CAR 2 CAR COM/ARCH

Facilities DCC

2017/11/29 Irfan Khan, <u>Jérôme Härri</u> (EURECOM)

DCC Architecture at ETSI

- The Wireless Vehicular Radio Channel has limited resource
 - WiFi is only best effort
 - In Ad-hoc (OCB): requires coordinated access
- DCC controls the load with various mechanisms
 - <u>Adjust Tx Rate</u> DCC FAC
 - <u>Adjust Tx Power</u> DCC NET
 - <u>Adjust Modulation (MCS)</u> DCC FAC
 - Adjust Sensing Threshold
 DCC ACC
 - Offloading on different <u>channels</u> – DCC MGMT

DCC Architecture at ETSI

- Strategy: Decentralized Congestion Control
 - Adjust Tx parameters to maintain the channel load in an operational limit
 - Based on cooperation between vehicles
 - Mostly adaptation of Tx power and Tx Rate (flow control)

Bernhard Kloiber, Jérôme Härri, Thomas Strang, Stefan Sand, Cristina Rico Garcìa, "**Random Transmit Power Control for DSRC and its Application to Cooperative Safety**", IEEE Transaction of Dependable and Secured Communication, 2015

Facilities DCC Architecture

Facilities DCC Model

- For each Application j and Traffic Class i
 - Estimate the average message size $\overline{T_{on ij}}$ and message interval $\overline{T_{off ij}}$
 - Estimate the average Channel Resource Estimation:

•
$$\overline{CRE_{ij}} = \frac{\overline{T_{on\,ij}}}{\overline{T_{on\,ij}} + \overline{T_{off\,ij}}}$$

• Calculate the total Channel Resource (CR) for all applications using a TC i

•
$$CR_i = \sum_j \overline{CRE_{ij}}$$

- Set the Available Channel Resources
 - ACR_0 for traffic class TC_0 to CBR_a
 - ACR_i for traffic class TC_i to $max(0, ACR_0 CR_{(i-1)})$.
- Divide channel resources ACR_i between the application j and traffic class i

$$ACR_{ij} = \frac{\overline{CRE_{ij}}}{CR_i} \times ACR_i$$

• Define the minimum T_{off} for application j and traffic class i:

•
$$T_{off \min ij} = \overline{T_{on ij}} \times \frac{1 - ACR_{ij}}{ACR_{ij}}$$

Facilities DCC – Performance Evaluation

• Facilities-layer DCC Baseline

• Simulator:

- iTETRIS-ns3.20
- C-ITS/Geonet stack
- ETSI & CAR2CAR DCC
- $T_{on} = 1ms$

• Tx Rate Request:

- AC-VI 2Hz
- AC-BE 1.25 Hz
- AC-BK 1Hz

Facilities DCC – Performance Evaluation

- Facilities-layer DCC Impact of the Gatekeeper (CAR2CAR)
 - Simulator: -X CPM Frequency Asked iTETRIS-ns3.20 - CPM Frequency Allowed 10 ---- CAM Frequency Asked C-ITS/Geonet stack -X-CAM Frequency Allowed **ETSI & CAR2CAR DCC** LDM Frequency Asked 0 ----- LDM Frequency Allowed CPM – 5 Hz 900 byte Frequency (Hz) CAM – 5Hz 300 byte LDM – 2 Hz 1kByte CAM Tx Rate not reached Only 1-2Hz instead of 0 10Hz 2 DCC state between Active 1 and Active 2 2 6 10 12 14 16 18 0 4 20 Simulation Runtime (seconds)
- Average CL: 26%

0

0

0

0

0

Facilities DCC – Performance Evaluation

- Facilities-layer DCC No Gatekeeper
- Simulator:
 - iTETRIS-ns3.20
 - C-ITS/Geonet stack
 - ETSI & CAR2CAR DCC
- CPM 5 Hz 900 byte
- CAM 5Hz 300 byte
- LDM 2 Hz 1kByte
- CAM Rate increase to 10Hz
 - No LDM drop
- Average CL: 57 %

Facilities DCC – Discussions

- Facilities-layer DCC is <u>required to regulate traffic for multiple messages and</u> <u>applications</u>
 - Critical for DAY 2 C-ITS
- Facilities-layer DCC needs to be integrated with the DCC_ACC
 - Gatekeeper is counter-productive
 - <u>Best strategy</u>: remove gatekeeper and do traffic flow at Facilities
- Facilities DCC capable to allocate resources for periodic traffic (semi-persistent scheduler)
 - One-shot or event-based allocation is more challenging
 - Might require a mix between semi-persistent and non-persistent schedulers
- Facilities DCC requires application and TC requirements. It is neither attached to a channel nor to a technology:
 - Multi-Channel DCC
 - Multi-Technology DCC

• Next Steps:

- Evaluate the integration between a DCC Facilities and the CAR 2 CAR DCC mechanisms
- Develop an adaptive mechanism that would guarantee minimum resource between all TC and applications

BACKUP SLIDES

CAR 2 CAR Forum, Nov. 29, 2017

Facilities DCC – Model

TC _i	ACR _i	T _{off ij}	CR _i	T _{off min ij}
	(ACR _{ij})		$(\overline{CRE_{ij}})$	
TC ₁	0.005	0.499s	0.002	0.199s
TC_2	0.003	0.799s	0.00125	0.332s
TC ₃	0.00175	0.999s	0.001	0.570s

Example of Sufficient Channel Resources ($CBR_a = 0.005, T_{on ij} = 0.001s$)

	TC _i	ACR _i	T _{off ij}	<i>CR</i> _i	T _{off min ij}
		(ACR _{ij})		$(\overline{CRE_{ij}})$	
-	TC ₁	0.005	0.299s	0.004	0.199s
	TC_2	0.001	0.799s	0.00125	0.999s
	TC ₃	0	0.999s	0.001	∞

Example of Insufficient Channel Resources, TC2 CR 0.004 ($CBR_a = 0.005, T_{on ij} = 0.001s$)

Source – ETSI TS 103 141

CAR 2 CAR Forum, Nov. 29, 2017