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Abstract—This paper develops an efficient algorithm to learn
and reconstruct from a small measurement samples an air-to-
ground radio map with fine-grained propagation details so as to
predict the signal strength between a wireless equipped UAV and
arbitrary ground users, and ultimately the optimal position of the
UAV as a mobile relay. In this paper, a joint data clustering and
parameter estimation algorithm is developed to learn an multi-
segment propagation model from energy measurements that may
contain large observation noise. To reduce the reconstruction
complexity, we propose to learn a hidden multi-class virtual
obstacle model to help efficiently predict the air-to-ground chan-
nel. Numerical results demonstrate that the channel prediction
error is significantly reduced, and meanwhile, the radio map
reconstruction time is reduced to 1/300.

I. INTRODUCTION

There is increasing interest exploiting unmanned aerial vehi-

cles (UAVs) as flying relays to assist wireless communications

in challenging propagation conditions. In particular, one of the

most promising applications is to deploy low altitude UAVs

in dense urban areas to improve the link quality of ground

users that are in deep shadowing of tall buildings or vegetation.

However, such an application is challenging because the UAV-

user channel is not known before sending the UAV to the target

position. Therefore, it is essential to learn the air-to-ground

channel for every possible UAV-user location pair.

Most existing works on UAV-assisted wireless communi-

cations model the UAV-user channel gain as a deterministic

function of the UAV-user distance [1] or a temporal and

spatial correlated process from the prior measurements taken

at nearby locations [2], [3]. Such macroscopic models may be

applicable to long-range and high altitude UAVs, where the

path loss, rather than the terrain shadowing, dominates channel

gain. However, in cellular network applications, the presence

of the urban architecture or vegetation may critically affect

the performance. To address the shadowing issue, the works

[4]–[7] established a simplified stochastic model to capture

the line-of-sight (LOS) probability of the UAV-user link as a

function of the elevation angle at the user and the distribution

of the buildings. However, such a stochastic model does not

provide specific performance guarantees.

It is not surprising that if the fine-grained air-to-ground

propagation including deterministic shadowing effects is

known, a better performance may be achieved [8], since the

optimal UAV position can be adaptive to the actual shadowing
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at the user side rather than merely based on a stochastic

shadowing model.

To learn a fine-grained radio map, there are three types of

methods considered in the literature: nonparametric methods

such as kernel regression [9], semi-parametric methods such

as segmented regression [10], [11], and methods based on 3D

terrain maps [12], [13]. The kernel methods need to maintain

a big table for all the measurement data, since it predicts

the channel gain by combining the prior data measured at

nearby locations [9]. Such a method is difficult to scale to a

large environment, because the channel gain depends on both

the UAV and user locations, which form a high-dimensional

space. The segmented model [10], [11] exploits some paramet-

ric structure based on the log-distance propagation property.

Specifically, it classifies the target area into several propagation

segments and learns individual propagation laws for each

segment. Although it makes better prediction than the kernel

method, it stills need to store all the measurement data in

order to performance propagation segment classification [11],

and hence, it is difficult to scale. Map-based channel prediction

approaches [12], [13] exploit sophisticated 3D channel models

that take into account the signal diffraction at rooftops and

reflection at walls [12], [13]; however, the prediction error

can be as large as 10 – 20 dB compared to the measurement

data as reported in [13]. In general, propagation is not a simple

function of the shapes of the surrounding objects, but it also

depends on whether the object is a concrete wall or a tree. Note

that in the application of optimizing the UAV position, 10 dB

difference in the channel gain can make a a big difference

in the optimal UAV position. Moreover, up-to-date 3D city

is usually not available. Therefore, it is highly motivated

to develop an air-to-ground channel model to achieve better

tradeoffs between complexity and precision.

This paper aims at developing efficient algorithms to learn

a fine-grained air-to-ground channel for arbitrary UAV and

user location pairs. Towards this end, we propose a segmented

propagation model based on a hidden multi-class virtual

obstacle model. Specifically, we reverse-engineer a multi-

class virtual obstacle map based on the multiple propagation

segments that are estimated from the sample data. Preliminary

results have been developed in [14] for the LOS/NLOS two

segment case. In the prediction phase, the air-to-ground chan-

nel is reconstructed using a direct path ray-tracing approach

based on the estimated multi-class virtual obstacle map. As

a result, the proposed model only needs to store the obsta-

cle maps, which are 2D data arrays, together with several
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Figure 1. An urban city map captured at center Washington DC in USA,
where the left image shows the orthoimagery of the area and the right image
shows the building heights obtained from the LIDAR data taken at 2013
available at the USGS database.

propagation parameters. By contrast, the kernel methods and

existing segmented approaches [9]–[11] need to store 6D UAV-

user channel measurement data. Hence, the proposed method

can be understood as projecting the high-dimensional data

to dimension-reduced 2D data arrays under a hidden ray-

tracing model. Our numerical results demonstrate significantly

improved accuracy on radio map reconstruction and a 300-time

run-time acceleration.

II. SYSTEM MODEL

A. Geographical Topology

Consider to learn the air-to-ground channel between a UAV

flying above the ground and a user at the street level in an

urban environment. An example topology is shown in Fig. 1.1

The building heights and the bulk of the vegetation are not

known.

This paper focuses on the long-term channel gain that cap-

tures the path loss and the shadowing, which depends on not

only the UAV-user distance but also the objects surrounding

the user, such as buildings and vegetation.

B. Segmented Channel Model

Let x = (xD,xU) be a UAV-user location pair, where

xD,xU ∈ R3 denote the location of the UAV and the user,

respectively. Let dL(x) , 10 log10 d(x) be the log-distance,

where d(x) = ‖xD − xU‖2 is the UAV-user distance. Con-

ventionally, a stochastic model of the channel gain in dB is

given as γ(x) = β + αdL(x) + ξ(x), where α is the path

loss exponent, β is the offset that can be measured as at the

reference point d = 1 meter (i.e., dL = 0), and ξ(x) is modeled

as a random variable that captures the global shadowing effect

such as signal blockage, diffraction, and reflection.

From the measurement data in [10], [15], the random

variable ξ usually has a high variance (up to 40 dB [10]). On

the other hand, it is also observed that when the measurement

location is restricted to a small area x ∈ D, the channel

model γ(x) has a small variance for the random variable

ξ(x) [10], [15]. For example, the measurement results in [10]

show that, when one focuses on individual streets, the standard

1LIDAR (light detection and ranging) is a remote sensing method to
measure ranges from an aerial plane to the ground.

deviation of ξ is roughly 2 dB. Such an observation motivates

a segmented channel model as follows.

Let D ⊆ R6 be the domain of all possible UAV-user position

pairs of interest. Consider a partition of D into K+1 disjoint

segments: D = D0 ∪D1 ∪ · · · ∪DK , where Dk ∩Dj = ∅, for

k 6= j. The air-to-ground propagation is modeled as

γ(x) =

K
∑

k=1

(

βk + αkdL(x) + ξk
)

I{x ∈ Dk}+ ξ0I{x ∈ D0}

(1)

where I{A} is an indicator function taking value 1 if A is true,

and 0 otherwise. The random variables ξk, k = 1, 2, . . . ,K ,

are assumed to follow N (0, σ2
k) and capture the local shadow-

ing effect. The variable ξ0 is modeled as N (β0+α0dL(x), σ
2
0)

to capture the outliers (i.e., “background noise”) that cannot fit

to either one of the propagation segments k = 1, 2, . . . ,K . The

motivation of the outlier segment D0 is to keep the variance

σ2
k for propagation segments k = 1, 2, . . . ,K small (typically

less than 10 dB), while D0 is also kept small (the variance σ2
0

is allowed to be large).

We aim at developing efficient algorithms to learn the

parameters αk, βk, and Dk, and to predict the channel gain

at every possible UAV-user location pair x ∈ R6 using the

following formula

γ̂(x) =

K
∑

k=1

(

βk + αkdL(x)
)

I{x ∈ Dk} (2)

with rare exceptions where γ̂(x) is not defined in x ∈ D0.

Note that the smaller variances σ2
k, k = 1, 2, . . . ,K are,

the better precision γ̂(x) in (2) can achieve. Intuitively, the

more segments K can be characterized, the smaller segment

variance σ2
k, and the higher precision of the prediction model

γ̂(x).
The learning and prediction are based on a set of channel

measurements y(i) = γ(x(i)) at different locations {x(i), i =
1, 2, . . . , N}.

Remark 1 (Practical Scenarios that Motivate D0). Consider

that the user locates at a street corner and the UAV locates at a

position such that the direct propagation path touches the edge

of a building. A slight change of the UAV or the user positions

may result in the change of propagation segments according to

(2), which leads to a significantly different predicted channel

gain γ̂(x). For example, γ̂(x) may equal to either γLOS(x) =
βLOS + αLOSdL(x) or γNLOS(x) = βNLOS + αNLOSdL(x).
However, in practice, the measured channel gain γ(x) may

equal to a value between γLOS and γNLOS due to energy from

scattered paths. Therefore, classifying such a scenario to either

pure LOS or pure NLOS case may lead to huge variance σ2
k

and large parameter estimation errors for αk and βk. As a

result, introducing an outlier region D0 to kick out such rare

scenarios may improve the robustness of model (1) in practice.

C. Multi-class Virtual Obstacle Model

Note that the propagation segments Dk are characterized by

a set of location points in R6. Nevertheless, there is a hidden

sparse structure of Dk that can be exploited for reducing
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(a) Ray-tracing on actual topology with 3D scattered paths

(b) Multi-class virtual obstacle model with effective direct paths

Figure 2. The virtual obstacle model in (b) approximates the propagation
over all scattered paths in (a) by an equivalent direct path that passes through
effective virtual obstacles. For example, the propagation from the second UAV
in (a) (including reflection and diffraction) is approximated by an effective
direct path which penetrates a light (wooden) wall located at the jth location
in (b).

the model dimension. Specifically, we propose a multi-class

virtual obstacle model as follows.

Without loss of generality (w.l.o.g.), assume that D1 is the

LOS segment, and the propagation in segment Dk is less

obstructed than that in Dk+1, for k = 1, 2, . . . ,K−1. Consider

to discretize the terrain of interest into M equally spaced grids,

and label the grids with integers j = 1, 2, . . . ,M . For each

location j, there may occupy one virtual obstacle from the

K−1 classes, where a class-k obstacle is less obstructed than

a class-(k + 1) obstacle, k = 1, 2, . . . ,K − 2.

Conceptually, the virtual obstacle model tries to approxi-

mate the propagation over all scattered paths (Fig. 2 (a)) by

an equivalent direct path that passes through effective virtual

obstacles (Fig. 2 (b)). Such a model makes it possible to

reverse engineer a virtual obstacle topology based on the

propagation segments Dk, k = 1, 2, . . . ,K . Specifically, if

the UAV-user location pair is in the LOS propagation segment,

x ∈ D1, there must be no obstacle blocking the direct ray from

the UAV position xD to the user position xU as illustrated by

the (i− 1)th direct ray in Fig. 2 (b). Likewise, if x belongs to

a NLOS segment, there must be a wall blocking the direct ray

as shown by the (i + 1)th direct ray in Fig. 2 (b). Moreover,

in the case of K = 3 propagation segments, if x is in an

obstructed LOS (OLOS) segment, x ∈ D2, it may suggest

that a (virtual) light wall (or vegetation), instead of a concrete

wall, may block the direct ray.

Mathematically, given Dk, k = 1, 2, . . . ,K , the multi-class

virtual obstacle model is defined as a set of vectors h
[k], k =

1, 2, . . . ,K − 1, satisfying the following conditions:

• Direct rays: A direct ray R(x), that is a line segment

joining a user position xU and a UAV position xD for

location pair x = (xU,xD), belongs to class-k if x ∈ Dk.

• Virtual obstacle maps: A virtual obstacle map of class-k
is an M -array vector h[k] with the jth entry representing

the height of a class-k obstacle at the corresponding jth

grid location. Moreover, any class-k direct ray R(x), x ∈
Dk and k > 1, must penetrate at least one class-(k −
1) virtual obstacle, but it does not penetrate any virtual

obstacles with class k
′

> k − 1. A class-1 direct ray

must not pass any obstacle. Here, a direct ray R(x(i)) is

said to penetrate a virtual class-k obstacle at location j if

z
(i)
j < h

[k]
j , where z

(i)
j is the height above ground when

the direct ray R(x(i)) passes over grid location j.

Remark 2 (Physical Interpretation). The objective of the

virtual obstacle model is not to estimate the actual terrain

topology (such as that in Fig. 2 (a)), but to construct a

virtual obstacle topology to fit the propagation segments Dk

under a simplified direct ray model as illustrated in Fig. 2

(b). For example, the diffracted and reflected in Fig. 2 (a)

may result in classifying the location pair x
(i) to an OLOS

propagation segment (in K = 3 case). Correspondingly, one

may approximate such scenario by putting a wood wall at

location j in Fig. 2 (b) to block the ith direct ray.

In summary, the goal of this paper is to learn the segment

propagation model {αk, βk,Dk, k = 1, 2, . . . ,K} based on

some training measurements {x(i), y(i)}, estimate the virtual

obstacle map {h[k], k = 1, 2, . . . ,K− 1}, and based on these,

reconstruct the air-to-ground channel for every possible UAV-

user location x.

III. JOINT CLUSTERING AND REGRESSION WITH THE

PRESENCE OF OUTLIERS

In this section, we perform joint cluster and regression to

learn the segmented model with the presence of outliers from

training energy measurements {(x(i), y(i)) : i = 1, 2, . . . , N}.

A. Identify the Outliers

Let c
(i) = (c

(i)
0 , c

(i)
2 , . . . , c

(i)
K ) be the cluster label to

estimate, where c
(i)
k = 1 means that the data sample (x(i), y(i))

is clustered to the kth segment, and c
(i)
k = 0 otherwise. Note

that c
(i)
k ∈ {0, 1} and

∑K
k=0 c

(i)
k = 1.

Given that c
(i)
k = 1, segmented channel model (1) yields

y = αkdL(x) + βk + ξk (3)

where ξk ∼ N (0, σ2
k) holds for k = 0, 1, . . . ,K . The joint

probability density function (PDF) pk(x, y) for (x(i), y(i))

conditioned on c
(i)
k = 1 is thus given by

pk(x, y) =
1√
2πσk

exp

{

− (y − αkdL(x)− βk)
2

2σ2
k

}

. (4)

Note that the energy measurements tend to cluster to one

of the K segments k = 1, 2, . . . ,K with small variance σ2
k,

whereas, the outliers may deviate from any of the cluster
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centers. Such property can be exploited to identify the outliers,

and a simple algorithm can be designed by setting a threshold

on the maximum deviation of the measured energy y(i) form

the segment center αkdL(x
(i))+βk, e.g., |y−αkdL(x)−βk| <

2σk. However, a more systematic way that can benefit from

the Bayesian framework is to model the outlier segment using

a Gaussian model N (α0dL(x) + β0, σ
2
0) with large enough

variance σ2
0 (a typical choice can be σ0 = 20), where the

parameters α0 and β0 are fit to the entire dataset, i.e., as a

least-squared solution to

minimize
α0,β0

N
∑

i=1

(y(i) − α0dL(x
(i))− β0)

2.

As a result, an outlier (x(i), y(i)) will appear to have small

probabilities pk for k = 1, 2, . . . ,K , and relatively large prob-

ability p0 (since the propagation segments k = 1, 2, . . . ,K are

concentrated).

B. Maximum Likelihood Estimation

To estimate the remaining parameters, the maximum like-

lihood approach derived in [11] can be directly applied. The

overall solution is summarized as follows:

• Soft clustering: Let θ(t) be the parameter obtained from

the tth iteration. The clustering result after the tth itera-

tion is given by

ĉ
(i)
k (θ(t)) =

pk(x
(i), y(i)

∣

∣θ
(t))πk

∑K
j=0 pj(x

(i), y(i)
∣

∣θ(t))πj

(5)

and in addition, π
(t+1)
k = 1

N

∑N
i=1 ĉ

(i)
k for k =

0, 1, . . . ,K .

• Parameter regression: For k = 1, 2, . . . ,K ,

(

σ
(t+1)
k

)2
=

∑N
i=1 ĉ

(i)
k

[

y(i) − α
(t+1)
k dL(x

(i))− β
(t+1)
k

]2

∑N
i=1 ĉ

(i)
k

(6)

where

[

α
(t+1)
k

β
(t+1)
k

]

= A
−1
k













N
∑

i=1

ĉ
(i)
k dL(x

(i))y(i)

N
∑

i=1

ĉ
(i)
k y(i)













and

Ak =













N
∑

i=1

ĉ
(i)
k dL(x

(i))2
N
∑

i=1

ĉ
(i)
k dL(x

(i))

N
∑

i=1

ĉ
(i)
k dL(x

(i))

N
∑

i=1

ĉ
(i)
k













.

IV. ESTIMATION OF THE HIDDEN

MULTI-CLASS VIRTUAL OBSTACLE MAP

To associate the propagation segments Dk, k = 1, 2, . . . ,K ,

with the hidden virtual obstacle map, one needs to jointly

consider the topology of all the buildings and the direct

rays from all the UAV-user location pairs in the training

dataset. In general, the association is not unique (due to finite

Table I
RELATION BETWEEN PROPAGATION SEGMENTS AND THE LABEL

VARIABLES UNDER THE CASE OF K = 3 SEGMENTS.

Scenario Segment Segment label c(i) Ray label (L
(i)
1 , L

(i)
2 )

LOS D1 (1,0,0) (1,1)

OLOS D2 (0,1,0) (0,1)

NLOS D3 (0,0,1) (0,0)

training dataset) nor is it consistent (due to measurement and

propagation segment classification errors). In this section, we

first study the geometry characterization of the model, and

then we propose a likelihood approach to find an estimate of

the virtual obstacle map.

A. Geometry Characterization

For the direct ray R(x(i)) from the ith UAV-user location

pair, let L
(i)
k , k = 1, 2, . . . ,K − 1, be a binary variable to

indicate whether the direct ray is in “virtual” LOS excluding

the (light) blockage due to virtual obstacles below class k
′

<
k. Specifically,

L
(i)
k =

{

1

0

no virtual obstacle of class k
′ ≥ k

some virtual obstacle of k
′ ≥ k.

Equivalently, it follows that

L
(i)
k =

k
∑

m=1

c(i)m (7)

which suggests that L
(i)
k = 1 if and only if x

(i) is in

propagation segment D1 ∪ D2 ∪ · · · ∪ Dk, and L
(i)
k = 0 if

and only if x(i) ∈ Dk+1 ∪ Dk+2 ∪ · · · ∪ DK .

For example, in Fig. 2 (b), the (i − 1)th direct ray has

L
(i−1)
1 = 1, which means there is not any obstacle blocking

the (i− 1)th direct ray; for the ith direct ray, L
(i)
1 = 0, which

means there is some blockage, and L
(i)
2 = 1, which means

there is no (heavy) blockage from class-2 virtual obstacle or

above; for the (i+1)th direct ray, L
(i+1)
1 = L

(i+1)
2 = 0 means

there is blockage by virtual obstacles (as heavy as) class-2.

Table I summarizes the relation between the ray labels L
(i)
k

and the segment label c(i) under K = 3 segment case.

Association can be made between the geometry of the direct

rays and the topology of the virtual obstacles as follows. For

each UAV-user position pair x
(i), denote B(i) as the set of

grids that the ground projection of the direct ray R(x(i)) (see

Section II-C) passes through. For each grid location j ∈ B(i),

denote z
(i)
j as the altitude above ground when the direct ray

R(x(i)) passes over grid location j (see Fig. 2 (b)). It follows

that

L
(i)
k = I{h[k]

j ≤ z
(i)
j , j ∈ B(i)} (8)

which means that if there is no virtual obstacle of class-k
blocking the ith direct ray, then the height of the obstacle must

be less than the altitude of the direct ray for all corresponding

grid locations j ∈ B(i).
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B. A Likelihood Approach for Virtual Obstacle Estimation

From (5) and (7), an estimate of L
(i)
k ∈ {0, 1} can be given

by L̂
(i)
k = E{L(i)

k } = P{L(i)
k }, and

P
{

L
(i)
k

}

=

k
∑

m=1

ĉ(i)m . (9)

Let z(i) = (z
(i)
1 , z

(i)
2 , . . . , z

(i)
M ) be the altitude vector, where

z
(i)
j = Hmax for j /∈ B(i) and Hmax is an upper bound of the

virtual obstacle height. The likelihood function of the height

vector h[k] = (h
[k]
1 , h

[k]
2 , . . . , h

[k]
M ) of class-k virtual obstacles

can be derived using Bayes’ rule as

P{h[k] = z} = P
{

h
[k] = z

∣

∣h
[k] � z

(i)
}

P
{

h
[k] � z

(i)
}

+ P
{

h
[k] = z

∣

∣h
[k] � z

(i)
}

P
{

h
[k] � z

(i)
}

where a � b means aj ≤ bj for all elements j, and a � b

means aj > bj for at least one element.

Note that P
{

h
[k] = z

∣

∣h
[k] � z

(i)
}

= 0 if z � z
(i). On

the other hand, if z � z
(i), P

{

h
[k] = z

∣

∣h
[k] � z

(i)
}

≤ 1.

Therefore,

P
{

h
[k] = z

∣

∣h
[k] � z

(i)
}

≤ I
{

z � z
(i)
}

= I
{

zj ≤ z
(i)
j , j ∈ B(i)

}

where the probability function is upper bounded by a trust

region specified by the indicator function I{·}. Similarly,

P
{

h
[k] = z

∣

∣h
[k] � z

(i)
}

= 0 if z � z
(i), and it is upper

bounded by 1 otherwise. Moreover, since P
{

h
[k] � z

(i)
}

=
∑k

m=1 ĉ
(i)
m due to (8) and (9), we have

P{h[k] = z} ≤ I
{

zj ≤ z
(i)
j , j ∈ B(i)

}

k
∑

m=1

ĉ(i)m

+
(

1− I
{

zj ≤ z
(i)
j , j ∈ B(i)

}

)(

1−
k

∑

m=1

ĉ(i)m

)

.

(10)

Applying (10) to all location pairs {x(i)} and clustering

labels {ĉ(i)m }, we define an aggregate likelihood function as

1

N

N
∑

i=1

P{h[k] = z}

≤ 1

N

N
∑

i=1

[

I
{

zj ≤ z
(i)
j , j ∈ B(i)

}

k
∑

m=1

ĉ(i)m

+
(

1− I
{

zj ≤ z
(i)
j , j ∈ B(i)

}

)(

1−
k

∑

m=1

ĉ(i)m

)

]

, Vk(z)

and the estimated heights of the obstacles are given by

ĥ
[k] = argmax

0�z�Hmax1

Vk(z), k = 1, 2, . . . ,K − 1. (11)

An alternating algorithm can be applied to solve (11), where

the elements h
[k]
j can be updated one by one while fixing

all the other elements. As Vk(z) is a likelihood function,

Vk(zj ; z1, z2, . . . , zj−1, zj+1, . . . , zM ) may first increase then

decrease, when one increases zj from 0 to 1. Therefore, a

bisection search type algorithm can be used to find the best zj
while fixing all the other elements. The process of alternating

update is repeated until convergence. It is observed from our

numerical experiment that the algorithm can usually converge

after less than M round updates of z.

The complexity of one round update of z is O(M1.5N).
Specifically, to update each zj , one needs to compute N
summations, in which, there are at most |B(i)| ≤

√
M compar-

isons. Thus, the complexity to update one zj is O(M1/2N),
where the constant depends on the implementation of a bisec-

tion search for zj .

C. Air-to-ground Channel Reconstruction

For any UAV-user location pair x = (xD,xU), let B(x)
be the set of grid locations j where the direct ray joining

xD and xU passes over. Define zj(x), j ∈ B(x), as the

altitude when the direct ray passes over grid j. Similar to

(8), define Lk(x, ĥ
[k]) = I{ĥ[k]

j ≤ z
(i)
j (x), j ∈ B(x)} for

k = 1, 2, . . . ,K − 1. From (7) and since ck ∈ {0, 1}, one has

I{x ∈ Dk} = ck(x) ≈
k−1
∏

m=1

(

1−Lm(x, ĥ[k])
)

K−1
∏

m=k

Lm(x, ĥ[k]).

Using the regression parameters α̂k and β̂k obtained from Sec-

tion III, the air-to-ground radio map γ̂(x) can be reconstructed

as

K
∑

k=1

(

β̂k − α̂kdL(x)
)

k−1
∏

m=1

(

1− Lm(x, ĥ[k])
)

K−1
∏

m=k

Lm(x, ĥ[k]).

(12)

V. NUMERICAL RESULTS

The urban map for numerical experiment is shown in Fig.

1. The maximum building height in the area is 40 meter. The

true radio map is constructed via K = 3 propagation segments

based on whether there is a building or vegetation in the way

of the direct signal path from the orthoimagery and the build-

ing/vegetation heights of the area. The propagation parameters

are chosen as (α1, β1, σ
2
1) = (−2.2,−28, 1), (α2, β2, σ

2
2) =

(−2.8,−24, 2), and (α3, β3, σ
2
3) = (−3.6,−22, 3). In the

training phase, the UAV is deployed at 400 locations in a

uniform pattern with a fixed 50 meter altitude, where at

each location, the UAV measures signal strength from 100

uniformly random user locations on the streets.

To reconstruct the air-to-ground radio map at UAV-

user location x, the KNN baseline computes γ̂KNN(x) =
∑

m∈N (x) K(x,x(m))y(m), where N (x) is the set of 5 near-

est points to x from the training set {x(i)}. In addition,

K(x,x
′

) = λ exp{−‖x− x
′‖22/(2s(x)2)}, in which s(x)2 is

the variance of ‖x− x
′‖2 for x

′ ∈ N (x) and λ is a normal-

izing factor such that
∑

m∈N (x)K(x,x(m)) = 1. The direct

reconstruction baseline [11] first determines the propagation

segment of x using KNN and then applies the corresponding

regression function in (2). The proposed reconstruction is

obtained from (12).
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(a) True radio map (b) KNN (c) Direct reconstruction [11] (d) Proposed

Figure 3. Air-to-ground radio map reconstruction for every UAV location with fixed altitude 50 meters to a user locating at (87, 123, 0) in meters.

Table II
RUN TIME AND RECONSTRUCTION ERROR PERFORMANCE

Run-time (sec)
Mean absolute error (dB)

HUAV = 50 (m) HUAV = 70 (m)

KNN 463 3.6 5.2

Direct [11] 465 3.2 5.0

Proposed 1.50 2.2 2.6

Fig. 3 shows the reconstruction for a user locating at

(87, 123, 0) in meters and a UAV at 50 meter altitude. The pro-

posed approach is able to roughly reconstruct the fine-grained

propagation structure due to different types of blockage with

accurate prediction on the channel gain inside each propaga-

tion segment. Table II compares the run-time for constructing

a 93×94 radio map and the mean absolute error averaging over

100 different user locations. The proposed method reduces the

run-time by 300 times and also significantly reduces the mean

absolute error of channel prediction.

VI. CONCLUSION

This paper develops an efficient algorithm to learn and

reconstruct the air-to-ground radio channel that captures the

fine-grained propagation structure. First, a robust joint clus-

tering and regression algorithm is developed to cluster the

training locations to different propagation segments. Then, a

hidden multi-class virtual obstacle model, which approximates

the air-to-ground propagation by a set of direct rays passing

through effective virtual obstacles, is estimated. Finally, the

air-to-ground channel is reconstructed for every UAV-user

location pair using direct path ray-tracing analysis based on

the estimated multi-class virtual obstacle map. Our numerical

results demonstrate significantly reduced channel prediction

errors and 300X acceleration in radio map reconstruction.

ACKNOWLEDGMENT

This work was supported by the ERC under the Euro-

pean Union’s Horizon 2020 research and innovation program

(Agreement no. 670896).

REFERENCES

[1] F. Jiang and A. L. Swindlehurst, “Optimization of UAV heading for the
ground-to-air uplink,” IEEE J. Sel. Areas Commun., vol. 30, no. 5, pp.
993–1005, 2012.

[2] A. J. Carfang and E. W. Frew, “Real-time estimation of wireless ground-
to-air communication parameters,” in Proc. Int. Conf. on Computing,

Networking and Commun., 2012, pp. 975–979.
[3] A. Ghaffarkhah and Y. Mostofi, “Channel learning and communication-

aware motion planning in mobile networks,” in Proc. American Control

Conf., 2010, pp. 5413–5420.
[4] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-

ground path loss for low altitude platforms in urban environments,” in
Proc. IEEE Global Telecomm. Conf., 2014, pp. 2898–2904.

[5] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Drone small cells
in the clouds: Design, deployment and performance analysis,” in Proc.

IEEE Global Telecomm. Conf., 2015, pp. 1–6.
[6] A. Hourani, K. Sithamparanathan, and S. Lardner, “Optimal LAP

altitude for maximum coverage,” IEEE Commun. Lett., no. 99, pp. 1–4,
2014.

[7] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Optimal transport
theory for power-efficient deployment of unmanned aerial vehicles,” in
Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, May 2016,
pp. 1–6.

[8] J. Chen and D. Gesbert, “Joint user grouping and beamforming for low
complexity massive MIMO systems,” in IEEE Int. Workshop on Signal

Process. Advances in Wireless Commun., Edinburg, UK, May 2016, pp.
1–6.

[9] D. Romero, S.-J. Kim, G. B. Giannakis, and R. Lopez-Valcarce, “Learn-
ing power spectrum maps from quantized power measurements,” IEEE

Trans. Signal Process., vol. 65, no. 10, pp. 2547–2560, 2017.
[10] K. T. Herring, J. W. Holloway, D. H. Staelin, and D. W. Bliss, “Path-loss

characteristics of urban wireless channels,” IEEE Trans. on Antennas

and Propagation, vol. 58, no. 1, pp. 171–177, 2010.
[11] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-

aided wireless networks: A segmented regression approach,” in Proc.

IEEE Int. Conf. Commun., Paris, France, May 2017.
[12] E. Tameh, A. Nix, and M. Beach, “A 3-D integrated macro and

microcellular propagation model, based on the use of photogrammetric
terrain and building data,” in Proc. IEEE Semiannual Veh. Technol.

Conf., vol. 3, 1997, pp. 1957–1961.
[13] J. F. Monserrat, S. Inca, J. Calabuig, and D. Martín-Sacristán, “Map-

based channel model for urban macrocell propagation scenarios,” Int. J.

of Antennas and Propagation, vol. 2015, 2015.
[14] O. Esrafilian and D. Gesbert, “3D city map reconstruction from UAV-

based radio measurements,” in Proc. IEEE Global Telecomm. Conf.,
Singapore, Dec. 2017, to appear.

[15] Q. Feng, J. McGeehan, E. K. Tameh, and A. R. Nix, “Path loss models
for air-to-ground radio channels in urban environments,” in Proc. IEEE

Semiannual Veh. Technol. Conf., vol. 6, 2006, pp. 2901–2905.


