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Abstract— In the context of coded caching in the K-user
broadcast channel, our work reveals the surprising fact that hav-
ing multiple (L) transmitting antennas, dramatically ameliorates
the long-standing subpacketization bottleneck of coded caching
by reducing the required subpacketization to approximately its
Lth root, thus boosting the actual DoF by a multiplicative factor
of up to L. In asymptotic terms, this reveals that as long as
L scales with the theoretical caching gain, then the full cumula-
tive (multiplexing + full caching) gains are achieved with constant
subpacketization. This is the first time, in any known setting, that
unbounded caching gains appear under finite file-size constraints.
The achieved caching gains here are up to L times higher than
any caching gains previously experienced in any single- or multi-
antenna fully connected setting, thus offering a multiplicative
mitigation to a subpacketization problem that was previously
known to hard-bound caching gains to small constants. The
proposed scheme manages for the first time to virtually decom-
pose the fully connected cache-aided channel into L parallel
channels. The scheme is practical; it works for all the values
of K and L and all cache sizes, and its gains show in practice:
e.g., for K = 100, when L = 1 the theoretical caching gain
of G = 10, under the original coded caching algorithm, would
have needed subpacketization S1 =

�
K
G

�
=

�
100
10

�
> 1013, while

if extra transmitting antennas were added, the subpacketization
was previously known to match or exceed S1. Now for L = 5,
our scheme offers the theoretical (unconstrained) cumulative
DoF dL = L + G = 5 + 10 = 15, with subpacketization
SL =

�
K/L
G/L

�
=

�
100/5
10/5

�
= 190. The work extends to the

multi-server and cache-aided IC settings, while the scheme’s
performance, given subpacketization SL =

�
K/L
G/L

�
, is within a

factor of 2 from the optimal linear sum-DoF.

Index Terms— Caching, coded caching, subpacketization,
multiple antennas, transmitter cooperation, DoF.

I. INTRODUCTION

CODED caching is a communication method invented
in [1] that exploits receiver-side caches in broadcast-type

communications, to achieve substantial throughput gains by
delivering independent content to many users at a time. This
method involves a cache placement phase and a delivery phase.
During the placement phase, content from a library of files
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that are present at the transmitter, is properly pre-cached at
the receiver caches. During the delivery phase — which starts
when users simultaneously request one desired library file
each — the transmitter encodes across different users’
requested data content, in a way that creates multicasting
opportunities even when users request different files.

Specifically the work in [1] considers the single-stream
broadcast channel (BC) scenario where a single-antenna trans-
mitter has access to a library of N files, and serves K
receivers, each having a cache of size equal to the size of
M files. In a normalized setting where the link has capacity
1 file per unit of time, the work in [1] showed that any set of
K simultaneous requests can be served with normalized delay
(worst-case completion time) which is at most T = K(1−γ)

1+Kγ

where γ � M
N denotes the normalized cache size. This was a

major breakthrough because it shows that an ever-increasing
number of users can be served in finite time that converges to
T ≈ 1

γ = N
M as K increases. This result implied a sum-DoF

of

d1(γ) =
K(1 − γ)

T
= 1 + Kγ

users served at a time.1 Given that in the absence of
caching, only one user could be served at a time (because
d1(γ = 0) = 1), the above implies a (theoretical) caching
gain of

G = d1(γ) − d1(γ = 0) = Kγ

representing the number of extra users that could be served at
a time, additionally, as a consequence of introducing caching.

This massive theoretical gain came about because coded
caching manages to remove the main inherent inefficiency of
traditional caching methods, in which each receiver only ends
up utilizing the cached fraction of just the one single file that
that receiver requests, while leaving all other information in
the cache unused. On the other hand, with coded caching,
each receiver is now able to utilize the cached fraction of all
K requested files; The cached content of its own requested file
provides the traditional local caching gain, while the cached
content of the K − 1 files requested by others, are now used
to cancel the interference caused by those same files.

1The concept of DoF will be elaborated on later, but roughly speaking,
in wireless communications with high signal-to-noise ratio (SNR), an achieved
DoF d implies the ability to deliver approximately d log(SNR) bits of con-
tent, per second per Hz. Equivalently, and again loosely speaking, it implies
the ability to simultaneously serve d independent users (i.e., d users per
complex dimension, i.e., per second per Hz).
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This gain — which is close to the theoretic opti-
mal [1] — was shown to persist under a variety of settings
that include uneven popularity distributions [2]–[4], uneven
topologies [5]–[7], a variety of channels such as erasure
channels [8], MIMO broadcast channels with fading [9],
a variety of networks such as heterogeneous networks [10],
D2D networks [11], and in other settings as well.

A. Subpacketization Bottleneck of Coded Caching

While though in theory, this caching gain G = Kγ
increases indefinitely with increasing K , in practice the
gain remained — under most realistic assumptions — hard-
bounded by small constants, due to the fact that the under-
lying coded caching algorithms required the splitting of
finite-length files into an exponential number of subpackets.2

For the algorithm in [1] in the original single-stream sce-
nario, the near-optimal (and under some basic assumptions,
optimal [13], [14]) gain of G = Kγ, is achieved only if each
file is segmented at least into a total of

S1 =
(

K

Kγ

)
(1)

subpackets. As a result, having a certain maximum-allowable
subpacketization of Smax, implies that one can only encode
over a maximum of

K̄ = arg max
Ko≤K

{(
Ko

Koγ

)
≤ Smax

}
(2)

users, which in turn implies a substantially reduced effective
caching gain Ḡ1 of the form

Ḡ1 = K̄γ. (3)

Given such a ‘user-grouping’ reduction (cf. [16]) of having to
encode over groups of only K̄ users at a time, and given that

(
K̄

K̄γ

)
∈

[(
1
γ

)K̄γ

,

(
e

γ

)K̄γ
]

=

[(
1
γ

)Ḡ1

,

(
e

γ

)Ḡ1
]

(4)

this effective gain Ḡ1 is bounded as

log Smax

1 + log 1
γ

≤ Ḡ1 ≤ log Smax

log 1
γ

, Ḡ1 ≤ G (5)

(log is the natural logarithm) which succinctly reveals that
the effective caching gain Ḡ1 (and the corresponding effective
sum-DoF d̄1 � 1+ Ḡ) is placed under constant pressure from
the generally small values of γ and of Smax. This is reflected
in Figure 1 and Figure 2. Interestingly, as we know from [16],
under some basic assumptions, in the context of single-antenna
decentralized coded caching, this ‘user-grouping’ approach is
close to optimal.

2Such high subpacketization originates from the fact that each file appears
in each cache, and thus during delivery, a user must work together with all
other users to get her file. This works — at least in the original algorithm
by Maddah Ali and Niesen — by forming cliques of Kγ + 1 users, each
requesting one subfile, where each user knows all subfiles requested from the
clique, except the one that she herself requests. There are a total of

� K
Kγ

�
cliques in which a specific user will have to be part of, and all of the cliques
must be used; hence the need to split each file into

� K
Kγ

�
different subfiles.

Fig. 1. Maximum effective DoF d̄1 achieved by the original centralized algo-
rithm (single antenna, γ = 1/20) in the presence of different subpacketization
constraints Smax. The gain is hard-bounded irrespective of K (x-axis).

Fig. 2. Effective caching gain Ḡ1 = d̄1 − 1 (maximized over K) of the
original algorithm for different Smax. Without subpacketization constraints,
the theoretical gain is G = Kγ (unbounded as K increases).

Remark 1: It is worth noting here that, as argued in [15],
in wireless cellular settings, the storage capacity at the end
users is expected to induce γ that can be less than 10−2,
which — for a given target caching gain — implies the need
to code over many users, which in turn increases subpacke-
tization. Compounding on this problem, there is a variety of
factors that restrict the maximum allowable subpacketization
level Smax. One such parameter is the file size; for example,
movies are expected to have size that is close to or less
than 1 Gigabyte. Additionally, in applications like video
streaming, a video file it self may be broken down into smaller
independent parts (on which subpacketization will take place
separately), in order to avoid the delay that comes from the
asynchronous nature of decoding XORs in coded caching.
Such restricted file sizes may be in the order of just a few
tens of Megabytes. Another parameter that restricts Smax is
the minimum packet size; the atomic unit of storage is not
a bit but a sector (newer ‘Advanced Format’ hard drives use
4096-byte sectors and force zero-padding on the remaining
unused sector), and similarly the atomic communication block
is the packet, which must maintain a certain minimum size in
order to avoid communication delay overheads.

Example 1: Looking at Figure 2, we see that if the
library files (e.g. movies) are each of size 1 Gigabyte, and



under a constraint that each packet cannot be less than
1 Kilobyte (KB) long (which jointly imply a subpacketiza-
tion limit of Smax ≈ 106), then having γ < 1/20 would
hard-bound the effective caching gain Ḡ1 to be less than 4
(we add one extra in comparison to the plot, in order to
account for any possible improvements from memory-sharing
between operating points that yield neighboring integer-valued
gains). This gain reduction is because we are forced to encode
over less than K̄ = 80 users, to avoid a subpacketization(
80
4

)
> 106 that exceeds Smax. Having γ < 1/100 would

limit this gain Ḡ1 to be less than 3 (since K̄ = 300 implies
subpacketization

(
300
3

)
> 106). When Smax = 109, where

each packet consists of a single byte (without taking into
consideration the overhead from using byte-sized packets),
then having γ < 1/20 would limit the effective gain to less
than 6, while having γ < 1/100 would limit the number Ḡ1

of additional users that could be served due to caching, to less
than 4. When Smax ≈ 36K , reflecting perhaps low-latency
video streaming applications, for γ ≤ 1/20 then Ḡ1 ≈ 3
(d̄1 ≈ 4 users at a time), while for γ ≤ 1/100 then
Ḡ1 ≈ 2 (d̄1 ≈ 3).

Similar conclusions were highlighted in [16], in the context
of decentralized coded caching algorithms (cf. [18]).

1) New Coded Caching Algorithms With Reduced
Subpacketization: This subpacketization bottleneck sparked
significant interest in designing coded caching algorithms
which can provide further caching gains under reduced
subpacketization costs. A first breakthrough came with
the work in [19] (see also [20]) which reformulated the
coded caching problem into a placement-delivery array (PD)
combinatorial design problem, and which exploited interesting
connections between coded caching and distributed storage
to design an algorithm that provided a maximum theoretical
caching gain of G1,pd = Kγ−1 (treating a total of Kγ, rather
than Kγ+1, users at a time), at a reduced subpacketization of

S1,pd =
(

1
γ

)Kγ−1

=
(

1
γ

)G1,pd

thus allowing — under some constraints on the operating
parameters — for an effective caching gain of

Ḡ1,pd = min
log Smax

log 1
γ

, Kγ − 1

}
. (6)

Similar conclusions are also drawn in [20] which made the
surprising connection between coded caching and linear block
codes (LC) over high-order finite fields, in order to create
set partitions that identify — under some constraints on the
values of γ — how the subpackets are cached and delivered,
thus allowing for a tradeoff between an adjustable theoretical
gain G1,lc ≤ Kγ − 1 and the corresponding subpacketiza-

tion S ≈
(

1
γ

)G1,lc

, resulting in a similar effective gain of

Ḡ1,lc ≈ log Smax

log 1
γ

(naturally again the effective gain Ḡ1,lc can-

not exceed the theoretical gain G1,lc). Another breakthrough
was presented in [21] which took a hyper-graph theoretic
approach to show that there do not exist caching algorithms
that achieve a constant delay T (T is independent of K) with

subpacketization that grows linearly3 with K . This work also
provides constructions which nicely tradeoff performance with
subpacketization, which require though (Construction 6) that
K > 4/γ2 (approximately) in order4 to have gains bigger
than 5. Another milestone of a more theoretical nature was the
very recent work in [22] which employs the Ruzsa-Szeméredi
graphs to show for the first time that, under the assumption
of (unattainably) large K , one can get a (suboptimal) gain
that scales with K , with a subpacketization that scales with
K1+δ for some arbitrarily small positive δ.

While indeed different new algorithms provide exponential
reduction in subpacketization, the corresponding improvement
on the actual gain Ḡ — over the original (MN) algorithm
in [1], for realistic values of γ and Smax — remains
hard bounded and small. For example, for γ ≤ 1/20 and
Smax ≤ 105, no known algorithm can improve over the
MN algorithm’s effective caching gain (and effective DoF)
by more than two5 (2 additional users served at a time) (see
also Section V-C).

B. Coded Caching With Multiple Transmitters

At the same time, different works (cf. [23], [24] as well
as [9], [25]–[33], and others) aimed at complementing such
caching gains, with additional multiplexing gains that can
appear when there are several transmitters. One pioneering
work in this direction is found in [23] which considers a
setting with L = λK, (λ ∈ (0, 1)) transmitters/servers
communicating (in the fully-connected BC context of a
so-called ‘linear network’ that can translate readily to
a K-user wireless MISO BC with L antennas) to K single-
antenna cache-aided receivers, and which provided a scheme
that achieved a theoretical sum-DoF of

dL(γ) = L + Kγ

corresponding to a MIMO multiplexing gain of L (users
served, per second per hertz) and an additional theoretical
caching gain of again G = Kγ (extra users served at a time,
due to caching). This theoretical caching gain though is again
restricted to an effective caching gain that is less than the
effective gain Ḡ1 achieved in the single antenna case, because
of a further increased subpacketization which now takess the
form

S =
(

K

Kγ

)(
K − Kγ − 1

L − 1

)
. (7)

While the subpacketization-constrained (effective) gains may
have been reduced, this work in [23] nicely shows that
multiplexing and caching gains can in theory be combined
additively.

Soon after, the work in [24] explored the scenario
where coded caching involved both transmitter-side and

3This assumes that γ is independent of K , that each file is divided into an
identical number of subpackets, and also assumes uncoded cache placement.

4K must be large because the theoretical gain is reduced and is approxi-
mately Kγ2/4. K must also be (essentially) a square integer; square integers
become rarer as K increases.

5This best-known improvement is due to [21, Construction 6] (a = b = 2,
λ = 40) which encodes over K̄ = 3160 users to give an effective sum-DoF
of 6, while the MN algorithm gives a DoF of 4 (with K̄ = 60).



receiver-side caches. In the context of a cache-aided inter-
ference scenario — where KT transmitters with normalized
cache size γT (each transmitter could only store a fraction γT

of the entire N -file library), communicated to K receivers with
normalized cache size γ — the work provides a scheme that
employs subpacketization

S =
(

K

Kγ

)(
KT

KT γT

)(
K − Kγ − 1
KT γT − 1

)
(8)

to achieve a sum-DoF of K(1−γ)
T = KT γT + Kγ which is

also proven to be at most a factor of 2 from the optimal
(one-shot) linear-DoF. This nicely reveals that — in the regime
of unbounded subpacketization (unbounded file sizes) — the
cooperative multiplexing gain KT γT which is an outcome of
the caching redundancy KT γT at the transmitter-side caches,
can be additively combined with the theoretical caching gain
G = Kγ attributed to receiver-side caching redundancy6 Kγ.
In both cases [23], [24], the addition of the extra dimensions
on the transmitter side, maintains the theoretical caching gains,
adds extra multiplexing gains, but maintains high subpacketi-
zation levels with generally reduced actual caching gains.

To the best of our knowledge, under the generous assump-
tions that Smax ≤ 105, γ ≤ 1/50 and K ≤ 105, currently
there exists no method in any known single-antenna or multi-
antenna fully connected setting, with or without user grouping,
that allows for the introduction of more than Ḡ = 5 additional
users (per second per hertz, i.e., served at a time) due to
caching.7

C. Preview of Results and Paper Outline

Our contribution lies in the realization that having this
extra dimensionality on the transmitter side, in fact reduces
rather than increases subpacketization, and does so in a very
accelerated manner. This property is based on the principle
of the virtual decomposition of the cache-aided MISO BC
into L parallel, single-stream coded caching channels with
K/L users each. This decomposition is made possible
because, as we show here for the first time, the near optimal
DoF dL(γ) = L

(
1 + K

L γ
)

= L + Kγ can be gained without
encoding across parallel channels.

We will show a simple scheme for the multi-antenna/multi-
node setting, that maintains the theoretical DoF

dL = L + G = L + Kγ = KT γT + Kγ

and does so with subpacketization

SL =
( K

L
Kγ
L

)
=

( K
KT γT

Kγ
KT γT

)
(9)

which is approximately the Lth root SL � L
√

S1 of the original
subpacketization S1 = K

Kγ corresponding to L = 1. This will

apply for all parameters K, L, γ, KT , γT , it will imply very
substantial subpacketization reductions even when L is very

6By referring to transmitter-side redundancy KT γT and receiver-side
redundancy Kγ, we simply refer to the fact that each subfile resides in the
caches of KT γT transmitters and in the caches of Kγ receivers.

7This corresponds to [21, Construction 6] (a = b = 2, λ = 100), and it
requires encoding over approximately K̄ = 20000 users.

small, as well as will imply that the theoretical DoF dL = L+
Kγ can be achieved with subpacketization SL = 1/γ = K/L
when L matches Kγ. The above expression (9) will imply a
multi-antenna effective DoF

d̄L = min{L · d̄1, dL = L + Kγ}

which is either L times the single-antenna effective DoF d̄1,
or it is the theoretical (unconstrained) dL = L + Kγ. In the
end, we now know that having multiple antennas at the
transmitter, not only provides a multiplexing gain, but also
a multiplicative boost of the receiver-side effective caching
gain.

Finally, similar multiplicative boosts of the caching gain
will be achieved when we apply the ideas here in conjunction
with a variety of different underlying coded caching algorithms
(see Section V-C) like the ones in [19] and [20].

Paper outline: Section II elaborates on the system
and channel model, Section III describes the scheme, while
Section IV presents the main results. The schemes and results
are presented first for the integer case where L|K and L|Kγ
(L divides K and Kγ), but we emphasize that the perfor-
mance loss after removing the integer constraint, is very small
(as we see in the appendix Section B). Section V addresses
some related scenarios of interest, Section VI offers some
conclusions, the appendix Section A shows the details of how
to adapt our approach to the cache-aided interference scenario
with multiple independent cache-aided transmitters, while the
appendix Section B describes the slightly modified scheme for
all L, K when the assumptions L|K and L|Kγ are removed.

D. Notation

For clarity, we begin by recalling the common notation.
• d1(γ) = 1 + Kγ : Theoretical DoF (L = 1)
• dL(γ) = L + Kγ : Theoretical DoF (multiple antennas)
• dL(γ = 0) = L : Multiplexing gain
• G: Theoretical caching gain

– G = d1(γ)−d1(γ = 0) = dL(γ)−dL(γ = 0) = Kγ
– G additional users served at a time, due to caching8

• S1 =
(

K
Kγ : Subpacketization needed for theoretical G

(L = 1)
• Smax: Maximum allowable subpacketization
• SL: Subpacketization needed for theoretical G (multiple

antennas)
• d̄1(γ) : Effective (subpacketization-constrained) DoF

(L = 1)
• Ḡ1 = d̄1(γ) − 1 : Effective caching gain (L = 1)
• d̄L(γ) : Effective DoF (multiple antennas)
• ḠL = d̄L(γ) − L : Effective caching gain (multiple

antennas)

8The choice here to measure the caching gain as the DoF difference G =
d1(γ) − d1(γ = 0) = dL(γ) − dL(γ = 0) = Kγ rather than the DoF
ratio, comes from the fact that in theory, the two gains (multiplexing and
caching gains) appear to aggregate in an additive manner (this is discussed
also in [24]). This choice of G seems better suited for multi-antenna settings
because a) it cleanly removes the multiplexing gain thus better isolating the
true effect of caching, b) it reflects a caching gain that does not inevitably
vanish with increasing L (as would have happened had we used the DoF
ratio), and c) it reflects a caching gain that scales with the cumulative cache
size at the receiver side (i.e., scales with K).



In the above, d̄L(γ = 0) = dL(γ = 0) = L is the multiplexing
gain, and ḠL is the effective caching gain describing the
actual number of additional users that can be served at a time
as a result of introducing caching, under a subpacketization
constraint. Finally the effective DoF d̄L(γ) = L + ḠL

describes the actual (total) number of users that can be served
at a time, under a subpacketization constraint.

Furthermore we employ the following notation. Z will
represent the integers, Z

+ the positive integers, R the real
numbers, and

(
n
k

)
the n-choose-k (binomial) operator. We will

use [K] � {1, 2, · · · , K}. If A is a set, then |A| will denote its
cardinality. For sets A and B, then A\B denotes the difference
set. The expressions α|β (resp. α � β) denote that integer
α divides (resp. does not divide) integer β. Complex vectors
will be denoted by lower-case bold font. We will use ||x||2
to denote the magnitude of a vector x of complex numbers.
Furthermore if A ⊂ [K] is a subset of users, then we will
use HA to denote the overall channel from the L-antenna
transmitter to the users in A. Logarithms are of base e. In a
small abuse of notation, we will sometimes denote data sets
the same way we denote the complex numbers (or vectors)
that carry that same data.

II. SYSTEM AND CHANNEL MODEL

We initially consider the K-user multiple-input single-
output (MISO) broadcast channel,9 where an L-antenna trans-
mitter communicates to K single-antenna receiving users.
The transmitter has access to a library of N distinct files
W1, W2, . . . , WN , each of size |Wn| = f bits. Each user
k ∈ {1, 2, . . . , K} has a cache Zk, of size |Zk| = Mf
bits, where naturally M ≤ N . Communication consists of
the aforementioned content placement phase and the delivery
phase. During the placement phase the caches Z1, Z2, . . . , ZK

are pre-filled with content from the N files {Wn}N
n=1.

The delivery phase commences when each user k requests
from the transmitter, any one file WRk

∈ {Wn}N
n=1, out of

the N library files. Upon notification of the users’ requests,
the transmitter aims to deliver the (remaining of the) requested
files, each to their intended receiver, and the challenge is to
do so over a limited (delivery phase) duration T . During this
delivery phase, for each transmission, the received signals at
each user k, will be modeled as

yk = hT
k x + wk, k = 1, . . . , K (10)

where x ∈ C
L×1 denotes the transmitted vector satisfying a

power constraint E(||x||2) ≤ P , where hk ∈ C
L×1 denotes

the channel of user k in the form of the random vector of
fading coefficients that can change in time and space, and
where wk represents unit-power AWGN noise at receiver k.
We will assume that P is high (high SNR), we will assume
perfect channel state information throughout the (active) nodes

9We note that while the representation here is of a wireless model, the result
applies directly to the multi-server wireline setting of [23] with a fully
connected linear network. We will also show at the end of this paper how the
work here applies to the cache-aided interference scenario of [24]. Finally we
note that in the DoF regime of interest, the single-antenna wireless setting
(L = 1) matches identically (in terms of the characteristics and performance)
the original single-stream shared-link setting in [1].

as in [23] and [24], and we will assume that the fading process
is statistically symmetric across users, such that each link has
capacity of the form log(SNR) + o(log(SNR)).

A. Performance Measures

As in [1], T is the number of time slots, per file served
per user, needed to complete the delivery process, for any
request. The wireless link capabilities, and time scale, are
normalized such that one time slot corresponds to the optimal
amount of time it would take to communicate a single file
to a single receiver, had there been no caching and no
interference

As in the single-stream case in [1], T is simply the minimum
delay that allows, in the information theoretic sense (thus,
under sufficiently long file sizes f ), that each receiver k
decodes (with probability 1) its message WRk

. T reflects the
maximum such minimum delay, maximized over all possi-
ble requests {WRk

}K
k=1. The high-SNR normalized delay T

(cf. [32]; see also [25], [26]) used here, accounts for the file
sizes and the high-SNR link capacity scaling log(SNR), and
is thus identical to the rate measure used in [1] for the single-
stream error-free setting. Consequently in the high SNR setting
of interest, an inversion leads to the equivalent measure of
the cache-aided sum DoF dL(γ) = K(1−γ)

T , as this is defined
in [34] in the context of transmitter-side caching, and in [32] in
the context of receiver-side caching (see also [25], [26]). The
sum-DoF is simply the delivery rate (in units of ‘file’, after
normalization by log(SNR)), it can be seen as the total amount
of users served at a time, and it is the sum of multiplexing
and theoretical caching gains.

As in [1], we will first consider the case where γ = M
N =

{1, 2, · · · , K} 1
K , while for non integer Kγ, we will simply

consider the result corresponding to �Kγ	. Furthermore we
will ignore the trivial case of L ≥ K(1 − γ) which can
be directly handled — as shown in [23] — to achieve the
interference-free optimal T = 1 − γ corresponding to a sum-
DoF dL(γ) = K .

III. DESCRIPTION OF THE SCHEME

We will present the scheme for all K, γ, L, first focusing
here on the case where L|Kγ and L|K . The general scheme
simply uses memory sharing to remove this integer constraint.
This generalization is described in the appendix, where we
also prove that the cost of removing the integer constraint is
bounded above by a factor of only 2. Consequently the scheme
will remain near-optimal, for all values of K, γ, L.

A. Grouping

We first split the K users k = 1, 2, . . . , K into K � � K
L

disjoint groups

Gg = {�K � + g, � = 0, 1, . . . , L − 1}, for g = 1, 2, . . . , K �

of |Gg | = L users per group. Our aim is to apply the algorithm
of [1] to serve K �γ + 1 groups at a time, essentially treating
each group as a single user. Toward this, let

T = {τ ⊂ [K �] : |τ | = K �γ}



be the set of

|T | =
(

K �

K �γ

)
(11)

subsets in [K �], each of size |τ | = K �γ, and let

X = {χ ⊆ [K �] : |χ| = K �γ + 1}

be the set of |X | = K′
K′γ+1 subsets of size |χ| = K �γ + 1.

B. Subpacketization and Caching

We first split each file Wn into |T | subfiles {W τ
n}τ∈T , and

then we assign each user k ∈ Gg the cache

Zk = ZGg = {W τ
n : ∀τ  g}N

n=1 (12)

so that all users of the same group have an identical
cache.10

C. Transmission

After notification of requests — where each receiver k
requires file WRk

, Rk ∈ [N ] — the delivery consists of
a sequential transmission {xχ}χ∈X where each transmission
takes the form

xχ =
∑
g∈χ

∑
k∈Gg

W
χ\g
Rk

vGg\k (13)

and where vGg\k is an L×1 precoding vector that is designed
to belong in the null space of the channel HGg\k between the
L-antenna transmitter and the L − 1 receivers in group Gg

excluding receiver k ∈ Gg .

D. Decoding—‘Caching-Out’ Out-of-Group Messages

The corresponding received signal at user k ∈ Gg is then

yk,χ = hT
k xχ + wk,χ (14)

and each such user k ∈ Gg can employ its cache to immedi-
ately remove all the files that are jointly undesired by its own
group Gg , i.e., receiver k ∈ Gg can remove

∑
g′∈χ\g

∑
j∈Gg′

W
χ\g′

Rj
vGg′\j

because g� �= g ∈ χ, i.e., because the cache of receiver k

includes all files W
χ\g′

Rj
in the above summation. This allows

receiver k to remove all files that are not of interest to its
group Gg , and thus to get

y�
k,χ = hT

k

∑
j∈Gg

W
χ\g
Rj

vGg\j + wk,χ. (15)

10A quick verification shows that

|ZGg | = N
|{τ ∈ T : g ∈ τ}|

|T |
= N

� K′−1
K′γ−1

�
� K′
K′γ

� = Nγ = M.

E. Nulling-Out Intra-Group Messages—Completion
of Decoding

The interference for receiver k now could only come from
the files of the L − 1 other users of its own group Gg .
This interference is averted directly by the ZF precoders
(or any other DoF optimal precoder), and receiver k can get
the desired W

χ\g
Rk

.
This is done instantaneously for all users k ∈ Gg , and for

all g ∈ χ. Hence the scheme delivers to K �γ + 1 groups at a
time, thus to

dL(γ) = L(K �γ + 1) = Kγ + L (16)

users at a time. Then we do the same for another χ ∈ X .
Along the different χ ∈ X , no subfile is repeated, and we
can now conclude that the DoF is Kγ + L, which as we saw
(cf. (11)) is achieved here with subpacketization SL = K′

K′γ .

F. Example of Scheme–Alternate Representation

Let K = 50, L = 5 and γ = M/N = 3/10. We will achieve
the sum-DoF of dΣ = L + G = L + Kγ = 5 + 15 = 20, with
a subpacketization of 120.

First split the K = 50 users into K � = 10 groups of L = 5:

G1 = {1, 11, 21, 31, 41}, . . . ,G10 = {10, 20, 30, 40, 50}.

Since K �γ = 3, we split each file Wn into |T | = K′

K′γ = 120
parts

Wn = {W (1,2,3)
n , W (1,2,4)

n , . . . , W (1,3,4)
n , . . . , W (8,9,10)

n }

and then fill the caches

ZG1 = {W (1,2,3)
n ,W (1,2,4)

n ,. . .W (1,3,4)
n ,. . . W (1,9,10)

n }N
n=1

...

ZG10 = {W (1,2,10)
n ,W (1,3,10)

n ,. . . , W (2,3,10)
n ,. . . W (8,9,10)

n }N
n=1

as described. We will serve K �γ + 1 = 4 groups at a time.
We treat the group clique χ = (1, 2, 3, 4) first. Let

w
(2,3,4)
1 = [W (2,3,4)

R1
, W

(2,3,4)
R11

, W
(2,3,4)
R21

, W
(2,3,4)
R31

, W
(2,3,4)
R41

]T

be the L = 5 subfiles currently meant for the 5 users in
the first group. Similarly let w

(1,3,4)
2 , w

(1,2,4)
3 , w

(1,2,3)
4 be the

L-length vectors of subfiles for the second, third and fourth
groups respectively. Then simply transmit

x(1,2,3,4) = (HG1)−1w
(2,3,4)
1 + (HG2)−1w

(1,3,4)
2

+(HG3)−1w
(1,2,4)
3 + (HG4)−1w

(1,2,3)
4 (17)

where (HGg )−1 denotes the (normalized) inverse of the L×L
channel to group Gg .

Receiver 1 can immediately remove — using its cache —
the last three summands in (17), and ZF can remove the
unwanted L − 1 = 4 elements from w

(2,3,4)
1 . The achieved

caching gain is G = 15, the sum-DoF is dL(γ) = 20 (users
at a time), and the subpacketization is SL = 120.



IV. MAIN RESULTS

We present the main results, first for the integer case where
L|K and L|Kγ. The interpolation to all cases K, L is easily
handled using memory sharing, and as we note later on, does
not result in substantial performance degradation. The details
for this are handled in the appendix. We also try to highlight
the practical relevance of some of these results, with examples.

We proceed with the main result.
Theorem 1: In the cache-aided MISO BC with L transmit-

ting antennas and K receiving users, the delay of T = K(1−γ)
L+Kγ

and the corresponding sum-DoF dL(γ) = L + Kγ, can be
achieved with subpacketization

SL =
(

K/L

Kγ/L

)
.

Proof: The proof of this is direct from the description of
the scheme. Specifically (11) tells us that the subpacketization
is

(
K′
K′γ

)
where K � = K/L, while (16) tells us that the DoF is

dL(γ) = L(K �γ + 1) = Kγ + L.

A. Effective Gains and Multiplicative Boost of Effective DoF

We recall that in the absence of subpacketization constraints,
adding extra transmitting antennas, takes us from a theoretical
sum-DoF d1 = 1 + Kγ to dL = L + Kγ (cf. [23]),
leaving the theoretical caching gain unaffected, and adding
dL(γ)−d1(γ) = L−1 DoF. What our result directly suggests
is that, when subpacketization is taken into consideration,
adding extra transmitting antennas (or later, adding extra
transmitter-side caching) can have a much more powerful,
multiplicative impact on the effective gains. To see this, simply
recall that when L = 1, we can only encode over K̄1 �
arg max

Ko≤K

{
Ko

Koγ ≤ Smax

}
users, while in the L antenna

case, this increases by up to L times, to

K̄L � arg max
Ko≤K

( Ko

L
Koγ

L

)
≤ Smax

}
= min{L · K̄1, K}.

(18)

This is captured in the following corollary which tells us that
the L-fold multiplicative DoF boost stays into effect as long
as

K
L

Kγ
L

≥ Smax, i.e., as long as subpacketization remains an
issue.

Corollary 1: Under a maximum allowable subpacketiza-
tion Smax, the multi-antenna effective caching gain and DoF
take the form

ḠL = min{L · Ḡ1, G = Kγ} (19)

d̄L = min{L · d̄1, dL = L + Kγ} (20)

which means that with extra antennas, the (single-antenna)
effective DoF d̄1 is either increased by a multiplicative
factor of L, or it reaches the theoretical (unconstrained)
DoF dL = L + Kγ.

Example 2: Consider a single stream (L = 1) coded
caching system which offers — in the absence of any file-
size constraints — a theoretical sum-DoF of d1 = 1 + 28.
If we add one antenna, the DoF becomes 2 + 28, one more

Fig. 3. Maximum achievable effective caching gain ḠL = dL(γ) − L
(maximized over all possible K), achieved by the new scheme for
different L, under subpacketization constraint Smax = 3.6 · 104 (above) and
Smax = 106 (below).

antenna gives a DoF of 3+28, and one more antenna (L = 4)
gives a DoF of dL = 4 + 28 = 32. Now imagine that due
to file-size constraints, the same single stream coded caching
system (same resources, again with L = 1) gives an actual
sum-DoF of d̄1 = 1 + 7 = 8. Also imagine that up to L = 4,
subpacketization remains an issue, i.e., that

K
4

Kγ
4

≥ Smax.
Then we see that, with the new scheme, adding one antenna
will double the effective DoF to 2+14 = 16, adding one more
antenna will take us to an effective DoF of 24, and adding one
more antenna (L = 4) will yield DoF of 32.

The following corollary bounds the derived effective
caching gain ḠL.

Corollary 2: Given a maximum allowable subpacketiza-
tion Smax, the effective caching gain of the presented scheme
is bounded as

ḠL ≥ min L · log Smax

1 + log( 1
γ )

, Kγ

}
. (21)

Proof: This follows directly from Sterling’s approximation

which bounds subpacketization as SL = K′

K′γ ≤ e
γ

K′γ
=

e
γ

G
L

which directly implies that ḠL ≥ L · log Smax

1+log( 1
γ )

(up to

the theoretical gain G = Kγ).

B. Subpacketization Scaling

The following corollary highlights that, in an L-antenna
MISO BC system, the subpacketization cost is not determined



by K or L = λK , nor by the number of extra users G we
wish to add due to caching, but rather by the ratio x = dL(γ)

dL(γ=0)
between the DoF and the multiplexing gain.

Corollary 3: In our L-antenna MISO BC setting, a sub-
packetization of

S =
(

1/λ

x − 1

)
=

( 1
λ
γ
λ

)

can yield a DoF that is x times the multiplexing gain.
Proof: The DoF increase from dL(γ = 0) = L to

dL(γ) = L + Kγ = x · L, x ∈ Z
+, implies that Kγ =

L(x − 1) and that γ = λ(x − 1), which means that the
corresponding subpacketization SL = K/L

Kγ/L
now takes the

form S =
1
λ
γ
λ

= 1/λ
x−1 .

Directly from the previous corollary, we also have the
following.

Corollary 4: In asymptotic terms, as long as L scales with
the caching gain Kγ, the entire sum-DoF L+Kγ is achievable
with constant subpacketization. In the extreme case where
L = Kγ, the same DoF can be achieved with subpacketization

SL =
1
γ

=
K

L
.

Proof: As we have seen in the previous corollary, for
L = 1

q Kγ for some fixed q ∈ Z
+, then the subpacketization

is S =
(
1/λ
q

)
and it is independent of K, L.

Example 3: In a BC with γ = 1/100 and L = 1, allowing
for caching gains of G = Kγ = 10 (additional users due to
caching), would require S1 =

(
1000
10

)
> 1023 so in practice

coded caching could not offer such gains. In the L = 10
antenna case, this caching gain comes with subpacketization
of only SL = K/L = 100.

C. Near-Optimality of Schemes

The schemes that we have employed here (as described in
Section III and in the Appendix) have the ‘one-shot, linear’
property which means that each data element is manipulated
linearly, and only once (a data bit is not transmitted more than
once). This lends the results, amenable to the analysis in [24]
whose outer bound then allows us to directly conclude that
the schemes are near optimal. This is described below in the
form of a corollary.

Corollary 5: The described subpacketization SL =
K
L

Kγ
L

and SKT γT =
K

KT γT
Kγ

KT γT

guarantees sum-DoF performance

that is at most a factor of 2 from the theoretical optimal
linear-DoF.

Proof: As stated, the proof is direct from the bound
in [24], from the performance achieved by the schemes here,
and from the fact that the schemes have the ‘one-shot linear’
property.

Remark 2 (Removing the Integer Constraint): We also
note here that, to remove the integer constraints L|K
and L|Kγ, we can readily use memory sharing as in [1]. This
is shown in the appendix, where we see that after removing the
integer constraints, the results remain approximately the same
except for a marginal increase in subpacketization to at most

SL ≤ K · max
{( �K/L�

�Kγ/L+1� , �K/L�
�Kγ/L+1�

}
, and a relatively

small reduction in the achieved DoF (dL(γ) = L + Kγ) by a
multiplicative factor (gap) that is bounded above by 2 when
L > Kγ, and by 3

2 when L < Kγ in which case the gap
vanishes (converges to 1) as Kγ increases.

V. RELATED SCENARIOS

A. Transmitter Cooperation for Boosting Coded Caching

Until now we have explored the effect of having L antennas
at the transmitter. An identical effect will appear if instead of
a single L-antenna transmitter, we consider KT independent
single-antenna transmitters, each equipped with a cache of
normalized cache size of γT ≥ 1

KT
(as before, there are

K fully-interfering single-antenna receivers with normalized
cache size γ). This setting corresponds to the KT ×K cache-
aided interference scenario of [35], for which — as discussed
in Section I-B — the (unconstrained) achieved ‘one-shot
linear’ sum-DoF takes the form KT γT + Kγ.

Corollary 6: In the KT × K cache-aided interference sce-
nario with normalized cache sizes γT , γ, the sum-DoF of
KT γT + Kγ, can be achieved with subpacketization of

SKT γT =
( K

KT γT

Kγ
KT γT

)
.

Proof: The constructive proof of the above is described in
the Appendix.

1) Effects of Cache-Aided Transmitter-Cooperation on
Coded Caching: Given Corollary 6, it is not difficult to
conclude that all the previous corollaries apply directly to the
KT × K cache-aided interference scenario, after substituting
L with KT γT . In particular, drawing from the previous corol-
laries, we can summarize the following results that apply to
cache-aided transmitter cooperation.

• As the transmitter-side cache redundancy KT γT

increases, the effective DoF will either be increased
by a multiplicative factor of KT γT , or it will reach
the theoretical (unconstrained) DoF KT γT + Kγ
(cf. Corollary 1).

• Increasing the transmitter-side cache redundancy KT γT ,
allows for an exponentially reduced minimum applicable

γ ≥ (Smax)
−1/G

KT γT

that can offer a (receiver-side)
caching gain of G = Kγ (cf. Section IV-A).

• Subpacketization S =
( K

KT γT
x−1

)
can yield a sum DoF that

is x times the cooperative multiplexing gain KT γT .
• In asymptotic terms, as long as the transmitter-side cache

redundancy KT γT scales with the receiver cache redun-
dancy Kγ, the entire sum-DoF KT γT +Kγ is achievable
with constant subpacketization (cf. Corollary 4).

• When the transmitter-side and receiver-side cache redun-
dancies match (i.e., when KT γT = Kγ), the DoF
KT γT + Kγ can be achieved with subpacketization
SKT γT = K

KT γT
(cf. Corollary 4).

2) Base-Station Cooperation for Boosting Coded Caching:
The following corollary also holds.

Corollary 7: In the KT × K cache-aided interference sce-
nario with γT ≥ 1

KT
, if each transmitter has LT transmitting



antennas, the sum-DoF of KT LT γT + Kγ, can be achieved
with subpacketization of

SKT LT γT =
( K

KT LT γT

Kγ
KT LT γT

)
.

Thus when KT LT γT = Kγ this sum-DoF can be achieved
with subpacketization

S =
K

KT LT γT
.

The proof of the above is described briefly in the Appendix.
Example 4 (Base-Station Cooperation): Let us consider a

scenario where in a dense urban setting, a single base-station
(KT = 1) serves K = 10000 cell-phone users, who are each
willing to dedicate 20 Gigabytes of their phone’s memory
for caching parts from a Netflix library of N = 10000 low-
definition movies. Each movie is 1 Gigabyte in size, and the
base-station can store 10 Terabytes. This corresponds to having
M = 20, γ = M/N = 1/500, and γT = 1. If LT = 1
(single transmitting antenna), a caching gain of G = 20 would
have required (given the MN algorithm) subpacketization
of S1 =

(
K
Kγ

)
=

(
10000

20

)
> 1061.

If instead we had two base-stations (KT = 2) with LT = 5
transmitting antennas each, this gain would require subpack-

etization SL =
K

KT LT
Kγ

KT LT

= 10000/10
20/10

= 1000
2 ≈ 5 · 105

(hence here, the introduction of caching would triple the total
number of users served at a time), while with KT = 4 such
cooperating base-stations, this gain could be achieved with
subpacketization of 10000/20

20/20
= 500.

B. Making Small Caches Relevant

Another benefit of the reduced subpacketization here, is the
resulting exponential increase in the range of cache sizes that
can achieve a given target gain. While in theory, a small γ
does not necessarily preclude higher caching gains because
we could conceivably compensate by increasing the number
of users we encode over, such an increase would increase
subpacketization thus again precluding high gains (subpack-
etization limits would not allow for such an increase in the
number of users we encode over). Specifically we recall
(cf. (4)) that when L = 1 then the subpacketization is bounded

as S1 ≥ 1
γ

G

, which means that to meet a subpacketization
constraint of Smax and a target caching gain of G, we need

γ ≥ (Smax)
−1/G

. (22)

On the other hand, the reduced subpacketization SL ≥
1
γ

1
L G

in the L antenna case (cf. (4), after substituting K

by K/L), can allow for the same caching gain G (given
sufficiently many users to encode over) with only

γ ≥ (Smax)
−1/G

L

. (23)

This exponential reduction in the minimum applicable γ,
matches well the spirit of exploiting caches at the very
periphery of the network, where we are expected to find
relatively small but abundantly many caches.

C. Decomposition of Different Coded Caching
Algorithms in the L Antenna Setting

The aforementioned subpacketization can be further
reduced when considering alternate coded caching algorithms.
We recall that the scheme that we have presented, involved
‘elevating’ the original MN algorithm [1], from the single-
stream scenario (L = 1) with K � = K

L users, to the L-antenna
case with K � groups of L-users per group. This same idea can
apply directly to other centralized coded caching algorithms
like those in [19], [20], and [22], in which case the steps are
almost identical:

• Choose the new coded caching algorithm for the single-
stream K �-user scenario.

• Split the K users into K � groups of L users each, and
employ the new algorithm to fill the caches as in the
K �-user single-stream case, as if each group is a user,
such that same-group users have caches that are identical.

• Using the coded caching algorithm for the single-stream
K �-user scenario, generate the sequence of XORs. Each
XOR consists of d�1(γ) summands, where d�1(γ) is the
theoretical sum-DoF provided by the coded caching algo-
rithm in the K �-user single-antenna (single stream) BC.

• Each element (summand) of the XOR, corresponds
to a group of users, and each such XOR summand
is replaced by a (precoded) L-length vector that car-
ries the L-requests of the associated group. Add these
d�1 vectors together, to form a composite transmitted
vector that corresponds to the XOR.

• Each composite vector treats a total of d�1 groups at a
time, i.e., treats L · d�1(γ) users at a time.

• Then continue with the rest of the XORs.
Hence we recall that when11 elevating the MN algorithm —
which, for the single-stream K �-user case, treats d�1(γ) =
K �γ + 1 users at a time — we treated d�1 = K �γ + 1 groups
at a time, thus treating a total of dL(γ) = L ·d�1(γ) = L+Kγ
users at a time. On the other hand, when elevating for example
the algorithms in [19] and [20], we would naturally have to
change the cache placement and the sequence of XORs and we
would have to account for the fact that — for the single stream
K �-user case — the algorithm treats d�1,pd = K �γ users at a
time (instead of K �γ +1), and thus for L ≥ 1, we would treat
d�1,pd = K

L γ groups at a time (L ≤ Kγ), thus treating a total
of dL,pd(γ) = L ·d�1,pd = Kγ users at a time12 (not Kγ +L).

The following corollary describes the effective caching
gain provided by the scheme that elevates to the L antenna
case, the placement-delivery array (PD) and linear code
(LC) algorithms [19], [20]. These algorithms impose some
constraints on γ.

Corollary 8: Given a maximum allowable subpacketization
Smax, the effective caching gain of the here-elevated PD and
LC algorithms, takes the form

ḠL,pd = ḠL,lc = min L · log Smax

log( 1
γ )

Kγ − L

}
. (24)

11We will henceforth use the term ‘elevate’ to correspond to when we apply
a single-stream coded caching algorithm to the multi-antenna case, via the
above sequence of steps.

12This makes the caching gain of the multi-antenna case equal to
GL,pd = Kγ − L



Proof: With a theoretical gain GL,pd = dL,pd(γ) −
dL,pd(γ = 0) = Kγ − L, the underlying subpacketi-

zation SL,pd = 1
γ

K′γ−1

can be written as SL,pd =

1
γ

GL,pd
L

, and thus the effective gain is ḠL,pd = L · log Smax

log( 1
γ )

,

which is bounded by the theoretical caching gain Kγ − L
offered by the scheme in the absence of subpacketization
constraints.

1) L-Fold Increase in Impact of Alternate Coded Caching
Algorithms: The fact that the underlying coded caching algo-
rithm is used in our design at the level of groups of users,
implies that any difference in the effective caching gain
between two underlying algorithms in the single-stream case,
will be magnified — once each algorithm is elevated to the
L-antenna case as was shown here — by a factor of up to L.
For example, if we were to compare the elevated MN scheme
to, say, the aforementioned elevated PD and LC schemes,
we would see (cf. Corollary 2 and Corollary 8) that

ḠL,pd = min L · log Smax

log( 1
γ )

, Kγ − L

}

ḠL ≥ min L · log Smax

1 + log( 1
γ )

, Kγ

}

which would tell us that (when Kγ is an integer) the improve-
ment in effective gains is bounded as

ḠL,pd − ḠL ≤ L · log Smax

(log( 1
γ ))(1 + log( 1

γ ))
.

When L = 1, this improvement — under realistic assumptions
on γ and Smax — can be small, but when the algorithm
is elevated to the multi-antenna setting, this improvement
increases as a multiple of L.

Remark 3: This implies that the decomposition method
proposed here, rather than bypassing the need for novel single-
stream coded caching algorithms of reduced subpacketization,
it in fact accentuates the importance of searching for such
algorithms.

VI. CONCLUSIONS

In the context of coded caching with multiple transmitting
antennas (or with multiple transmitters or servers), we have
presented a simple scheme which exploits transmitter-side
dimensionality to provide very substantial reductions in the
required subpacketization, and a multiplicative boost in the
actual DoF performance of the system. This multiplicative
DoF increase, suggests that in some cases the main impact of
multiple transmitting antennas in cache-aided systems, is not
the multiplexing gain, but rather the boost on the effect of
receiver-side coded caching.

A. Intuition on Design

The design was based on the simple observation that multi-
node (transmitter-side) precoding, reduces the need for content
overlap. The subpacketization reduction from

(
K

Kγ

)
to

( K/L
Kγ/L

)
was here related to the fact that the receivers of each group

have identical caches. Subpacketization can generally increase
because there needs to be a large set of pairings between the
different caches. Here the number of different distinct caches
is reduced, and thus the number of such pairings remains
smaller.

B. Parallel Decomposition of Coded Caching

A useful contribution of this work is the virtual decompo-
sition of the cache-aided MISO BC into L parallel, single-
stream coded caching channels with K/L users each. This
decomposition is made possible because, as we show here for
the first time, the near optimal DoF dL(γ) = L

(
1 + K

L γ
)

=
L + Kγ can be gained without encoding across parallel
channels.

This decomposition is a result of properly combining mul-
tiple antennas and user grouping. Previous efforts to achieve
the optimal dL(γ) either required encoding across the parallel
channels (which meant increased subpacketization), or —
if user grouping was enforced — would result in reduced
DoF performance; for example, if we were to naively employ
user grouping in the multi-server approach of [23], we would
get a much reduced DoF d = L + K

L γ < dL(γ).
Separability between coded caching and PHY: This

decomposition seen here, advocates that some degree of joint
consideration between cache-placement and network structure
(here, for receiver-side cache-placement and ‘XOR’ genera-
tion, we only need to know the number of transmitters and
receivers), can yield very substantial improvements in the
effective DoF, as well as can maintain substantial (although
certainly not complete) robustness to not knowing the exact
network structure during the cache-placement phase. While
universal coded caching schemes that work obliviously of
the structure of the communication network (cf. [35]) carry
an advantage when it comes to some robustness against
network-structure uncertainty, the work here shows an instance
where non-separated schemes can yield a powerful decompo-
sition that provides unboundedly better overall effective gains
over universal schemes, by exploiting some of the structure
of the network and by jointly considering coded caching
and PHY.

C. Practicality and Timeliness of Result

The scheme consists of the basic implementable ingredients
of ZF and low-dimensional coded caching, and it works for
all values of K, L, γ, KT , γT . Its simplicity and effectiveness
suggest that having extra transmitting antennas (servers) can
play an important role in making coded caching even more
applicable in practice, especially at a time when subpacke-
tization complexity is the clear major bottleneck of coded
caching, and also at a time when multiple antennas and
transmitter cooperation are standard ingredients in wireless
communications.

D. Future Directions

An interesting direction would be to extend the decomposi-
tion ideas here to the setting of decentralized caching, where
cache placement takes place without knowing which users will



participate in the delivery phase. It remains to be seen to what
extent the multiplicative gains revealed here, persist in the
decentralized scenario.

Another direction is to explore the connection between
subpacketization and CSIT. As we have seen, the proposed
scheme requires, at any given time, the knowledge of L+Kγ
CSI vectors of length L. While this is already an improvement
over a cache-free MIMO system (where for the same DoF,
each CSI vector would have been of size L+Kγ), it remains
an open problem to explore how this principle of decomposi-
tion can be affected by having reduced CSI quality or fewer
CSI vectors.

Furthermore the presented result can be useful in the context
of distributed computing where — as we see from [36] —
coded caching techniques can be used to reduce the commu-
nication load of a variety of distributed computing tasks. Such
approaches suffer from very high subpacketization, and the
decomposition-based ideas here can be used to substantially
speed up such distributed computing methods. A first result
in this direction can be found in [37] which shows how
cooperation among the computing nodes in a D2D setting, can
recreate the spatial multiplexing effect of multiple antennas,
achieving the decomposition, and the corresponding speedup.
It would be interesting to see other distributed computing
scenarios that accept a similar exposition.

APPENDIX A
ADAPTING TO THE CACHE-AIDED

INTERFERENCE SCENARIO

We now consider the cache-aided interference scenario
studied in [24], with K independent receivers, and with
KT independent transmitters, where each transmitter has
normalized cache size γT = MT /N , where fMT is the
size of each transmitter’s cache. The scenario involves full
connectivity (each receiver is connected to KT transmitters),
and no information can be exchanged between the transmitters.

For transmitter-side cache placement, we ask that each
subfile is placed at exactly KT γT transmitters, and to do so,
we consecutively cache whole files into the transmitters, such
that the first transmitter caches the first M files, the second
transmitter the next M files, and so on, modulo N . Specifi-
cally, using ZTxm

to denote the cache of transmitter m ∈ [KT ],
then the placement

ZTxm
=

{
W1+(n−1)modN : n ∈ {1 + (m − 1)M, ..., Mm}

}
guarantees the redundancy requirements and memory con-
straints. Now, for any given subfile, the KT γT transmitters
that have access to this file, will employ CSIT in order to
play the role of the aforementioned L = KT γT antennas,
by precoding this said subfile using the exact same precoders
described before, allowing for simultaneous separation of the
L = KT γT streams within any given group Gg of L = KT γT

receivers. As before, the aforementioned caching allows for
treatment of K �γ + 1 groups at a time, and a treatment of
KT γT + Kγ ≤ K users at a time (Corollary 6).

Finally it is easy to see that the above idea holds directly
for the case where — in the above KT × K cache-aided

interference scenario with γT ≥ 1
KT

— each transmitter has
LT transmitting antennas. In this case we can see that this
same placement method has the desired property that each
subfile is available at L = KT LT γT antennas, yielding a
sum-DoF of KT LT γT + Kγ which can be achieved with
subpacketization

SKT LT γT =
( K

KT LT γT

Kγ
KT LT γT

)

as mentioned in Corollary 7.

APPENDIX B
GENERAL SCHEME: REMOVING

THE INTEGER CONSTRAINT

We proceed to remove the constraints L|K and L|Kγ,
by applying as in [1] memory sharing. The results, after
removing the integer constraints, will remain approximately
the same except for a marginal increase in subpacketization13

to at most SL ≤ K · max
{( �K/L�

�Kγ/L+1� , �K/L�
�Kγ/L+1�

}
and

a relatively small reduction in the achieved DoF (dL(γ) =
L+Kγ) by a multiplicative factor (gap) that is bounded above
by 2 when L > Kγ and by 3

2 when L < Kγ, while the gap
vanishes as Kγ

L increases.
To remove the constraint L|K we will add to the system

phantom users such that the new (hypothetical) number of
users is K̂ = L

⌈
K
L

⌉
. Moreover, if L � K̂γ we will perform

memory sharing (cf. [1]) by splitting each file Wn into two
parts, W �

n, W ��
n of different sizes |W �

n| = p|Wn| and |W ��
n | =

(1−p)|Wn|, and cache each part with normalized cache sizes

γ� = |Zk∩W ′
n|

|W ′
n| = L

K̂

⌊
K̂γ
L

⌋
and γ�� = |Zk∩W ′′

n |
|W ′′

n | = L
K̂

⌈
K̂γ
L

⌉
,

which guarantees that L|K̂γ� and L|K̂γ��. From the above we
can see that p = γ′′−γ

γ′′−γ′ .
Then, as the original scheme describes, we divide W �

n

into
( K̂/L

K̂γ′/L
parts, W ��

n into K̂/L

K̂γ′′/L
parts, and cache from

W �
n, W ��

n according to Eq. (12). The corresponding subpacke-
tization cost is thus bounded as

S ≤ K · max
(

K̂/L

K̂γ�/L

)
,

(
K̂/L

K̂γ��/L

)}

≤ K · max
{(

�K/L�
�Kγ/L�+ 1

)
,

(
�K/L�

�Kγ/L	+ 1

)}
(25)

where the multiplicative factor of K is the one that upper
bounds the subpacketization effect of splitting the file in two
parts before subpacketizing each part. This effect is bounded
by K because p ≥ 1/K by virtue of the fact that Kγ is an
integer.14

13Note that for the settings in [1], [23], and [24], the aforementioned
subpacketization costs in (1),(7) and (8) do not account for the extra
subpacketization costs due to memory sharing.

14To see this, we rewrite γ as γ = a/K where a is an integer, and then

we see that p = γ′′−γ
γ′′−γ′ =

�
K̂a
KL

�
− aK̂

KL�
K̂a
KL

�
−
�

K̂a
KL

� > 1
K

where, in the last step we

used the fact that the denominator is 1 (unless it is zero, in which case there
is no additional subpacketization cost), while for the numerator we have that�

K̂a
KL

�
− aK̂

KL
> 1

K
because L|K̂a.



Then, in order to derive a multiplicative gap on DoF,
dnc

L , that accounts for removing the two constraints, we will
consider two separate cases. First, we will look at the case of
K̂γ ≤ L. By applying memory sharing, we can see that each
part will be cached with redundancy 0 and L respectively. This
means that the completion time will be T = m′

0+L+ m′′
L+L , where

m� = Kp(1− γ�) and m�� = K(1− p)(1− γ��). Then, we can
see that the completion time is upper-bounded T ≤ K(1−γ)

L

and lower-bounded T ≥ K(1−γ)
2L , which incorporates the facts

that the performance cannot be worse than if there was no
caching gains, but it cannot be better than if the caching gain
was L. Using that, we can calculate the bounds of the DoF as
follows

K(1 − γ)
L

≥ T ≥ K(1 − γ)
2L

K(1 − γ)
K(1−γ)

2L

≥ dnc
L ≥ K(1 − γ)

K(1−γ)
L

2L ≥ dnc
L ≥ L

which implies a gap of 2. Similarly, for the case where Kγ ∈
(qL, qL + q), q = {1, 2, ...} we can see that the above gap
becomes q+2

q+1 .
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