
Coded Distributed Computing with Node
Cooperation Substantially Increases Speedup Factors

Emanuele Parrinello, Eleftherios Lampiris & Petros Elia
Communcations Department, EURECOM

Sophia Antipolis, France
Email: {parrinel,lampiris,elia}@eurecom.fr

Abstract— This work explores a distributed computing setting
where K nodes are assigned fractions (subtasks) of a compu-
tational task in order to perform the computation in parallel.
In this setting, a well-known main bottleneck has been the inter-
node communication cost required to parallelize the task, because
unlike the computational cost which could keep decreasing as
K increases, the communication cost remains approximately
constant, thus bounding the total speedup gains associated to
having more computing nodes. This bottleneck was substantially
ameliorated by the recent introduction of coded techniques in
the context of MapReduce which allowed each node — at the
computational cost of having to preprocess approximately t
times more subtasks — to reduce its communication cost by
approximately t times. In reality though, the associated speed
up gains were severely limited by the requirement that larger
t and K necessited that the original task be divided into an
extremely large number of subtasks. In this work we show how
node cooperation, along with a novel assignment of tasks, can
help to dramatically ameliorate this limitation. The result applies
to wired as well as wireless distributed computing and it is
based on the idea of having groups of nodes compute identical
mapping tasks and then employing a here-proposed novel D2D
coded caching algorithm. In this context, the new approach here
manages to achieve a virtual decomposition of the fully connected
D2D setting into parallel ones, which significantly reduces the
required subpacketization.

I. INTRODUCTION

Parallel computing exploits the presence of more than
one available computing node, in order to allow for faster
execution of a computational task. This effort usually involves
dividing the original computational task into different subtasks
and then assigning these subtasks to different nodes which, af-
ter some intermediate steps, compute the final task in parallel.

While some rare tasks are by nature already parallel, most
computational problems need to be parallelized, and this
usually involves an intermediate preprocessing step and a
subsequent information exchange between the nodes. One such
special class of distributed computing algorithms follows the
MapReduce model [1], which is a parallel processing tool that
simplifies the parallel execution of tasks, by abstracting the
original problem into the following three phases:

1) the mapping phase, where each element of the dataset
is assigned to one or more computing nodes and where

This work was supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929.

the nodes perform an intermediate computation aiming
to “prepare” for parallelization,

2) the shuffling phase (or communication phase), where
nodes communicate between each other the preprocessed
data that is needed to make the process parallel, and

3) the reduce phase, where nodes work in parallel to
provide the final output that each is responsible for.

Classes of tasks that can be parallelized under a MapReduce
framework include Sorting [2], Data Analysis and Clustering
[3], [4] and Word Counting [5], among others.

A. Communication bottleneck of distributed computing

While though MapReduce allows for parallelization, it also
comes with different bottlenecks involving for example strug-
gling nodes [6], [7] and non-fine-tuned algorithms [8]. The
main bottleneck, though, which bounds the performance of
MapReduce is the duration of the shuffling phase, especially as
the dataset size becomes larger and larger. While having more
nodes can speed up computational time, the aforementioned in-
formation exchange often yields unchanged or even increased
communication load and delays, leading to a serious bottleneck
in the performance of distributed computing algorithms.

Phase delays: In particular, consider a setting where
there are K computing nodes, operating on a dataset of F
elements. Assuming that each element of the dataset can
appear in t different computing nodes, and assuming that
Tmap(F) represents the time required for one node to map
the entire dataset, then the map phase will have duration
approximately Tmap(t FK) which generally reduces with K.
Similarly the final reduce phase enjoys the same decreased
delay Tred(F/K), where Tred(F) denotes the time required
for a single node to reduce the entire mapped dataset1.

The problem lies with the communication delay Tcom(F).
For Tc denoting the time required to transmit the entire
mapped dataset, from one node to another without any inter-
ference from the other nodes2, and accounting for a reduction
by the factor (1 − γ) due to the fact that each node already
has a fraction γ = t/K of the dataset, then the delay of the

1We here assume for simplicity of exposition, uniformity in the amount of
mapped data that each node uses in the final reduce phase. We also assume
a uniformity in the computational capabilities of each node.

2Tc accounts for the ratio between the capacity of the communication link
and the dataset size F .

shuffling phase takes the form Tcom(F) = Tc · (1− γ), which
does not decrease with K.

Hence for the basic MapReduce (MR) algorithm — under
the traditional assumption that the three phases are performed
sequentially — the overall execution time becomes

TMR
tot (F,K) = Tmap(

t

K
F) + Tc · (1− γ) + Tred(

F

K
)

which again shows that, while the joint computational cost
Tmap(tKF) + Tred(FK) of the map and reduce phases can
decrease by adding more nodes, the communication time
Tc · (1 − γ) is not reduced and thus the cost of the shuffling
phase emerges as the actual bottleneck of the entire process.

B. Emergence of Coded MapReduce: exploiting redundancy

For a general distributed computing problem fitting the
aforementioned MapReduce model, a method of reducing the
communication load was introduced in [9] (see also [10],
[11]), which modified the mapping phase, in order to allow
for the shuffling phase to employ coded communication. The
main idea of the method — which is referred to as Coded
MapReduce (CMR) — was to assign and then force each node
to map a fraction γ > 1/K of the whole dataset (such that each
element of the dataset is mapped in t = Kγ computing nodes)
and then — based on the fact that such a mapping would allow
for common mapped information at the different nodes — to
eventually perform coded communication, where during the
shuffling phase, the packets were not sent one after the other,
but were rather combined together into XORs and sent as one.
The reason this speedup would work is because the recipients
of these packets could use part of their (redundant) mapped
packets in order to remove the interfering packets from the
received XOR, and acquire their own requested packet. This
allowed for communicating (during the shuffling phase) to
t = Kγ nodes at a time, thus reducing the shuffling phase
duration, from Tc · (1− γ) to 1

tTc · (1− γ) = 1
KγTc · (1− γ).

C. Subpacketization bottleneck of distributed computing

Despite the fact that the aforementioned coded method
promises, in theory, big delay reductions by a factor of t = Kγ
compared to conventional uncoded schemes, these gains are
heavily compromised by the fact that the method requires that
the dataset be split into an unduly large number of S =

(
K
t

)
packets3, where

(
K
t

)
denotes the binomial coefficient.

Specifically, S grows exponentially in K and t while the
finite-sized dataset can only be divided into a limited number
of packets, which limits the values of speedup parameter t that
can be achieved, because the corresponding subpacketization
S must be kept below some maximum allowable subpacke-
tization Smax, which, also, must be less than the number of
elements F in the dataset. If this number S =

(
K
t

)
exceeds

3The subpacketization S strictly refers to the number of chunks the dataset
has to be split into in order to prepare the mapping phase. At the time when
the shuffling phase takes place, CMR requires to further split each mapped
chunk into t equally-sized smaller parts. This extra subpacketization, which
occurs at a bit level, is negligible compared to S and is not taken into account
in our analysis.

the maximum allowable subpacketization Smax, then coded
communication is limited to include coding that spans only

K̄ = arg max
K

{(
K

t

)
≤ Smax

}
(1)

nodes at a time, forcing us to repeat the coded communication
K/K̄ times, thus resulting in a smaller, actual gain

t̄ = K̄γ < Kγ

which can be far smaller than the theoretical communication
gain due to coding. Such high subpacketization can naturally
limit the coding gains t, but it can also further delay the
shuffling phase because it implies more transmissions and thus
higher packet overheads, as well as because smaller packets
are more prone to having mapped outputs that are unevely
sized, thus requiring more zero padding.

In what follows, we will ameliorate the above problems
with a novel group-based method of distributing the dataset
across the computing nodes and a novel method of cooper-
ation/coordination between nodes in the transmission, which
will jointly yield a much reduced subpacketization, allowing
for a wider range of t values to be feasible, thus eventually
allowing substantial reductions in the overall execution time
for a large class of distributed computing algorithms.

Before describing our solution and its performance, let us
first elaborate on the exact channel model.

D. Channel model: Distributed computing in a D2D setting

In terms of the communication medium, we will focus on
the wireless fully-connected setting, because in the wireless
setting the nature of multicasting and the impact of link
bottlenecks are clearer. As we will discuss later on though,
the ideas here apply directly to the wired case as well.

We assume that the K computing nodes are all fully con-
nected via a wireless shared channel as in the classical fully-
connected D2D wireless network. At each point there will be a
set of active receivers, and active transmitters. Assuming a set
of L active transmitters jointly transmitting vector x ∈ CL×1,
then the received signal at a receiving node k takes the form

yk = hTk x + wk, k ∈ {1, · · · ,K} , [K], (2)

where as always x satisfies a power constraint E(||x||2) < P ,
where hk ∈ CL×1 is the (potentially random) fading channel
between the transmitting set of nodes and the receiving node
k, and where wk denotes the unit-power AWGN noise at
receiver k. We assume the system to operate in the high
SNR regime (high P), and we assume perfect channel state
information (CSI) (and for the wired case, perfect network
coding coefficients) at the active receivers and transmitters.

E. Notation

If A is set, then |A| will denote its cardinality, and A(j)
will denote its jth element if A is totally ordered. For sets A
and B, A\B denotes the difference set.

II. MAIN RESULT

We proceed to describe the performance of the new pro-
posed algorithm, which will be presented in the next section.
Key to this algorithm — which we will refer to as the Group-
based Coded MapReduce (GCMR) algorithm — is the concept
of user grouping. We will group the K nodes into K/L groups
of L nodes each, and then every node in a group will be
assigned the same subset of the dataset and will produce
the same mapped output. By properly doing so, this will
allow us to use in the shuffling phase a new — developed
in this work — D2D coded caching communication algorithm
which assigns the D2D nodes an adaptive amount of content
overlap4. This, in turn, will dramatically reduce the required
subpacketization, thus substantially boosting the speedup in
communication and overall execution time.

For the sake of comparison, let us first recall that under the
subpacketization constraint Smax, the original Coded MapRe-
duce approach achieves communication delay

TCMR
com =

1− γ
t̄

Tc (3)

where
t̄ = γ · arg max

K
{
(
K

Kγ

)
≤ Smax}

is the maximum achievable effective speedup (due to coding)
in the shuffling phase.

We proceed with the main result.

Theorem 1. In the K-node distributed computing setting
where the dataset can only be split into at most Smax
identically sized packets, the proposed Group-based Coded
MapReduce algorithm with groups of L users, can achieve
communication delay

TGCMR
com =

1− γ
t̄L

Tc

for

t̄L = γ · arg max
K
{
(
K/L

Kγ/L

)
≤ Smax}.

Proof. The proof follows directly from the description of the
scheme in Section III.

The above implies the following corollary, which reveals
that in the presence of subpacketization constraints, simple
node grouping can further speedup the shuffling phase by a
factor of up to L.

Corollary 1. In the subpacketization-constrained regime
where Smax ≤

(
K/L
Kγ/L

)
, the new algorithm here allows for

shuffling delay

TGCMR
com =

1− γ
t̄L

Tc =
TCMR
com

L

which is L times smaller than the delay without grouping for
the same choice of the parameter γ.

4This general idea draws from the group-based cache-placement idea
developed in [12] for the cache-aided MISO broadcast channel.

Proof. The proof is direct from the theorem.

Finally the following also holds.

Corollary 2. When Smax ≥
(
K/L
Kγ/L

)
, the new algorithm

allows for the unconstrained theoretical execution time

TGCMR
tot = Tmap(γF) +

(1− γ)

Kγ
Tc + Tred

(
F

K

)
. (4)

Proof. The proof is direct from the theorem.

III. DESCRIPTION OF SCHEME

We proceed to describe the scheme. We consider a dataset
Φ consisting of F elements and a computational task that asks
for Q ≥ K output values uq = φq(Φ), q = 1, · · · , Q. The
general aim is to distribute this task across the K nodes, hence
the dataset is split into S disjoint packets Ws, s = 1, · · · , S
(∪Ss=1Ws = Φ). We recall that, as is common in MapReduce,
each function φq is decomposable as

φq(Φ) = rq(mq(W1), · · · ,mq(WS)) (5)

where the map functions {mq, q ∈ [Q]} map packet Ws into
Q intermediate values W q

s = mq(Ws), q ∈ [Q], which are
used by the reduce function rq to calculate the desired output
value uq = rq(W

q
1 , · · · ,W q

S).
We proceed to describe the Assignment-and-Map, Shuffle

and Reduce phases.

A. Dataset assignment phase

We split the K nodes into K ′ , K
L groups, as follows

Gi = {i, i+K ′, ..., i+ (L− 1)K ′}, i ∈ [K ′] (6)

with L nodes per group, and we split the dataset into

S =

(
K ′

K ′γ

)
(7)

packets, where γ ∈ { 1
K′ ,

2
K′ , · · · , 1} is a parameter of choice

defining the redundancy factor of the mapping phase later on.
At this point, each s ∈ [S] is associated to a unique subset T
of [K ′] of cardinality |T | = K ′γ so that the dataset can be
seen as being segmented into {WT , T ⊂ [K ′] : |T | = K ′γ}.
Each node in group Gi is then assigned the set of packets

MGi = {WT : T 3 i} (8)

and each of the Q reduce functions rq is assigned to a given
node. For simplicity we assume that Q = K.

B. Map Phase

This phase consists of each node k computing the map
functions mq of all packets in MGi ,Gi 3 k for all q ∈ [Q].
At the end of the phase, node k ∈ Gi has computed the
intermediate results W q

T = mq(WT) for all WT ∈MGi .

C. Shuffle Phase

Each node Gi(j) of group Gi, must retrieve from the other
nodes (except from those in Gi), the intermediate values
{WGi(j)T : WT /∈MGi} that it has not computed locally. Each
node Gi(j) will thus create a set of symbols {xGi(j),Q\{i}},
intended for all the nodes in groups Gk, k ∈ Q\ {i} for some
Q ⊆ [K ′] of size |Q| = K ′γ+1, where of course each symbol
xGi(j),Q\{i} is a function of the intermediate values computed
in the map phase. We use

xi,Q\{i} , [xGi(1),Q\{i}, · · · , xGi(L),Q\{i}]
T

to denote the vector of symbols that are jointly created by the
users in Gi and which are intended for the users in Gk, k ∈
Q \ {i}. Each symbol is communicated (multicasted) by the
corresponding node Gi(j), to all the other nodes. We proceed
to provide the details for transmission and decoding.

a) Transmission: For each subsetQ ⊆ [K ′] of size |Q| =
K ′γ+1, we sequentially pick element i ∈ Q so that the users
in group Gi act as a single distributed transmitter. For each
Gk′(j) ∈ Gk′ , k′ ∈ Q\{i}, users in group Gi partition WGk′ (j)

Q\{k′}
into K ′γ equally-sized disjoint segments:

W
Gk′ (j)
Q\{k′} = {WGk′ (j)

Q\{k′},p : p ∈ Q\{k′}}

where W
Gk′ (j)
Q\{k′},i is the segment associated to group Gi. At

this point, these users in Gi construct the following vector of
symbols

xi,Q\{i}=
∑

k′∈Q\{i}

H−1
i,k′

[
W
Gk′ (1)
Q\{k′},i, · · · ,W

Gk′ (L)
Q\{k′},i

]T
(9)

where H−1
i,k′ is the ZF precoding matrix for the channel

Hi,k′ ∈ CL×L between transmitting group Gi and receiving
group Gk′ , and where {WGk′ (j)

Q\{k′},i}Lj=1 is a set of intermediate
values desired by the nodes in Gk′ . Each user Gi(j) now
transmits the j-th element of the constructed vector xi,Q\{i}.

b) Decoding: Node Gp(j), p ∈ Q\{i} receives the signal

yGp(j) = hTGp(j)xi,Q\{i} + wGp(j) (10)

and removes out-of-group interference by employing the in-
termediate values it has computed locally in the map phase.
Specifically each node Gp(j), and all the nodes in Gp, p ∈ Q,
remove from their yGp(j) the signal

hTGp(j)

∑
k′∈Q\{i,p}

H−1
i,k′

[
W
Gk′ (1)
Q\{k′},i, · · · ,W

Gk′ (L)
Q\{k′},i

]T
(11)

to stay with a residual signal

hTGp(j)H
−1
i,p

[
W
Gp(1)

Q\{p},i, · · · ,W
Gp(L)

Q\{p},i

]T
+ wGp(j). (12)

The choice of H−1
i,p to be a ZF precoder, removes intra-group

interference, thus allowing each node Gp(j) to receive its
desired intermediate value W

Gp(j)

Q\{p},i. The shuffling phase is
concluded by going over all the aforementioned sets Q ⊂ [K ′]
of size K ′γ + 1.

× ××

×

× ×
× ×

××

Fig. 1. Illustration of the wired setting. × denotes a network coding operation.

D. Reduce Phase
At this point, each node uses the symbols received during

the shuffling phase, together with the intermediate values
computed locally, in order to construct the inputs W q

1 , ...,W
q
S

that are required by the reduce function rq to calculate the
desired output value uq = rq(W

q
1 , · · · ,W q

S).

E. Calculation of shuffling delay
We first see from (7) that the subpacketization is equal to

S =

(
K ′

K ′γ

)
=

(
K/L

Kγ/L

)
. (13)

Let us now verify that the shuffling delay is TGCMR
com =

1−γ
t̄L
Tc. To do this, let us first assume that Smax ≥ S in which

case we want to show that TGCMR
com = 1−γ

Kγ Tc. To verify the
first term (Kγ), we just need to note that during the shuffling
phase no segment is ever sent more than once, and then simply
note that the scheme serves a total of K ′γ groups at a time,
thus a total of K ′γL = Kγ nodes at a time. Finally to justify
the term 1 − γ, we just need to recall that — due to the
placement redundancy — a fraction γ of all the shuffled data
is already at their intended destination.

Lastly when Smax ≥ S, we simply have to recall that we are
allowed — without violating the subpacketization constraint
— to encode over K̄L = arg maxK{

(
K/L
Kγ/L

)
≤ Smax} nodes

at a time, which yields the desired t̄L = γ ·K̄L. This concludes
the proof of the results.

F. Extension to the Wired Setting
As a last step, we quickly note that the same vector

precoding used to separate the users of the same group
(cf. (9),(12)) can be directly applied in the wired setting where
the intermediate nodes (routers, switches, etc.) in the links,
can perform pseudo-random network coding operations on the
received data (cf. [13]). This would then automatically yield a
linear invertible relationship between the input vectors and the
received signals, thus allowing for the design of the precoders
that cancel intra-group interference.

G. Example of the scheme
Let us consider a setting with K = 32 computing nodes, a

chosen redundancy of Kγ = 16, and a cooperation parameter
L = 8. The nodes are split into K ′ = K/L = 4 groups

G1 = {1, 5, 9, ..., 29}, G2 = {2, 6, 10..., 30},
G3 = {3, 7, 11, ..., 31}, G4 = {4, 8, 12, ..., 32}.

and the dataset is split into
(

4
2

)
=6 packets as {W12,W13,W14,

W23,W24,W34}, which are distributed to the nodes as follows:

MG1 ={W12,W13,W14}, MG2 = {W12,W23,W24},
MG3 ={W13,W23,W34}, MG4 = {W14,W24,W34}.

In the map phase, packet WT is mapped into {W q
T }Kq=1 such

that, for example, W 1
T is the output of the first mapping

function after acting on WT . Finally, after the segmentation
of each mapped packet into K ′γ = 2 smaller chunks, the
transmissions are5:

x1,23 =H−1
1,2W

G2
13,1 + H−1

1,3W
G3
12,1

x1,24 =H−1
1,2W

G2
14,1 + H−1

1,4W
G4
12,1

x1,34 =H−1
1,3W

G3
14,1 + H−1

1,4W
G4
13,1

x2,13 =H−1
2,1W

G1
23,2 + H−1

2,3W
G3
12,2

x2,14 =H−1
2,1W

G1
24,2 + H−1

2,4W
G4
12,2

x2,34 =H−1
2,3W

G3
24,2 + H−1

2,4W
G4
23,2

x3,12 =H−1
3,1W

G1
13,3 + H−1

3,2W
G2
13,3

x3,14 =H−1
3,1W

G1
34,3 + H−1

3,4W
G4
13,3

x3,24 =H−1
3,2W

G2
34,3 + H−1

3,4W
G4
23,3

x4,12 =H−1
4,1W

G1
24,4 + H−1

4,2W
G2
14,4

x4,13 =H−1
4,1W

G1
34,4 + H−1

4,3W
G3
14,4

x4,23 =H−1
4,2W

G2
34,4 + H−1

4,3W
G3
24,4,

where W
Gg
T ,i denotes a vector of L = 8 elements consisting

of the intermediate results intended for nodes in group Gg .
Observing for example the first transmission, we see that

the nodes in group G2 can remove any interference caused
by the intermediate results intended for group G3 since these
intermediate values have been calculated by each node in G2

during the map phase. After noting that the precoding matrix
H−1

1,2 removes intra-group interference, we can conclude that
each transmission simultaneously serves each of the 16 users
with one of their desired intermediate values, which in turn
implies a 16-fold speedup over the uncoded case.

IV. CONCLUSION

The work provided a novel algorithm that employs node-
grouping in the mapping and shuffling phases, to substantially
reduce the shuffling-phase delays that had remained large due
to the acute subpacketization bottleneck.

A. Minimal overhead for group-based node cooperation

It is interesting to note that the described node cooperation
does not require any additional overhead communication of
data (dataset entries) between the nodes. The only additional
communication-overhead is that of having to exchange CSI
between active receiving and transmitting nodes from Kγ/L+
1 groups. In static settings — where computing nodes are not
moving fast, as one might expect to happen in data centers —

5Please note that to keep the notation simple, the indices may often – when
there is no reason for confusion – appear without commas.

and in particular in wired settings where the network coding
coefficients are fixed and known, the CSI overhead can be very
small compared to the volumes of the communicated datasets.

B. Impact of reduced packetization on distributed computing

The reduced subpacketization comes with a variety of
positive ramifications.

a) Boosting the speedup factor t in the shuffling phase:
As we have discussed, the much reduced subpacketization
allows for a substantial increase in the number of nodes we
can encode over, thus potentially yielding an L-fold decrease
in the shuffling-phase delay.

b) Reducing packet overheads: The second ramification
from having fewer packets, comes in the form of reduced
header overheads that accompany each transmission. Simply
put, the fewer the packets, the bigger they are, hence the less
the communication load is dominated by header overheads
which can further slow down the shuffling phase.

c) Efficient Coded Message Creation by Reducing Un-
evenness: Another positive ramification from our algorithm
is that it can reduce the unevenness between the sizes of
the mapped outputs that each packet is mapped into. This
unevenness — which is naturally much more accentuated in
smaller packets — can cause substantial additional delays
because it forces zero padding (we can only combine equal-
sized bit streams) which wastes communication resources.
Having fewer and thus larger packets, averages out these size
variations, thus reducing wasteful zero padding.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, 2008.

[2] O. O’Malley, “Terabyte sort on apache hadoop,” Yahoo, available online
at: http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pp. 1–3, 2008.

[3] K. Shim, “MapReduce algorithms for big data analysis,” Proceedings of
the VLDB Endowment, vol. 5, no. 12, pp. 2016–2017, 2012.

[4] A. Kumar, M. Kiran, and B. Prathap, “Verification and validation of
mapreduce program model for parallel k-means algorithm on hadoop
cluster,” in Computing, Communications and Networking Technologies
(ICCCNT), Fourth International Conference on, IEEE, 2013.

[5] J. Dean and S. Ghemawat, “Distributed programming with mapreduce,”
Beautiful Code. Sebastopol: O’Reilly Media, Inc, vol. 384, 2007.

[6] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[7] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, pp. 1514–1529, March 2018.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-
uating MapReduce performance using workload suites,” in Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International Symposium on, 2011.

[9] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Sept 2015.

[10] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr,
“Coded TeraSort,” in IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), May 2017.

[11] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, Jan 2018.

[12] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes.” to appear in IEEE Journal on Special
Areas of Communications (JSAC), 2018.

[13] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, Dec 2016.

