iteration. The
users assigned to the first UAV are shown by triangles and users associated to the second UAV are depicted in squares. (b)
Evolution of respective UAVs’ altitudes in each iteration.

by:

Λnm (r, zD) = PnmLoS (r, zD)·γnmLoS+(1 − PnmLoS (r, zD))·γnmNLoS , ∀n,m
(10)

Let’s define rnm as the ground distance between n-th user
and m-th UAV. Then im = argmax

n=1,··· ,N
(qnm · rnm) denotes the

farthest associated user to them-th UAV. We can show that the
flying altitude can be optimized according to the proposition
below:

Proposition 1. The optimal UAV altitude (in the
sense of probabilistic path loss) above ground location
(xm∗D (zmD ), y

m∗
D (zmD )) is given by:

max
zmD

μ̄ (11)

s.t. log2

(
1 + PU

Λimm(rimm,z
m
D )σ2

)
≥ μ̄

log2

(
1 + PD

γmBSσ
2

)
≥ μ̄

Proof: (10) is an increasing function of r since the path
loss of LoS channel is always less than that in a NLoS link.
So, it indicates that the worst channel among all users pertains
to the farthest user to the UAV.
Therefore problem (11) can now be used to find the optimal
altitude. This optimization is facilitated from the fact that the
expected path loss for the worst off user has a single unique
local and global minimum as illustrated in Fig. 2.

E. Algorithm Design

The sub-optimal (yet low complexity) algorithm for solving
(5) is based on a three way iteration between user association,
drone altitude optimization and horizontal position optimiza-
tion and is described concisely in Algorithm 1.

IV. NUMERICAL RESULTS

We consider a dense urban Manhattan-like 600 m by 600 m
area consisting of a regular street grid and buildings with
uniform random height in the range of [5, 40] m . The base
station is located in the origin with the height of 40 m.
We consider N = 17 users to be served via two drones
(M = 2). The propagation parameters for the users are chosen
as αLoS = −2.27, βLoS = −40, αNLoS = −3.64, βNLoS =
−30 and for the UAV-BS link αLoS = −2.1, βLoS = −38,
generalized from typical fixed base station-based models as in
WINNER II models [7]. The transmission powers are chosen
as PU = 27 dBm, PD = 27 dBm, and the noise power is -70
dBm.
First, in Fig. 3a we illustrate the UAVs optimal positions

which are computed in each of 6 iterations using our Al-
gorithm. The first UAV (shown in triangles) initially starts
flying from above the base station XBS = X1

D0
= (0, 0, 50)

and the second UAV (squares) starts from location X2
D0

=

Algorithm 1 Map-based multi-UAV placement and user asso-
ciation
• Initialize the drones’ positions at any arbitrary locations

(far from each other).
I) User Association:

• Determine the optimal user association according to Sec-
tion III-C.

II) Drone Placement:

• Find the weighted center of gravity of each UAV’s
associated users and locating the UAV there.

• Optimize the height by working out (11) for each UAV.
Go back to phase I and iterate until convergence.
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Fig. 4: Worst-off user throughput for three different algo-
rithms.

(600, 0, 50). The users assigned to the first UAV are shown
by filled triangles and users associated to the second UAV
are depicted in filled squares. Note that, the results of the user
association are related to the last iteration (final UAV’s optimal
position). Also, the corresponding computed altitudes for each
UAV versus iteration are shown in Fig. 3b.
In Fig. 4 the worst user throughput for three different

algorithms is shown. Note in all case, the throughput of the
worst use is getting worse as more users are injected in
the network, conforming to intuition. We can see that the
performance of the proposed map-based algorithm exhibits
desired robustness is between the values obtained with high
complexity exhaustive search and the probabilistic approach.
Note that, in probabilistic approach, the (3D) optimal locations
for drones and also user association are performed totally
based on the average path loss (10).

V. CONCLUSION

This paper studies a simultaneous UAV-user association and
3D placement problem in multi-UAV enabled wireless net-
works. The proposed solution builds on combined estimation
of the users LoS availability based on statistical model and
city map-based information. We propose a low-complexity
approach to approximate the optimum UAV positions based
on a suitably weighted combination of users’ positions.
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