
Framework for Searchable Encryption with SQL Databases

Monir Azraoui, Melek Önen and Refik Molva
EURECOM, Sophia-Antipolis, France
{azraoui, onen, molva}@eurecom.fr

Keywords: Searchable Encryption, SQL Database, Data Confidentiality

Abstract: In recent years, the increasing popularity of outsourcing data to third-party cloud servers sparked a major
concern towards data breaches. A standard measure to thwart this problem and to ensure data confidentiality
is data encryption. Nevertheless, organizations that use traditional encryption techniques face the challenge of
how to enable untrusted cloud servers perform search operations while the actually outsourced data remains
confidential. Searchable encryption is a powerful tool that attempts to solve the challenge of querying data
outsourced at untrusted servers while preserving data confidentiality. Whereas the literature mainly considers
searching over an unstructured collection of files, this paper explores methods to execute SQL queries over
encrypted databases. We provide a complete framework that supports private search queries over encrypted
SQL databases, in particular for PostgreSQL and MySQL databases. We extend the solution for searchable
encryption designed by Curtmola et al., to the case of SQL databases. We also provide features for evaluating
range and boolean queries. We finally propose a framework for implementing our construction, validating its
practicality.

1 INTRODUCTION

Outsourcing data storage and processing to third-
party servers, such as cloud servers, has become a
common procedure. However, when it comes to stor-
ing personal or business confidential data, the usage
of cloud services is currently questioned as as po-
tentially malicious cloud servers may try to learn in-
formation from the data they store and the queries
they process or even leak them to some unauthorized
parties. Encryption is a standard approach to ensure
the confidentiality of data outsourced at honest-but-
curious cloud servers. However, “traditional” encryp-
tion schemes deprive the users of functionalities over
the data, such as searching. In this case, to search
words in encrypted outsourced data, the users are re-
quired to retrieve the entire dataset fom the cloud,
decrypt it and operate the search locally. This naive
approach poses serious performance concerns which
cancel out the benefit of outsourcing. Therefore,
cloud servers shoul dbe able to perform the search
operation in outsourced databases, while the actual
databases are encrypted.

The problem of searching over encrypted data has
received much interest from both academia (Song
et al., 2000; Hacigümüş et al., 2002; Agrawal et al.,
2004; Curtmola et al., 2006; Chase and Kamara,

2010; Popa et al., 2012; Cash et al., 2013; Kamara and
Papamanthou, 2013) and industry (Bitglass1, Cipher-
Cloud2 or Skyhigh3). Research on this topic mainly
focuses on the scenario of a user who outsources an
encrypted collection of documents (such as e-mails,
medical records, etc.) and would like to further search
keywords over this encrypted dataset. While this
theoretical setting is valid, in practice, many orga-
nizations such as governments, hospitals or compa-
nies store data in relational databases which struc-
ture data into tables according to a set of attributes.
The popular SQL language (Chamberlin and Boyce,
1974) enables users to store, query and update their
data in a user-friendly manner. SQL databases en-
sure fast record search and retrieval provided that
the SQL server is able to read data content. As
mentioned before, encryption typically impedes the
server from reading data which makes search over en-
crypted databases challenging. In particular, a crypto-
graphic data protection mechanism for searching over
encrypted data stored in a SQL database should al-
low the server to efficiently process search queries
without having access to the plaintext data. Besides,

1https://www.bitglass.com/ [Accessed Oct. 09, 2017].
2https://ciphercloud.com/ [Accessed Oct. 09, 2017].
3https://www.skyhighnetworks.com/ [Accessed Oct. 09,

2017].

querying an encrypted SQL database should be user-
friendly: protected queries should adopt the SQL syn-
tax and simulate the search functionality as if data
was not encrypted. A direct application of solutions
for searching an encrypted collection of files to SQL
databases is not straightforward. Indeed, existing so-
lutions (Curtmola et al., 2006; Chase and Kamara,
2010; Cash et al., 2013; Kamara and Papamanthou,
2013) build an index of the keywords. In the case
of SQL, data is arranged into tables, and records are
queried based on a condition over one or more at-
tributes. Therefore, keywords should preserve this
notion of attribute. Furthermore, SQL allows per-
forming comparisons of data (range queries) which
are not always addressed in existing work.
To solve these challenges, in (Popa et al., 2012), the
authors proposed CryptDB, a framework that sup-
ports SQL queries over encrypted data. This solu-
tion relies on layers of different property-preserving
encryptions, such as deterministic (DET) and order-
preserving encryption (OPE), applied to a column
of an SQL table. To query the encrypted database,
CryptDB converts the plaintext SQL query into its
encrypted equivalent and decrypts the targeted lay-
ers. The major drawback of CryptDB lies in the fact
that whenever one layer is removed, the encryption
scheme becomes weak. In light of this, the major
problem is to deliver a practical solution for searching
over encrypted databases that does not suffer from the
leakage occurring in CryptDB and that enables trans-
parent processing of complex queries over encrypted
SQL databases.

In this work, we tackle this problem and propose
a practical construction for searching over encrypted
SQL databases which limits information leakage. Our
solution builds upon the searchable encryption tech-
nique designed in (Curtmola et al., 2006) which ap-
plies to unstructured documents. This mechanism
builds an inverted search index of keywords in the
database to enable keyword search queries over en-
crypted data. We make the following contributions:
• We define a solution that is SQL-compatible, so as

to empower user and server to use SQL’s operations
of database creation, data insertion and search. We
propose a framework for implementing our solu-
tion on the PostgreSQL backend;
• Our solution achieves practicality thanks to the use

of the cuckoo hashing technique which renders the
search in the index efficient;
• Our solution supports complex queries, namely

boolean and range queries;
• We evaluate the practicality of our solution by test-

ing it over an encrypted e-health database.
The rest of the paper is organized as follows.

Section 2 defines searchable encryption and SQL
databases. We describe our solution in Section 3. Sec-
tion 4 presents the proposed implementation frame-
work and a performance evaluation. We review ex-
isting work in Section 5. We conclude the paper and
give some direction for future work in Section 6.

2 PRELIMINARIES

2.1 Symmetric Searchable Encryption

We consider the following scenario: a user U wants
to store a set D = {d1,d2, ...,dn} of confidential data
at a server S. D contains a list of searchable key-
words W = {ω1,ω2, ...,ωN}. To preserve data confi-
dentiality, U encrypts D to obtain C = {c1,c2, ...,cn},
which is outsourced to S. A symmetric searchable en-
cryption mechanism allows searching the keywords
directly in C , without compromising data confiden-
tiality nor query privacy. In (Curtmola et al., 2006),
the authors formally define symmetric searchable en-
cryption (SSE) schemes by the following algorithms:
KeyGen(1κ)→ K : It is a probabilistic algorithm ex-

ecuted by user U and, given a security parameter
κ, outputs a secret key K .

BuildIndex(D,K)→ I : This algorithm is run by
user U to generate a search index. It takes key
K and dataset D as inputs and outputs index I .
When the execution of BuildIndex is completed,
index I is stored at server S.

Trapdoor(ω,K)→ τω: This algorithm, executed by
user U, issues a search token, called trapdoor,
to search for a given keyword ω. It takes secret
key K and keyword ω as inputs and generates
τω. This trapdoor allows the cloud to perform the
search over the encrypted database for the corre-
sponding keyword ω.

Search(I ,τω)→D(ω): Run by server S, this algo-
rithm processes the search query on ω and gener-
ates the search result. It takes index I and trap-
door τω as inputs and outputs D(ω), the list of
identifiers of documents containing ω.

2.2 SQL databases

Our work focuses on data structured in SQL databases
such as MySQL4 or PostgreSQL5. An SQL database
D organizes the data in a set of two-dimensional ta-
bles (T1,T2, ..,Tn). Each table row is a record, the

4https://www.mysql.com/ [Accessed Oct. 09, 2017].
5https://www.postgresql.org/ [Accessed Oct. 09, 2017].

columns are attributes, and each table entry a value.
We assume the existence of a view V , resulting from
a query applied to the data in D , which represents a
subset of the records, selected from different tables
in D , in such a way that queries can directly be pro-
cessed on V . We mainly consider the SELECT opera-
tion that can be expressed as follows:
SELECT attributes FROM table WHERE conditions.

This query retrieves from an SQL table (or a view) the
records, and more precisely, the attributes specified
after SELECT, that match conditions. In this work,
we are interested in conditions that can be written as a
boolean expression Q : r→ {0,1}, which, evaluated
on a record r of D , returns Q (r) = 1, if r satisfies the
expression or Q (r) = 0 otherwise. Q consists of sev-
eral predicates Pi that express conditions over one or
more attributes in D and are combined with boolean
operators: OR and AND. Each of the Pi involves op-
erators such as =,>,<,≥,≤ and relates a database
attribute to a search criterion. For example, let us

Table 1: Example of table: PATIENT

ID Name Surname Age Gender Occupation
001 David Smith 38 M Farmer
002 Mary Grant 27 F Lawyer
003 Julie David 19 F Student
004 Daniel Farmer 45 M Lawyer

consider table PATIENT (see Table 1). An example
of predicate P1 can be 〈 Name=‘Mary’〉 where Name is
an attribute and Mary the value to be searched for. In
this paper, we consider the following queries, listed in
Table 2:
Simple keyword queries: They contain only one

predicate Q = P1 = 〈attr=val〉. The query is
expressed as SELECT attributes FROM table
WHERE attr=val, attr is an attribute and val
any possible value.

Conjunctive queries (AND): Predicates are combined
with an AND operator: Q = P1∧P2∧ ...∧Pm.

Disjunctive queries (OR): Predicates are combined
with an OR operator: Q = P1∨P2∨ ...∨Pm.

Range queries: They involve one or two predicates
combined with an AND operator, and apply to nu-
meric data to find value within a range.

Complex queries: They combine conjunctions, dis-
junctions and range queries.

3 OUR SSE CONSTRUCTION
FOR SQL DATABASES

To clarify the need for an SSE scheme dedicated to
SQL databases, we first present an e-health use case

that involves medical data. From this use case, we
identify the gaps between the theoretical aspect of an
SSE scheme and the practical requirement for an en-
crypted database.

3.1 Use case

Let us consider a hospital that collects data from their
patients. This data may consist of their personal in-
formation (names, age, etc.), their biological data
(height, weight, body temperature, etc.) or the care
they received (surgery operation, etc.). This data is
managed in an SQL database (such as in Table 1).
The hospital’s information technology (IT) depart-
ment would like to pay the service of a cloud provider
to store and enable access to the data.

However, since the e-health data is confidential
and because the hospital must comply with strong reg-
ulations with respect to the storage and processing
of medical data (such as the recent European Gen-
eral Data Protection Regulation (GPDR, 2016)), the
IT staff encrypts the data before its outsourcing. Nev-
ertheless, the hospital does not want to lose the func-
tionalities offered by the SQL language. Therefore,
the obfuscation of the e-health database should pre-
serve (i) the format and the arrangement of the data,
and (ii) the SQL functionalities such as creating and
storing the database, or searching and retrieving par-
ticular records based on one or more attributes. It is
clear that this use case falls into the model of search-
able encryption as defined in Section 2.1.

3.2 Background

We base our work on the scheme described in (Curt-
mola et al., 2006). Unlike our use case, the authors
do not consider SQL databases but focus on an un-
structured collection of files D . To enable user U to
efficiently search for a keyword ω in the encrypted
dataset C , this scheme builds an inverted search in-
dex I , that links each keyword ω with D(ω), the set
of identifiers of documents containing ω. I is also
obfuscated so that it does not disclose any informa-
tion about the data. Only the holder of the secret
key can issue a search query. The search time is lin-
ear in the size of D(ω), which is believed to be op-
timal (Curtmola et al., 2006). Besides, the authors
proved that their scheme is secure under IND-CKA1
(security against chosen-keyword attack). In a nut-
shell, this security definition requires that an adver-
sary should learn nothing from the outsourced data
and the index beyond what can be inferred from the
search results and the access pattern, even if the adver-
sary chooses the keywords. In particular, the search

Table 2: Example of queries over table PATIENT

Query Conditions Results
Simple Surname=‘Grant’ 〈002, Mary, Grant, 27, F, Lawyer〉

Conjunctive Name=‘Mary’ AND Surname=‘Grant’ 〈002, Mary, Grant, 27, F, Lawyer〉

Disjunctive Gender=‘F’ OR Occupation=‘Lawyer’
〈002, Mary, Grant, 27,F, Lawyer〉
〈003, Julie, David, 19, F, Student〉
〈004, Daniel, Farmer, 45, M, Lawyer〉

Range Age<45 AND Age>=35 〈001, David, Smith, 38, M, Farmer〉
Age<20 〈003, Julie, David, 19, F, Student〉

Complex (Gender=‘F’ OR Occupation=‘Lawyer’) AND Age<20 〈003, Julie, David, 19, F, Student〉

tokens do not leak information about the keywords.
In what follows, we outline this SSE scheme:
KeyGen(1κ)→ K : Key K consists of three pseudo-

randomly generated keys Kψ, Kπ and Kϕ used for
two pseudo-random permutations6 (ψ and π) and
one pseudo-random function6 ϕ respectively.

BuildIndex(D,K)→ I : As shown in Algorithm 1, it
constructs three data structures:
B Linked Lists Li: For each keyword ωi ∈ W,

1 ≤ i ≤ N, the list Li is an encrypted form of
D(ωi). Each node Ni, j of Li (1≤ j ≤ |D(ωi)|)
contains a record identifier in D(ωi), the key
ki, j used to encrypt node Ni, j+1 and the address
in array A of Ni, j+1. Each node is encrypted
using any semantically secure symmetric en-
cryption7 algorithm denoted E. Node Ni,1 is en-
crypted using key ki,0.

B Array A : It stores nodes {Ni, j} in a pseudo-
random order. U uses key Kψ as input of ψ to
compute the position of each Ni, j in A .

B Look-up table T : Each entry in T is associ-
ated to a keyword ωi ∈W and stores informa-
tion about Ni,1, namely its address in A and the
key ki,0. This information is encrypted using a
XOR operation with a key Ki = ϕ(Kϕ,ωi). T
stores the encrypted information in a pseudo-
random order, using π seeded with key Kπ. In
(Curtmola et al., 2006), the authors suggest,
without giving further details, to implement T
via a FKS dictionary (Fredman et al., 1984).

At the end of BuildIndex, index I = (A ,T) is
stored at server S.

Trapdoor(ω,K)→ τω: τω consists of the position
pos of the entry in table T associated with ω and
the key Kω to decrypt T [pos]. We recall that, if

6 A pseudo-random function is a polynomial-time func-
tion such that any probabilistic polynomial-time adversary
cannot distinguish it from a truly random function.

7Informally, a semantically symmetric encryption
scheme (E,D) is a non-deterministic encryption algorithm
which yields different ciphertexts for the same plaintext
message. (E,D) denotes the pair of encryption and decryp-
tion functions.

ω exists in D (without loss of generality, we as-
sume that this keyword is ωi, for 1≤ i≤ N), then
T [posi] stores the address in array A of Ni,1 and
the key ki,0. Therefore, τω consists of two values:
pos= π(Kπ,ω) and Kω = ϕ(Kϕ,ω).

Search(I ,τω)→D(ω): As depicted in Algorithm 2,
this algorithm parses τω as pos and Kω. Then it lo-
cates entry T [pos] and XOR-decrypts it using Kω.
It obtains the address in array A of Ni,1 and the
key ki,0. Starting from Ni,1, algorithm Search can
decrypt all the nodes Ni, j, 1 ≤ j ≤ |Li| of Li. Fi-
nally, the algorithm outputs the list D(ωi). If one
of these steps fails, then algorithm Search aborts
and indicates that the keyword was not found.

3.3 Requirements for
SQL-compatibility

Given the scenario described in Section 3.1, we iden-
tify five requirements for designing an SSE solution
that would support SQL databases:

R1: Dictionary creation. The first requirement con-
cerns the choice of the keywords W. In (Curt-
mola et al., 2006), the authors only mention to
“scan D to build the set of distinct words”. In
SQL databases, the data is structured into tables,
where each record contains several attributes that
take specific values. Hence, one can imagine that
the dictionary would contain all the possible val-
ues in D . We show in Section 3.5 that such a
dictionary does not work in the scope of SQL
databases. Therefore, we specify an algorithm
CreateDictionary to create an appropriate W.

R2: Practical look-up table T . The authors in
(Curtmola et al., 2006) mention the use of an
FKS dictionary (Fredman et al., 1984), without
giving much details about its implementation.
FKS dictionaries are known to be memory
expensive and finding the good hash that prevents
hash collisions (as a matter of fact, a perfect
hash function) when inserting a new item is a
demanding process. For these reasons, we opt

Algorithm 1: I ← BuildIndex(D,K)

Inputs : Database D , Secret Key K
Output: Index I

1 Create dictionary W
2 for ωi ∈W do determine D(ωi)
3
4 Set global counter ctr = 1

// Array A creation
5 Initialize an empty array A of size m
6 for ωi ∈W do

// Build a linked list Li with nodes Ni, j
7 Generate random key ki,0
8 for 1≤ j ≤ |D(ωi)| do
9 Generate random key ki, j

10 Ni, j = 〈recordID j||ki, j||ψKψ
(ctr+1)〉

11 Encrypt N′i, j = Eki, j−1(Ni, j)

12 Store in A [ψKψ
(ctr)]

13 Set counter ctr = ctr+1
14 end
15 For the last node of Li, set address of next node

to NULL
16 end
17 Let m′ = ∑ωi∈W |D(ωi)|
18 if m′ < m then fill the (m−m′) remaining entries of

A with random values
19

// Look-up table T creation
20 for ωi ∈W do

T [πKπ
(ωi)] = 〈addr[A(Ni,1)]||ki,0〉⊕ϕKϕ

(ωi)

21
22 Output I = (A ,T)

Algorithm 2: D(ω)← Search(I ,τω)

Inputs : Index I , Trapdoor τω

Output: Search Results D(ω)
1 Parse τω = (pos,Kω)
2 Retrieve θ = T [pos]
3 Parse 〈α||k〉= θ⊕Kω

4 Decrypt linked list L whose first node is in A [α] and
encrypted under key k

5 Output each decrypted record ID

for another data structure, simpler to implement,
more practical and more flexible, namely a
cuckoo hash table. We give an overview of this
data structure in Section 3.4.

R3: Structured-data encryption. In the case of un-
structured datasets, each document is encrypted
independently. In the case of SQL databases,
the organization of data into SQL tables requires
that each value in the tables is encrypted indepen-
dently, using a semantically secure encryption al-
gorithm. This will preserve the functionality of
selecting specific attributes from an SQL table us-
ing the instruction SELECT attributes. There-
fore, we will define two additional algorithms
EncryptTable and DecryptResults.

R4: Transparent SQL queries. In (Curtmola et al.,
2006), communication details between user and
server are omitted. With SQL databases, querying
data is a well-defined process that involves spe-
cific SQL instructions such as CREATE, INSERT
or SELECT. In this paper, we require that a user
transparently queries the database, meaning that
no change is needed in the user’s application pro-
gram. Even in the case of encrypted data, our SSE
scheme should respect the SQL language expres-
siveness, available in the case of plain databases.

R5: Complex queries. Last but not least, the SSE in
(Curtmola et al., 2006) does not tackle the prob-
lem of complex queries that contain range, con-
junctive or disjunctive queries. We extend this so-
lution with this functionality.

Before delving into the details of our proposal for a
symmetric searchable encryption scheme, we outline
in the next section the definition of cuckoo hashing.

3.4 Cuckoo Hash

In a cuckoo hash table T (Pagh and Rodler, 2004),
an item v can be stored in one of two possible
entries, each located in two different tables, as-
sociated with two independent hash functions and
a key x. The look-up operation, later denoted
CuckooLookup(T ,x), only requires to examine these
two locations. The insertion of a new element v with
key x, operation denoted CuckooInsert(T ,x,v), eval-
uates the first hash function over x to give the first
possible slot in the first table. If this slot is already
assigned, then the item currently occupying this lo-
cation is “kicked out” and v can be inserted in the
emptied slot. The removed item is then moved to
its alternative location assigned with the second hash
function. This move may encounter another collision,
thus requiring another element to be kicked out from
its current location. This procedure is repeated un-
til the last kicked-out item finds a free slot or when
an endless loop is detected (or when the number of
kick-outs reaches a predefined maximum). In the lat-
ter case, the authors in (Pagh and Rodler, 2004) sug-
gest to rehash the data structure, that is, to use two
new hash functions.

3.5 Our Construction for Simple
Keyword Queries

Our solution is built upon the technique described in
(Curtmola et al., 2006), but implements several mod-
ifications in order to satisfy the previously mentioned
requirements. Let us consider a database D = {T}.

Table T contains t attributes and R records. Without
loss of generality, for databases with multiple tables,
we assume that we can reason on a view V extracted
from a subset of these tables.

Our first proposal provides a solution to sat-
isfy requirement R1. We define an algorithm
CreateDictionary to construct a dictionary W from
D . As required by algorithm BuildIndex, the search
index, built upon W, stores information about the
records that contain each of the keywords. Besides, a
basic SQL query contains a clause WHERE of the form
〈attribute=value〉, meaning that we are interested
in the records where the attribute has the specified
value. Therefore, the search index must indicate that
information. Hence, the dictionary W contains key-
words under the form attribute=value. We denote
n the size of W (n ≤ t ×R). Let us take the exam-
ple of the table PATIENT presented in Table 1 and
consider the query SELECT * FROM PATIENT WHERE
Name=‘David’. If W only listed the distinct words in
the table, as it is the case in (Curtmola et al., 2006),
then the index would have lost the information that
David is a possible value for the attribute Name. Note
that David is also a value for the attribute Surname.
In this case, the search over the index would have re-
turned all the records that contain the word David,
regardless of the attributes. To cope with this is-
sue, we suggest to store the keywords ω of the form
Name=‘David’ in order to preserve the information
on the attribute and to prevent the search from return-
ing wrong results. Algorithm 3 depicts the operations
to build dictionary W.

Algorithm 3: {W,{D(ω)}ω∈W}← CreateDictionary(D)

Inputs : Database D
Output: Dictionary W, Sets {D(ω)}ω∈W

1 W= /0

2 for record ∈D do
3 for attribute do
4 ω← 〈attribute=value〉
5 if ω /∈W then W=W∪{ω}
6

7 end
8 end
9 for ωi ∈W do determine D(ωi)

10

To build index I = (A ,T), we first permute the
rows in the database and then we follow the proce-
dure described in Algorithm 4. In our case, we con-
sider the record identifier, denoted as RecordID, as an
additional attribute of the considered SQL table. To
improve the efficiency of (Curtmola et al., 2006) and
meet requirement R2, we construct a cuckoo hash ta-
ble T for efficient lookups as depicted in Algorithm 4.

At the end of BuildIndex, I is stored in an SQL table
called INDEX as a binary object (for example, using
the type bytea in PostgreSQL).

Algorithm 4: I ← BuildIndex(W,K)

Inputs : Keywords W, Secret Key K
Output: Index I

1 Set global counter ctr = 1
// Array A creation: same operations as in Algorithm 1
// Cuckoo Hash Table T creation:

2 for ωi ∈W do
3 value= 〈addr[A(Ni,1)]||ki,0〉⊕ϕKϕ

(ωi)

4 CuckooInsert(T ,πKπ
(ωi),value)

5 end
6 Output I = (A ,T)

The next operation in our SSE construction en-
crypts the SQL table with a semantically secure en-
cryption scheme E = (E,D). As opposed to (Curt-
mola et al., 2006), we define two encryption and
decryption algorithms8 (Algorithm 5). Algorithm
EncryptTable encrypts each entry in the table sepa-
rately, and because of the semantically secure prop-
erty of the encryption scheme, each encrypted en-
try is indistinguishable from the others. Note that
the attributes and the table names are also encrypted,
but the extra attribute RecordID is left unencrypted,
which does not impact the security of our scheme.
Algorithm DecryptResults decrypts the encrypted
records returned by the server after the execution of
Search. These two algorithms take as input secret key
K , output by a modified algorithm KeyGen, that gen-
erates an additional key Kenc.

Algorithm 5: C ← EncryptTable(D,K)

Inputs : Table T , Secret Key Kenc
Output: Encrypted table C

1 encrypted table= E(Kenc,table name)
2 for attribute do
3 encrypted attribute= E(Kenc,attribute)
4 end
5 for record in T do
6 for attribute do
7 encrypted value= E(Kenc,value)
8 end
9 end

To retrieve the records from the encrypted
database based on a search criterion denoted ω, the
user translates a plain SQL query such as SELECT *
FROM PATIENT WHERE Name=‘David’ (here ω cor-
responds to Name=‘David’) into an encrypted SQL

8Algorithm DecryptResults is the inverse of
EncryptTable showed in Algorithm 5, where encryp-
tion function E is replaced by decryption function D.

query, denoted SE query. This SE query requests the
server to execute algorithm Search over the search in-
dex I using the search token generated with algorithm
Trapdoor. Therefore, the search procedure operates
in a challenge-response interaction between user U
and server S with the following steps:
1. U executes algorithm Trapdoor to generate the

search token τω for keyword ω. Then, U forms
the following SE query:

SELECT * FROM encrypted table WHERE
RecordsID IN Search(I , τω) (1)

The most important and challenging part of this
SE query is RecordsID IN Search(I , τω). The
WHERE condition requests the execution of algo-
rithm Search by the SQL server. Since this algo-
rithm outputs D(ω), the WHERE condition collects
the records whose RecordID is in the output of
algorithm Search.

2. On execution of the SE query (1), S runs algo-
rithm Search with the specified trapdoor τω on the
indicated index. Algorithm Search is identical to
the one defined in (Curtmola et al., 2006), except
the fact that we resort to algorithm CuckooLookup
to look-up table T , as depicted in Algorithm 6.

The SE query (1) outputs the encrypted records that
match the search criterion ω. The last step of our pro-
tocol decrypts the obtained records by calling algo-
rithm DecryptResults.

Algorithm 6: D(ω)← Search(I ,τω)

Inputs : Index I , Trapdoor τω

Output: Search Results D(ω)
1 Parse τω = (γ,η)
2 Retrieve θ = CuckooLookup(T ,γ)
3 Parse 〈α||k〉= θ⊕Kω

4 Decrypt linked list L whose first node is in A [α] and
encrypted under key k

5 Output each decrypted record ID

Proposed framework. In addition to the algorithms
we specified in the abovementioned paragraphs, we
suggest that our SSE construction follows the frame-
work depicted in Figure 2. Specifically, this frame-
work allows to run the secure search function, namely
algorithm Search, on a widely adopted SQL server,
namely PostgreSQL.

The architecture of the proposed framework con-
sists of two zones:
Trusted zone: It includes user U with an unmodified

SQL client application. We define a proxy be-
tween U and S, which executes all the user-side
functions of our protocol. The keys generated
with KeyGen are stored in a keystore.

Untrusted zone: It consists of the untrusted cloud
server S running PostgreSQL that stores the en-
crypted database and the secure search index.
This PostgreSQL server is in charge of executing
the function Search defined in Algorithm 6.
As shown in Figure 1, our implemented scheme is

divided into three phases:
Upload: The user outsources her database by ex-

ecuting the CREATE and INSERT INTO queries.
The proxy receives them, generates keys, runs
CreateDictionary, BuildIndex and EncryptTables
and converts the queries into an SE query. This SE
query includes the encrypted version of CREATE
and INSERT INTO queries for the data and the
CREATE and INSERT INTO queries for storing the
index into an additional table denoted INDEX.

Query: The user executes a SELECT-FROM-WHERE
query to retrieve some records based on some
criteria (the WHERE conditions). The proxy re-
ceives this query, extracts the criteria, retrieves
the keys and executes Trapdoor for each of these
criteria. Then, the proxy forms an SE query
that converts the SQL query into its “encrypted”
version: The proxy replaces the FROM argument
with the encrypted table name and replaces the
WHERE conditions with the clause RecordID IN
Search(index, trapdoor), where Search is the
algorithm defined in Algorithm 6, trapdoor is
the token generated by Trapdoor and index is re-
trieved with SELECT index FROM INDEX.

Retrieval: Upon reception of this SE query, the
server executes Search over the index and the
trapdoor specified in the query. Thanks to the
FROM and WHERE parameters, the server retrieves
the encrypted records whose identifiers are output
by Search. The proxy then calls DecryptResults
and sends to the user the decrypted search results.

3.6 Boolean Queries

We propose to transform boolean queries into several
subqueries. The server operates the intersection (in
case of conjunction of keywords) or the union (in case
of disjunction of keywords) of the search results and
returns them to the user. Formally, our solution trans-
forms a plain query Q : r→ {0,1} into an SE query
Q ′ : r→{0,1}, where Q ′ consists of the predicates P′i
which are the “obfuscated versions” of the predicates
Pi defining Q . The P′i are of the form RecordID IN
Search(index, trapdoori) and are combined with the
same boolean operators as the Pi. Here trapdoori de-
notes the token generated by algorithm Trapdoor for
the search criteria Pi. Let us consider the query

Figure 1: Workflow of our scheme

Figure 2: Architecture of our SSE solution

SELECT * FROM PATIENT WHERE Name=‘Mary’
AND Surname=‘Grant’.

It contains two predicates P1 = 〈Name=‘Mary’〉 and
P2 = 〈Surname=‘Grant’〉, linked with the boolean
operator AND. To transform this SQL query into an
SQL-SE query, the proxy generates the two follow-
ing trapdoors: trapdoor1 = Trapdoor(Name=‘Mary’)
and trapdoor2 = Trapdoor(Surname=‘Grant’) and
executes the SE query:

SELECT * FROM encrypted table WHERE
RecordsID IN Search(index, trapdoor1) AND
RecordsID IN Search(index, trapdoor2).

3.7 Range Queries

Let us consider the attribute Age from the database
example depicted in Table 1 and a range query that
requests to retrieve the records where Age > 40 and
Age ≤ 45. Using the SSE solution depicted in Sec-
tion 3.6, we can simply generate trapdoors for each
of the values between 41 and 45, so five trapdoors
for the keywords Age = 41, Age = 42, etc. For
each trapdoor, the server calls algorithm Search and
computes and sends back to the user the union of
the search results. In case of wider ranges (such as
Age > 18 and Age ≤ 75), this solution would not be
efficient because of the execution of several instances
of Trapdoor and Search.

The idea of our solution for range queries is to re-
duce a range query problem into a keyword search
problem. To a particular value of an attribute (for
example: value 45 for attribute Age), we associate
a value (for example: [45− 50[) to a new attribute
Range Age. Therefore, we define a new keyword
〈Range Age = [45− 50[〉 that will be inserted in in-
dex I during the execution of BuildIndex. As a matter
of fact, we extend the initial database D = T with a
new attribute9 Range attribute. For each record r
in D , we let the user specify the range value of the
corresponding attribute. Table 3 shows table PATIENT
extended with the attribute Range Age. Note that the
user selects its preferences on the range interval and
the initial value, based on the content of the database
and the possible queries she may issue, depending on
the use cases10.

Table 3: Table PATIENT with Range column

ID Name Surname Age Range Age Gender Occupation
001 David Smith 38 [35;40[M Farmer
002 Mary Grant 27 [25;30[F Lawyer
003 Julie David 19 [15;20[F Student
004 Daniel Farmer 45 [45;50[M Lawyer

When user U wants to retrieve the records that
match a range query, the proxy issues an SE query
that contains the trapdoor(s) associated with the spec-
ified range. Different cases can be encountered:
1. The range query exactly corresponds to one of

the range included in the search index. If we
consider the example of Table 3, this case ap-
plies to search queries such as SELECT * FROM
PATIENT WHERE Age ≥ 35 AND Age < 40. The
range query 〈Age ≥ 35 AND Age < 40〉 exactly

9Practically, this column will not be stored at the server.
10The specified ranges can have different interval length

depending on the frequency of items in the interval. We can
use statistical tools for defining the range intervals but this
topic is out of scope of this paper.

matches the range we specified for the record
dealing with patient David Smith. In this case,
the proxy calls algorithm Trapdoor for the key-
word 〈Range Age= [35;40[〉. This case is re-
duced to a simple keyword search query.

2. The range query is different from the ranges
included in the search index. Let us take the fol-
lowing range query: SELECT * FROM PATIENT
WHERE Age ≥ 18 AND Age < 25. The interval
[18;25[is not one of the ranges we included
in Table 3. Therefore, the proxy factorizes the
search range [18;25[into a union of ranges
(inserted in the search index during the execution
of BuildIndex) and singletons of discrete values.
In our example [18;25[= {18} ∪ {19} ∪ [20;25[.
Hence, the proxy calls algorithm Trapdoor for
the two singletons 〈Age= 18〉 and 〈Age= 19〉 as
well as for 〈Range Age= [20;25[〉. Therefore,
instead of 7 search tokens, our solution only
generates 3 trapdoors and the corresponding SE
query is a disjunction of clauses RecordID IN
Search(index, trapdoor).

4 IMPLEMENTATION AND
PERFORMANCE EVALUATION

Implementation. Our SSE scheme is imple-
mented according to the architecture shown in Fig-
ure 2. All the functions at the proxy are implemented
in Java. The server runs PostgreSQL server (version
9.5). Search is coded in Java with PL/Java11, an add-
on for server-side procedures. The code is packed into
a JAR that is further loaded into the PostgreSQL back-
end, so as to execute Search directly in PostgreSQL.
We tested our prototype on a single machine that sim-
ulates both the proxy and the server. The machine has
four 3.20GHz Intel CoreTMi5-3470 processors, 32GB
of RAM and runs Ubuntu 14.04 LTS.

E-Health database. This work is done in the
context of a collaborative project named CLARUS12,
which collected data from anonymized medical
records of a hospital. This database consists of eight
tables and queries are performed over a view (in the
SQL terminology) called LAB. This view lists 64.440
records and comprises eight attributes, including a pa-
tient identifier (pat id), a patient name (pat name), a
patient last name (composed of two parts pat last1
and pat last2) and an identifier of an episode of care
(ep id).

11https://tada.github.io/pljava/. [Accessed Oct. 09, 2017]
12http://www.clarussecure.eu

Results. We measured the time consumed by the
phases described above over the e-health database.
We let our program automatically add range attributes
for pat id. The length of the ranges is 10: we insert
Range pat id values of the form [0,9], [10,19], etc.
We ran 100 executions of the functions, and computed
the average time, listed in Tables 4 and 6. We com-
pare these measurements with the case where upload
(resp. search) is performed without the application of
our SSE mechanism in Table 5 (resp. Table 7).

Table 4: Upload with SSE

Operation Time (s)

Index Creation 22.1 s
Encryption 5,60 s
Server storage 4.60 s

Table 5: Upload without SSE

Operation Time (s)

Upload 9.735 s

Server storage 1.238 s

The time needed by the server for storage is
greater than the case where no encryption is per-
formed, since the server is required to store the index
together with the encrypted data. We evaluated single
keyword queries (keywords with different numbers of
occurrences) and range queries. The Retrieval phase
is fast: less than 1 second to decrypt the search re-
sults. We recall that Search first finds the entry in
table T associated with the searched keyword and
then decrypts the corresponding linked list. In aver-
age, Search has acceptable costs, given that the data
is encrypted. For the most frequent keyword, Search
decrypts 4275 nodes which yields the time reported
in Table 6. In the case of range queries, we tested
the query pat id ≥ 50 AND pat id < 150, which
generates 10 trapdoors of the form 〈Range pat id=
[50,59]〉, ..., 〈Range pat id = [140,149]〉 (since we
configured the attribute Range pat id with intervals
of size 10). Thus, Search is executed 10 times. The
Upload phase is relatively long (22 s) since BuildIndex
scans the database value by value to create the index
and involve a high amount of permutations. Never-
theless, these operations are performed only once for
an unbounded number of queries.

Table 6: Query and Retrieval

Query Trapdoor |D(ω)| Search Decryption

Single Keyword
pat last2=‘GARCIA’ 2 ms 4275 122 s 0,37 s
pat name=‘RAUL’ 1 ms 178 5.6 s 0,02 s
pat name=‘MORAD’ 1 ms 11 0.8 s 0,002 s
pat last1=‘DUC’ 9 ms 0 0.5 s −
Range Query 2,0 ms 198 9.87 s 0,04 s

Table 7: SQL search without SSE

Query SQL search

Single Keyword
pat last2=‘GARCIA’ 3.5 ms
pat name=‘RAUL’ 8.0 ms
pat name=‘MORAD’ 7 ms
pat last1=‘DUC’ 7 ms

Range Query 45 ms

5 RELATED WORK

We reviewed the literature in the area of search-
able encrypted database systems. The design of such
systems always trades off between the level of secu-
rity, the query functionalities preserved in spite of en-
cryption and the performance.

Boolean queries. In (Hacigümüş et al., 2002), the
authors proposed a heuristic to execute SQL queries
over encrypted data where the querier user is re-
quired to perform a heavy processing of the search
results, whereas in our case, query and retrieval are
lightweight operations. Besides, this solution en-
crypts records as a whole whereas our construction
encrypts records attribute-wise. The authors do not
provide any security guarantee. In (Cash et al., 2013),
an SSE scheme for boolean queries, named OXT, is
tested with a MySQL database. This solution builds
two indexes, which increases the storage overhead at
the server. This scheme supposes the knowledge of
the frequency of the keywords to perform efficient
search. The user first queries the least frequent key-
word of a conjunctive keyword query and then filters
the results for the other keywords. In (Pappas et al.,
2014), Blind Seer is proposed as a system which en-
ables boolean SQL queries via a tree-based search in-
dex. It resorts to Yao’s garbled circuit (Yao, 1986),
which requires the user and the server to jointly parse
the tree to process the search query. Our construction
only incurs a single round of interaction between the
user and the server.

Range queries. In (Agrawal et al., 2004), the
authors defined order-preserving encryption (OPE)
which enables range queries, but reveals the order of
numeric data. Our scheme avoids this leakage by us-
ing a semantically secure encryption algorithm. ARX
(Poddar et al., 2016) is based on a tree to evaluate
range queries over encrypted data, and uses Yao’s gar-
bled circuit to traverse the tree to respond to range
queries. Whenever such a query is computed, nodes
of the tree must be updated, which incurs complexity
overhead at the user-side. Besides, the authors tested
this solution on a NoSQL database, which does not
store structured data as in MySQL or PostgreSQL.

CryptDB. Proposed by (Popa et al., 2012), this
system allows equality, range and boolean queries

over encrypted SQL databases, thanks to onion en-
cryption, that encrypts each attribute with one or more
onion layers. Each of the encryption layers preserves
a particular functionality. For simple keyword search,
CryptDB applies a deterministic encryption, disclos-
ing to the server the occurrences of a particular key-
word. CryptDB also preserves the functionality of
range queries by adding a layer of OPE, which also
leaks some information to adversaries. As opposed
to CryptDB, even if the same data is queried several
times, our solution preserves data and query privacy.

6 CONCLUSION

This paper proposes an SSE scheme for SQL
databases. The proposed solution builds upon the
already existing searchable encryption proposed by
Curtmola et al. (Curtmola et al., 2006), which is
transformed to an SQL-compatible scheme. Our so-
lution supports several query functionalities including
range and Boolean queries. Fruthermore, thanks to
the use of cuckoo hashing, the search operation be-
comes more efficient. We finally present a framework
for implementation which embeds the search algo-
rithm into PostgreSQL and that converts plain SQL
queries into “encrypted” SQL queries directly exe-
cutable by the Postgres server. This framework is
evaluated in terms of performance using an e-health
database.

Our future work consists in developing an opti-
mized system for databases with million of records.
We plan to conduct an in-depth performance evalua-
tion including comparison with existing -comparable-
implementations, if any, to show its practicality in
real-world scenarios.

7 Acknowledgments

This work was partially funded by European Com-
mission through the H2020 project CLARUS (grant
No. 644024). We particularly thank the Fundació
Clı́nic per a la Recerca Biomèdica (FCRB) for pro-
viding our test e-health database. The authors also
would like to thank Mr. Yiadh Tlijani for his help in
simulations.

REFERENCES

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y.
(2004). Order Preserving Encryption for Nu-
meric Data. In Proceedings of the 2004 ACM

SIGMOD international conference on Manage-
ment of data, pages 563–574. ACM.

Cash, D., Jarecki, S., Jutla, C., Krawczyk, H.,
Roşu, M.-C., and Steiner, M. (2013). Highly-
Scalable Searchable Symmetric Encryption with
Support for Boolean Queries. In Advances
in Cryptology–CRYPTO 2013, pages 353–373.
Springer.

Chamberlin, D. D. and Boyce, R. F. (1974). SE-
QUEL: A Structured English Query Language.
In Proceedings of the 1974 ACM SIGFIDET
(Now SIGMOD) Workshop on Data Description,
Access and Control, SIGFIDET ’74, pages 249–
264. ACM.

Chase, M. and Kamara, S. (2010). Structured En-
cryption and Controlled Disclosure. In Interna-
tional Conference on the Theory and Application
of Cryptology and Information Security, pages
577–594. Springer.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky,
R. (2006). Searchable Symmetric Encryption:
Improved Definitions and Efficient Construc-
tions. Cryptology ePrint Archive, 2006:210.

Fredman, M. L., Komlós, J., and Szemerédi, E.
(1984). Storing a Sparse Table with 0(1) Worst
Case Access Time. J. ACM, 31(3):538–544.

GPDR (2016). General Data Protection Regulation.
Official Journal of the European Union, L119:1–
88.

Hacigümüş, H., Iyer, B., Li, C., and Mehrotra, S.
(2002). Executing SQL over Encrypted Data in
the Database-service-provider Model. In Pro-
ceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages
216–227. ACM.

Kamara, S. and Papamanthou, C. (2013). Paral-
lel and Dynamic Searchable Symmetric Encryp-
tion. In International Conference on Financial
Cryptography and Data Security, pages 258–
274. Springer.

Pagh, R. and Rodler, F. F. (2004). Cuckoo Hashing.
Journal of Algorithms, 51(2):122–144.

Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin,
T., Choi, S. G., George, W., Keromytis, A., and
Bellovin, S. (2014). Blind Seer: A Scalable Pri-
vate DBMS. In 2014 IEEE Symposium on Secu-
rity and Privacy (SP), pages 359–374. IEEE.

Poddar, R., Boelter, T., and Popa, R. A. (2016). Arx:
A Strongly Encrypted Database System. IACR
Cryptology ePrint Archive, 2016:591.

Popa, R. A., Redfield, C., Zeldovich, N., and Balakr-
ishnan, H. (2012). CryptDB: Processing Queries

on an Encrypted Database. Communications of
the ACM, 55(9):103–111.

Song, D. X., Wagner, D., and Perrig, A. (2000).
Practical Techniques for Searches on Encrypted
Data. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S P 2000, pages 44–55.

Yao, A. C.-C. (1986). How to Generate and Exchange
Secrets. In 27th Annual Symposium on Foun-
dations of Computer Science, 1986, pages 162–
167. IEEE.

