
Broken Fingers:
On the Usage of the Fingerprint API in Android

Antonio Bianchi
University of California, Santa Barbara

antoniob@cs.ucsb.edu

Yanick Fratantonio
University of California, Santa Barbara

EURECOM
yanick.fratantonio@eurecom.fr

Aravind Machiry
University of California, Santa Barbara

machiry@cs.ucsb.edu

Christopher Kruegel
University of California, Santa Barbara

chris@cs.ucsb.edu

Giovanni Vigna
University of California, Santa Barbara

vigna@cs.ucsb.edu

Simon Pak Ho Chung
Georgia Institute of Technology

pchung34@mail.gatech.edu

Wenke Lee
Georgia Institute of Technology

wenke.lee@gmail.com

Abstract—Smartphones are increasingly used for very important
tasks such as mobile payments. Correspondingly, new technologies
are emerging to provide better security on smartphones. One of the
most recent and most interesting is the ability to recognize finger-
prints, which enables mobile apps to use biometric-based authentica-
tion and authorization to protect security-sensitive operations.

In this paper, we present the first systematic analysis of the
fingerprint API in Android, and we show that this API is not well
understood and often misused by app developers. To make things
worse, there is currently confusion about which threat model the
fingerprint API should be resilient against. For example, although
there is no official reference, we argue that the fingerprint API is
designed to protect from attackers that can completely compromise
the untrusted OS. After introducing several relevant threat models,
we identify common API usage patterns and show how inappropriate
choices can make apps vulnerable to multiple attacks. We then
design and implement a new static analysis tool to automatically
analyze the usage of the fingerprint API in Android apps. Using this
tool, we perform the first systematic study on how the fingerprint
API is used.

The results are worrisome: Our tool indicates that 53.69% of the
analyzed apps do not use any cryptographic check to ensure that
the user actually touched the fingerprint sensor. Depending on the
specific use case scenario of a given app, it is not always possible to
make use of cryptographic checks. However, a manual investigation
on a subset of these apps revealed that 80% of them could have done
so, preventing multiple attacks. Furthermore, the tool indicates that
only the 1.80% of the analyzed apps use this API in the most secure
way possible, while many others, including extremely popular apps
such as Google Play Store and Square Cash, use it in weaker ways.
To make things worse, we find issues and inconsistencies even in the
samples provided by the official Google documentation. We end this
work by suggesting various improvements to the fingerprint API to
prevent some of these problematic attacks.

I. INTRODUCTION

As smartphones become widely used, more and more security-
sensitive tasks are performed using these devices. For instance,
mobile payment or mobile banking applications have been steadily
increasing for the past few years [11]. That is, smartphones are
increasingly used to access remote accounts containing valuable
and sensitive user information such as purchase histories or health
data. Needless to say, the security of smartphones and mobile
apps, including authenticity, integrity, and confidentiality, is of
paramount importance.

Smartphone technologies bring both new opportunities and
threats to security. A smartphone is a very convenient choice to be
the “second factor” in two-factor authentications (2FA) because
the users do not have to carry additional security tokens. A very
common two-factor scheme is to authenticate a user based on both
the user’s password and proof that the user is in possession of
her smartphone, with the latter commonly achieved by sending
text messages to the registered smartphone. On the other hand,
as more and more sensitive operations that are protected by
2FA are performed using smartphones, the security threat from
a stolen/compromised phone or malicious apps running on the
phone significantly increases. In particular, by performing sensitive
operations on smartphones, both factors required by 2FA will be
available on the smartphone, making it a single point of failure.

In theory, technologies commonly available on modern smart-
phones can be used to implement 2FA schemes that are secure
even in the face of stolen/compromised phones or malicious apps
running on the phone. In particular, most smartphones already
come with Trusted Execution Environments (TEE) that can be
used to generate and store cryptographic keys.1 Furthermore, the
TEE can already be programmed to directly communicate with
a fingerprint reader (which is widely available on modern smart-
phones) so that it will only perform operations using the stored
keys when the fingerprint reader detects a registered fingerprint,

1In devices running Android, the TEE is typically enforced by using the ARM
TrustZone technology [5].

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23079
www.ndss-symposium.org

signaling the user’s explicit consent to such operations. Since the
TEE is a hardware-enforced isolated execution environment, the
keys it stores and the operations performed with those keys cannot
be leaked or misused even if the smartphone’s operating system
(OS) is compromised.2

A second factor implemented by combining the TEE and the
fingerprint reader is at least as strong as what proposed in the Se-
curity Key protocol [32] (and implemented by YubiKey [52]), the
current state-of-the-art authentication solution in the desktop world,
promoted by Google, as a member of the FIDO Alliance [20].
Under the Security Key protocol, a cryptographic private key
is stored on an external hardware device and is used to sign
authentication tokens provided by the remote service the user
wants to authenticate with. This signing operation only happens if
the user authorizes it, by pressing a physical button on the external
hardware device. In fact, one can argue that a second factor that
combines a smartphone’s TEE and its fingerprint reader is going
to provide more security than YubiKeys in the scenario where the
hardware security token is stolen; in the former, the attacker cannot
misuse the hardware token without the owner’s fingerprint, while
in the latter, anybody in possession of the token can misuse it to
bypass 2FA. Additionally, the device’s screen (which is not present
in standard hardware tokens), could be used to inform users about
the operation they are authorizing by touching the sensor.

Motivated by the significant security benefits that the TEE-
backed fingerprint sensor can offer, in this work we perform
the first comprehensive study on the usage of the fingerprint
API in Android. In particular, we first systematically explore
the various nuances of this API, and we uncover several aspects,
many of which subtle, that can lead to this complex API to be
misused. As an example, developers could just check if the user
touched the sensor, without binding this operation to the usage of
a cryptographic key, contrary to what is suggested by Google’s
guidelines [23].

We then bring some clarity to the many threat models that
should be considered when performing security evaluations con-
cerning the fingerprint API. For example, we explore what are
the capabilities of an attacker that can compromise the untrusted
operating system, i.e., a “root attacker.” At first glance, one may
say that a root attacker will trivially defeat any fingerprint API
and that the fingerprint API itself is not designed to protect from
root attackers. On the contrary, we argue that many important
design choices related to this API are motivated specifically to
protect from root attackers. The most significant example is that
current implementations of the fingerprint API work by unlocking
a TEE-backed cryptographic keystore: if the threat model were not
considering root attackers, apps could simply store cryptographic
material in app-private storage (that non-root attackers cannot
access), without needing to rely on any TEE support.

We hypothesized that the lack of clearly stated design goals
and, as we will see, misleading documentation bring confusion and
app developers might misuse this API. To explore this hypothesis,
we first developed a static analysis approach to characterize how
Android apps use the fingerprint API, whether this API is misused,
and how they are resilient to the various threat models. We then

2As an empirical measure, among all the vulnerabilities mentioned in the
“Security Bulletins” released by Google about Android security [27] up to August
2017, 33 of them allow an attacker “to execute arbitrary code within the context
of the kernel,” whereas only 2 allow “to execute arbitrary code in the TrustZone
context.”

use this system to perform the first systematic empirical study of
how the current fingerprint API is used in the Android ecosystem.
Specifically, we used our tool to analyze 501 apps requiring the
fingerprint permission (out of a dataset of 30,459 popular apps).
The results are worrisome. For example, the tool identified that
53.69% of the apps, including the widely deployed Google Play
Store app, do not make use of the cryptographic keystore unlocked
by a successful fingerprint touch: this means that a root attacker
can easily completely bypass the fingerprint security mechanism
by just programmatically “simulating” the user’s touch to, for
example, perform in-app purchases.

One explanation for this low percentage could be that not all
use case scenarios for the fingerprint API can be protected from
root attackers. One example is an app that uses the fingerprint to
merely assess user presence: in this case, it is very challenging
to find a “role” for the cryptographic material, and it is thus not
possible to protect this use case from root attackers. To determine
how many apps fall into this category, we then performed manual
analysis on a subset of applications flagged as problematic. For
example, we manually analyzed a random subset of 20 apps for
which our tool identify usages of the fingerprint API flagged as
“fully bypassable.” To our surprise, 16 of them are apps that use the
fingerprint API to authenticate the user against a remote backend,
or apps that store secret information: These are exactly the use case
scenarios that a proper usage of the fingerprint API could easily
protect even from powerful attackers such as root attackers. This
manual analysis effort, even though admittedly limited, suggests
that the number of apps misusing the fingerprint API is significant.
Moreover, our tool also flagged only the 1.80% of the apps in our
dataset as using the fingerprint API to sign transactions, which is
the most secure way to use this API.

In summary, this paper makes the following contributions:

• We systematically study the various ways in which the
fingerprint API can be used in Android and how attackers
with different capabilities can exploit sub-optimal usages
of it.

• We develop a static-analysis tool to automatically identify
how real-world popular apps use the fingerprint API. We
make its code publicly available online [8].

• By using this tool, we perform the first systematic study
of the usage of the fingerprint API in Android, and we
uncover a significant number of apps potentially misusing
the fingerprint API. This improper usage significantly
weakens the security guarantees these apps could achieve
if using the API correctly.

• We identify shortcomings and weaknesses of the current
API and its implementation, and we propose different
improvements to it.

II. BACKGROUND

A. Android Security Mechanisms

The Android operating system is a customized Linux kernel on
top of which the Android framework runs. User-installable third-
party apps run as user-mode processes and are typically written
in Java, even though apps may also include libraries written in
native code. These apps interact with the Android framework using
system calls or invoking remote procedures in “system services.”

2

Third-party apps run in separate containers with isolated
resources (e.g., private files) and a limited set of capabilities.
The precise list of capabilities is determined by the “Android
permissions” granted to an app. In modern Android versions
(starting from Android 6), permissions classified as dangerous
need to be specifically approved by the user. Other permissions
are instead automatically granted to any app that requires them,
but the app still needs to request them in its Manifest file. The
USE_FINGERPRINT permission, which grants the ability to use
the fingerprint reader sensor, is an example of “normal” permission.

This separation between different apps and the different apps’
capabilities is enforced by using a combination of standard Linux
mechanisms (e.g., Linux groups), SELinux rules, and specific
checks in the Android framework. In fact, apps cannot perform
any sensitive operation directly, but they have to send a request to
a running system service, which verifies whether the app calling
it has the permission required to perform the requested operation.
Thus, system services (which run as users with higher privilege
than normal apps) mediate most of the interactions between apps
and the kernel.

Attackers often try to exploit bugs in either the system services
or the kernel to gain root privileges, using what are typically called
“root exploits.” Although a significant effort has been made to
limit the attack surface exposed by system services and the kernel
to normal apps [44], root exploits are still a concrete danger in
the Android ecosystem [27]. However, even when an attacker can
fully compromise the Linux kernel, achieving persistent kernel-
level code execution (by bypassing the Verified Boot mecha-
nism) requires further exploitation of the system [30]. Similarly,
achieving code execution within the TrustZone-enforced TEE,
which we describe in the next section, requires the exploitation of
significantly less common vulnerabilities in the relatively small
code base running within the TEE.

B. TEE and TrustZone

A TEE is an isolated environment designed to execute sensitive
code with more isolation/protection than what provided by a stan-
dard “feature-rich” operating system. While other instantiations of
TEE exist, in this paper, we will focus on ARM’s implementation
of the TEE, called TrustZone, which is available on the majority
of Android devices.

Under ARM’s TrustZone, a “trusted” kernel and a set of
Trusted Applications (TAs) run in the “secure” world, isolated
by hardware from the Android OS and third-party apps, which,
conversely, run in the “non-secure” world. Only code signed by
the hardware manufacturer can run in the “secure” world. Also,
while third-party apps run in isolation from the TAs, these apps can
utilize services provided by the TAs through well-defined APIs.
Two services offered by the TAs are relevant to fingerprint-based
authentication, which is the focus of this paper:

• keymaster: It allows to create cryptographic keys, store
them inside secure-storage, and use them to encrypt,
decrypt, verify, or sign data, coming from the untrusted
world. Internally, this service utilizes the secure-storage
capability offered by the trusted kernel to securely store
encrypted and authenticated data on the device’s mass
memory.

• fingerprintd: It handles the storage of fingerprint data,
acquired from the fingerprint reader sensor, and verifies
that the finger touching the sensor corresponds to any
previously registered fingerprint. It is important to notice
that “raw” fingerprint data (i.e., the image of the registered
fingerprint) never leaves the TEE and therefore it is not
accessible by any untrusted code.

C. The Fingerprint API in Android

In the discussions that follow, we will focus on apps that access
the fingerprint reader (which is commercially named the “Imprint”
sensor) through the Java API provided by Google. Unless otherwise
specified, we will consider the implementation of this API running
in Android version 7 on Google’s devices. In particular, for our
experiments we used a Google’s Nexus 5X.

Also, we will follow Google’s [23] and OWASP [35] guidelines
and consider that the best way to use the fingerprint reader is in
conjunction with some cryptographic operations. In particular,
instead of just recognizing the legitimate user has touched the
fingerprint sensor, an app should use this fingerprint reading
to unlock a cryptographic key protected by the TEE. In other
words, by utilizing both the keymaster and the fingerprint in
the TrustZone, this method can guarantee that even an attacker
with root privilege cannot misuse the cryptographic key without
presenting the right fingerprint. As we will see in Section V, the
latter method is significantly stronger.

We will now briefly provide the major steps an app has to
perform to interact with the fingerprint sensor and determine
whether a legitimate user touched it. For clarity, we will omit
unnecessary details of the complex Android cryptographic API,
and we suggest interested readers to read the official documentation
for a more detailed explanation [28], [26].

Generate a cryptographic key: An app can generate a
cryptographic key or a public/private key pair by using the method
initialize of the class KeyGenerator or KeyPairGen-
erator. Developers must specify properties of the generated key
(e.g., the algorithm used) by passing a KeyGenParameterSpec
object to the mentioned initialize method.

Among the various aspects a developer can control about a
generated key, the most important one in this context is triggered
by calling the setUserAuthenticationRequired method
(passing true for its required parameter). By calling this
method, a developer can ensure that the generated key is usable
(i.e., it is “unlocked”) only after a legitimate user has touched
the fingerprint reader sensor. In case a pair of keys is generated,
calling this method will only constraint the usage of the private
key, leaving the public one freely accessible by the app.

Unlock the key by authenticating the user: By calling
the authenticate method, an app activates the fingerprint
reader sensor. Two parameters of this method are important: the
cryptographic key that is unlocked if a legitimate user touches the
sensor and a list of callback functions, called after the sensor is
touched.

Override the fingerprint callbacks: When a user touches
the sensor, specific callback functions are called. In particular,
the method onAuthenticationSucceeded is called when a

3

legitimate user touches the sensor, whereas other callback functions
are called in case of error conditions (e.g., a non-legitimate user
touched the sensor).

Use the unlocked key: After the onAuthenticationSuc-
ceeded method is called, an app should use the now unlocked
key. For authentication purposes, Google’s guidelines suggest the
use of a previously generated private key to sign a server-provided
authentication token and then send this authentication token to the
app’s remote backend.

It is worth mentioning two properties of the generated keys.
First, the Android framework ensures that only the app generating
a key can use it. Second, in modern devices, private keys are stored
within the TEE (an app can verify if in a specific device keys
are stored within the TEE by calling the isInsideSecurity-
Hardware API) and cannot be exported (not even by the app
generating them and not even after a legitimate user has touched
the fingerprint sensor). In other words, “unlocking” a key does
not allow an app to read its “raw” value, but only to use it to
encrypt, decrypt, or sign data. If the key is stored in the TEE, these
operations are guaranteed to happen within the TEE.

D. Two-Factor Authentication Schemes

To overcome security and usability limitations of classical
username and password authentication, many service providers
suggest or mandate the usage of an additional “second factor”
during authentication. One common solution is to use a One-Time
Passcode (OTP). However, OTPs are still vulnerable to phishing
and man-in-the-middle attacks [15], [43] and have serious usability
drawbacks, since they require the user to somehow receive the OTP
code and insert it into the authentication interface. Furthermore,
protocols based on OTPs rely on the confidentiality of the
communication channel of the OTP, which is often not guaranteed.
For instance, text messages are a common communication channel
used to send OTPs to smartphones. However, the insecurity of this
channel has been shown in many occasions [46], [22].

Secure authentication schemes using challenge/response offer
better security and usability. In particular, the current state-of-the-
art is constituted of the Security Keys formalized in the Universal
Second Factor (U2F) protocol [51]. This protocol is composed of
two phases. During the registration phase, a key pair is generated
in an external hardware device. The generated public key is sent
to the remote server, whereas the private key remains securely
stored within the hardware device. Later, during the authentication
phase, the server sends the client a challenge. The client then
asks the hardware device to sign this challenge with the stored
private key, and the signed response is then sent back to the remote
server, which can verify it using the previously obtained public key.
Both during the registration and the generation phases, the user is
required to physically touch the hardware device as a Test of User
Presence (TUP) to authorize creation and usage of cryptographic
keys.

III. THREAT MODEL

This section explores the different threat and attacker models
considered in this paper. We first define different “levels of
compromise” that an attacker may achieve. Then, we discuss
several different threat models, ranging from being just able to
install a malicious app on the victim’s device to be able to fully
compromise the Android Linux (untrusted) operating system. We

will also argue why each of these threat models are particularly
relevant for any work studying the fingerprint API. We end this
section by clarifying which threat models are considered as out of
scope.

A. Levels of Compromise

To ease our exposition, we now define three labels describing
three different levels of compromise an attacker can achieve in the
different scenarios. We discuss the three levels starting from the
least powerful. We note that, of course, an attacker will always
attempt to achieve the third and most powerful level of compromise.
However, depending on the attacker capabilities and how a given
app uses the fingerprint API, this may not always be possible.

Confused Deputy. An attacker might be able to interfere with
the usage of the fingerprint API to change the intended effect a
user wants to achieve when she touches the fingerprint sensor. For
example, consider a user who wants to authorize the transaction
“pay $1,000 to Friend” by pressing the fingerprint sensor: an
attacker might be able to change this transaction to “pay $1,000
to Attacker.” Another example is an attacker that can lure the
user to provide the fingerprint by spoofing a completely unrelated
scenario, such as the lock screen.

More in general, these examples are instances of a confused
deputy problem. An attacker can achieve her goal by abusing this
problem, but she needs the user to touch the fingerprint sensor
once for each malicious attempt.

Once For All. In this scenario, the attacker can completely bypass
the need for “fingerprint” by just luring the user to provide a
fingerprint once. That is, after the attacker obtains one fingerprint,
the attacker can spoof any subsequent fingerprint request. We
note that, in this context, the term “spoofing” does not entail
spoofing the “real” physical fingerprint. Instead, with this term,
we indicate that an attacker can trick the vulnerable app, and the
backend it communicates with, to believe a legitimate fingerprint
was provided.

As a representative example, consider an app that, after
the user provides a fingerprint, decrypts, using a TEE-backed
cryptographic key, an authentication token. If an attacker manages
to access this decrypted token, the attacker can now just reuse the
token undisturbed for subsequent authentication and authorization
attempts, without needing to lure additional fingerprints. Thus, this
scenario provides a more practical opportunity for an attacker.

Full Fingerprint Bypass. In this last case, an attacker can
completely bypass the need of luring fingerprint touches without
requiring a “real” touch, not even once. For example, consider
a banking app that requires the user to confirm every monetary
transaction by pressing the fingerprint sensor. If an attacker can
compromise the app to this last level, the attacker can authorize
an unlimited number of transactions, at will, without having the
user touch the sensor. This case provides significant practicality
benefits for an attacker. In fact, the attacker does not need to “wait”
to hijack a user’s touch: as a matter of fact, in this scenario the
attack does not need any user interaction at all.

We note that it may not always be possible for a root attacker
to indefinitely wait for a user’s touch, because, for instance, thanks
to the Verified Boot protection mechanism, it may be impossible
to persistently compromise a device.

4

B. Attacker Capabilities

We consider the following three increasingly powerful attacker
capabilities.

Non-Root Attacker. In this threat model, we consider an attacker
that is just able to install a malicious application on the victim’s
device. In this case, we assume that the attacker is unable to subvert
the security of the operating system, and therefore the installed
malicious app is still constrained by all the limitations imposed by
the Android framework. The installed app can, however, request
permissions (as any other benign third-party app installed on the
device) to obtain specific capabilities, and, in this case, we assume
that the user will grant them.

Additionally, the installed app, can show maliciously crafted
messages or, more in general, interfere with the device’s user
interface (UI), to lure a legitimate user to touch the fingerprint
reader sensor. These UI attacks greatly vary in terms of complexity
and flexibility, and they are well explored by several existing
works [34], [14], [9], some of which, such as Cloak & Dagger [21],
achieve almost complete compromise of the device. While these
attacks are indeed powerful, we note that the fingerprint API might
be one of the few aspects that could, at least in principle, prevent
full compromise. In fact, even though the Cloak & Dagger attack
can simulate arbitrary user input, it cannot “spoof” a physical
fingerprint user’s touch.

The key conceptual point here is that there is no trusted path
from the fingerprint API to the UI. Thus, as previous works
have shown, the attacker can exploit an instance of the confused
deputy problem. We postpone the discussion on the practicality
and implications of these attacks to Section VI-B.

Root Attacker. In this threat model, we assume that an attacker
can fully compromise the Android operating system, by using, for
instance, a “root exploit.” Therefore, the attacker can completely
bypass apps’ restrictions put in place by the Android framework.
For example, the attacker can access app-private storage (which
is usually protected by the sandboxing mechanism). Moreover,
exploiting confused deputy instances via the UI attacks mentioned
above becomes much simpler for a root attacker.

Additionally, the attacker can spoof “messages” from the
operating system: Specifically, an attacker can freely communicate
with the TEE, and thus send arbitrary messages to it. At this
point the attacker can programmatically invoke the onAuthenti-
cationSucceeded method implemented within the victim app
(and thus simulating a user’s touch), even if the user has never
touched the fingerprint sensor.

We note that, although a root attacker is powerful, she does not
get access to everything. In particular, the fingerprint API enforces
the following three security properties even on a system in which
the untrusted OS is completely compromised:

1) an attacker cannot retrieve “raw” fingerprint data;
2) an attacker cannot retrieve the value of cryptographic key

stored into the TEE (i.e., keys are not exportable);
3) an attacker cannot use TEE-backed cryptographic keys,

unless a legitimate user touches the fingerprint sensor.

However, if the victim app does not properly use such TEE-backed
cryptographic keys, the attacker might be able to achieve her goal
anyways, as we will explain later.

That being said, we also note that, for some usage scenarios,
an app does not have any technical way to secure itself from root
attackers. For example, if the app uses fingerprint not to secure a
secret or token, but as a local “Test of User Presence” (TUP), there
is currently no way a developer could make use of cryptographic
algorithms. On the other hand, crypto primitives can be definitively
used when implementing remote user-authentication mechanisms.
We postpone the discussion about these scenarios to Section VI-A.

Finally, for this threat model, we will assume that the device
is not in a compromised state when the cryptographic keys
(“unlocked” by touching the fingerprint sensor) were first created
by the app that the attacker wants to compromise. The creation of
cryptographic keys typically happens only during the first usage
of an app and, therefore, it may be impossible for an attacker to
interfere with their creation if the compromise of a device happens
only after this stage of an app’s lifecycle.

Root-at-Bootstrap Attacker. In this threat model, we consider
an attacker with the same capabilities of the previous one. Ad-
ditionally, we also assume that the device is in a compromised
state even in the moment in which the victim’s app generates
the cryptographic keys. Therefore, in this case, the attacker can
interfere with their creation.

C. Out-of-Scope Attacker Capabilities

We assume that the TEE is not compromised. In other words,
we consider an attacker that can compromise the code running (or
the data stored) within the TEE as out of scope. In fact, an attacker
able to compromise the TEE can trivially fully compromise the
fingerprint functionality, by stealing all the cryptographic keys in
the secure storage. Moreover, as previously mentioned, exploits
able to gain this capability for an attacker are extremely rare.

We will consider attacks on the physical recognition of the
fingerprint as out of scope. These attacks, although possible [42],
deal with the physical aspects of the fingerprint acquisition
process and with the algorithms used to compare fingerprint data.
Conversely, in this paper, we focus on a higher-level aspect: the
operations inside TEE that are triggered by the legitimate user
touching the fingerprint sensor, the operating system, and the apps
using the fingerprint sensor API. Therefore, we will assume that
the fingerprint sensor and the code inside the TEE handling it are
always able to understand if the user that is touching the sensor
is the legitimate one (i.e., a user who has previously registered
her fingerprint as valid using the appropriate operating system
interface).

IV. FINGERPRINT API USAGES

In this section, we will explain how the fingerprint API is used
by Android apps. In particular, we will classify apps’ usages of the
fingerprint API based on if and how cryptographic keys (stored
inside the TEE) are used to verify that a legitimate user touched
the fingerprint sensor. This aspect has profound implications on
what attackers can do to subvert the fingerprint checks and how
they can achieve their malicious goals. In Section VI-A, we will
then explain how the verification of the user touching the sensor is
used as a part of the authentication schemes implemented by apps
and their corresponding backends.

5

A. Weak Usage

The easiest way to use the fingerprint API is to execute some
code after a legitimate user touched the sensor, without using
any cryptography. To achieve this, a developer just has to call the
authenticate method to activate the fingerprint reader sensor
and override the onAuthenticationSucceeded method to be
notified when the user touched it.

From the implementation standpoint, recall that the authen-
ticate method takes, as an argument, the cryptographic key that
is unlocked when the user touches the sensor (see Section II-C).
Thus, an app can set this parameter to NULL and, as a side-effect,
the fingerprint will not unlock any cryptographic keystore. Of
course, an app could also require access to the keystore and it
could then discard this object without using it. In other words, a
specific fingerprint-protected functionality is not “protected” by
cryptographic operations if a cryptographic key is unlocked but
never properly used.

B. Decryption Usage

In this case, a cryptographic key is created, stored inside
the TEE, and used to decrypt (once the key is “unlocked” by a
legitimate user touching the fingerprint sensor) locally stored files.
Google’s guidelines suggest using the fingerprint API in this way
when “securing access to databases or offline files.” In practice,
we have seen this method often used to decrypt an authentication
cookie stored in an encrypted vault within the app’s private storage.
This authentication cookie, typically valid for multiple sessions,
can be used by the app to authenticate with the remote server.

We have found two ways in which this mechanism is imple-
mented. The easiest case is when a symmetric key is created and
used to encrypt/decrypt the content of the “encrypted vault.” The
disadvantage of this method is that it requires the user to touch
the sensor (to “unlock” the key) to both read something from the
vault and to write something into it. As a consequence, if, for
instance, the remote backend decides to change the value of the
authentication cookie stored inside the vault, the user would need
to touch the fingerprint sensor to unlock the key.

A more user-friendly way is to use an asymmetric key pair. In
this case, the public key (which does not need to be “unlocked”
before usage), is used to write inside the vault, and the private
key (which requires the user’s touch) is only used to read from
the vault (e.g., when the stored authentication cookie is needed to
authenticate with the app’s backend).

Surprisingly, the example officially provided by Google [25]
about using the fingerprint API together with a symmetric key does
not show how to use cryptography safely. In fact, the provided code
generates a symmetric key and, after the user touches the sensor,
uses it to encrypt a fixed, hardcoded string. Then, the code just
checks whether the encryption operation (performed using the
doFinal API) threw an exception, an indication that the used key
is (still) locked (i.e., it has not been unlocked). While the intent
might have been to verify that the user has touched the sensor, this
particular example code makes the usage of cryptography pointless
because an attacker with “root” privileges can just fake the result of
the decryption operation and clear the thrown exception (as we will
describe better in Section VIII-A2). In practice, in terms of security,
we consider the Google’s example on how to use symmetric keys
as a case of Weak usage of the fingerprint API, rather than a case
of Decryption usage.

C. Sign Usage

The fingerprint API can also be used to implement chal-
lenge/response authentication schemes. This offers significantly
more security over a wide range of attackers, but, unfortunately, it
is rarely used by developers.

In this case, typically during the app’s first usage, a key pair
is generated: the public key is sent to the app’s remote backend
server, whereas the private one is stored within the TEE. When
the app needs to authenticate a user to the remote backend, the
following steps take place:

1) The remote backend sends a challenge to the app.
2) The app calls the authenticate API to “unlock” the

previously stored private key.
3) The legitimate user touches the fingerprint reader sensor,

and the private key is “unlocked” by the TEE.
4) The onAuthenticationSucceeded method (over-

ridden by the app) is called.
5) The app uses the now-unlocked private key to sign the

challenge from the app’s backend.
6) The app sends the signed challenge to the backend.
7) The backend verifies the signature on the challenge, using

the public key previously obtained from the client.
8) The backend communicates to the app the result of the

verification and considers the user as authenticated.

D. Sign + Key Attestation Usage

As we discuss in more detail in Section V-C, the “Sign” usage
is vulnerable to an attacker that can perform a man-in-the-middle
attack at the app bootstrap time, when the initial key exchange
takes place. In this attack, the attacker would provide to the
backend her public key (for which she has the associated private
key), and she could then bypass the fingerprint. However, starting
from Android 7, a countermeasure to this attack is possible, since
Android can provide an “attestation” certificate chain, attesting that
a key has been created by a “trusted” TEE. A similar attestation
mechanism is present in the Security Keys protocol [32].

To enable it, a developer, when creating a
key pair, has to call the setAttestationChal-
lenge(attestationChallenge) API with a non-NULL
value for attestationChallenge. Then, the app can retrieve
the certificate chain, attesting the generated public key using
the getCertificateChain API. The app’s backend can
then verify that the root of this chain is signed by a trustworthy
Certificate Authority (typically Google). The certificate, among
other pieces of information about properties of the generated keys,
contains the attestationChallenge previously set, allowing
the app’s backend to verify that the retrieved key was created as a
consequence of a specific request.

V. PROTOCOL WEAKNESSES AND ATTACK SCENARIOS

We will now highlight the weaknesses of each usage scenarios
described in Section IV. For each identified weakness, we will also
determine which classes of attacker (as defined in Section III) can
exploit it. Our findings are summarized in Table I.

6

A. Weak Usage: Fake TEE response

In the Weak usage scenario, fingerprint-based authentication
is considered successful as long as the TEE communicates that a
legitimate touch happened. This message is delivered by the OS to
the client app (by invoking the onAuthenticationSucceeded
method). In this case, any entity that can control/impersonate the
OS to deliver such message can successfully authenticate and
authorize any transaction to the server, without having to wait for
the user to present the fingerprint even once. In other words, any

“root” attacker can achieve Full Fingerprint Bypass against Weak
usage by faking OS messages. Additionally, a non-root attacker can
exploit confused deputy problems by mounting UI attacks. Once
again, these attacks are possible because of the lack of trusted UI in
Android. We also note that these attacks are possible independently
from the specific attacker capabilities and from the specific usage
scenario. We refer the reader to Section VI-B for more details.

B. Decryption Usage: Replay Attack

In the Decryption usage scenario, the TEE is used to decrypt
a value (e.g., an authentication cookie), and the same value is
communicated to the client app (and the backend server) for every
attempt to authenticate or authorize a transaction. In this scenario,
an attacker only needs to capture this value once to then be able
to fully authenticate and authorize any transaction any time in the
future, by simply replaying this captured value over and over.

C. Sign Usage: Man-in-the-Middle Attack

In the Sign usage scenario, the TEE is used to protect a private
key used in a challenge/response scheme. In this scenario, a root
attacker cannot easily compromise the system — in a way, she
has similar capabilities as a non-root attacker, and she could thus
attempt to exploit confused deputy problems via UI attacks.

However, we note that an attacker can launch a man-in-the-
middle attack if she can interfere with the “app bootstrap” process,
during the initial key exchange. The attack would work in this way:
at bootstrap, instead of sending to the backend server the real key
output by the TEE, the attacker can use her own key instead. In
this way, the attacker can use the key thus registered to answer any
future challenge (because the attacker knows both the public and
the private key), thus achieving Full Fingerprint Bypass. Clearly,
since this attack requires the attacker to have control over when
the key exchange is carried out, it is only possible for Root-at-
Bootstrap attackers.

D. Sign + Key Attestation Usage: Key Proxying

The “Sign + Key Attestation” usage scenario significantly
raises the bar for attacks, even for a very powerful attacker such
as Root-at-Bootstrap attacker. However, from a conceptual point
of view, it is possible to attack this usage scenario as well, by
performing a so-called cuckoo attack [37]. Specifically, while this
mechanism attests that a key has been created by the TEE on a
user’s device with the goal of preventing an attacker from knowing
its private value, it cannot prevent an attacker from “proxying”
the app’s request for creating a key pair to her attacker-controlled
device and using the TEE of her device. We note that this attack
scenario presents serious practicality and scalability issues for the
attackers. That being said, we will further discuss this aspect in
Section IX-C, where we propose improvements on the current
implementation of this mechanism.

TABLE I. SUMMARY OF ATTACK POSSIBILITIES WITH RESPECT TO
ATTACKER CAPABILITIES AND FINGERPRINT API USAGE.

Attacker
Capabilities

Fingerprint API
Usage Weak Decryption Sign

Sign
+

Key Attestation

Non-Root C.D. 1 C.D. C.D. C.D.

Root Full Once C.D. C.D.

Root-at-Bootstrap Full Full Full C.D.
1 “C.D.” stands for Confused Deputy.

VI. DISCUSSION

This section discusses aspects related to the fingerprint API that
are not strictly related to the API itself or to the specific vulnerable
“usage scenarios” described above.

A. Application Contexts

Typically, the fingerprint API is used as a part of an authentica-
tion scheme. In this section, instead of focusing on how apps use
the fingerprint sensor in terms of API calls and encryption, we will
discuss common functionality apps aim to accomplish when they
use the fingerprint sensor.

“Local-Only” Usage. Some apps use the fingerprint API to
implement the “screen-lock” functionality. For instance, they
prevent access to a list of user-selectable apps, unless the fingerprint
sensor is touched by a legitimate user. In this case, the fingerprint
sensor just constitutes a local Test of User Presence (TUP).

For these apps, only a Weak usage of the fingerprint API is
reasonable. In fact, the app does not have any remote backend to
authenticate with nor it stores any secret data.

Remote User-Authentication. More interestingly, in many cases,
the fingerprint API is used as one part of an authentication scheme.
Upon first usage, apps have to provide a single-factor or multi-
factor user authentication system, since no cryptographic key is
created and stored by the app inside the TEE yet. On subsequent
usages, the app (and the corresponding backend) may require the
user to touch the fingerprint sensor. Some apps can be configured
to require the user to touch the sensor every time the app is opened
and it connects to the remote backend. Others ask for this action
before performing any sensitive operation, such as a payment.

Typically, when the fingerprint functionality is enabled, the app
will allow the use of a fingerprint touch instead of inserting the
account’s password. While this is convenient in term of usability,
it has mixed security consequences. As a security benefit, an
attacker achieving “root” cannot steal the account password, since
the user is not asked to insert it. However, as we will explain
in Section VI-B, even a non-root attacker can potentially lure a
user to touch the fingerprint sensor and, compared to phishing a
password, stealing a fingerprint touch is significantly easier. In fact,
touching the fingerprint sensor is a common action, since it is used,
for instance, very frequently to unlock the phone. Therefore an
attacker can just pretend to be the lock-screen without raising much
suspicion. Secondly, a fingerprint touch requires less user’s effort
and time to be performed and therefore is more likely to happen.
Finally, an attacker does not need to ask for a specific password,
but just to generically touch the sensor.

7

Bytecode SSA IR

Features

– autenticate usage
– onAuthenticationSucceded usage
– cryptographic key properties

Permission
Analysis

IR generation

Call Graph

Data-Flow
Graph

Feature Extraction

Android
App

API usage
analysis

Pre-Processing

- Not Used
- Weak
- Decryption
- SIgn

App Classification

Classifier

Fig. 1. Overview of the developed static analysis tool

B. Practicality and Impact of UI Attacks

As we mentioned earlier, a malicious app can show maliciously
crafted messages or, more in general, interfere with the device’s
user interface to lure a legitimate user to touch the fingerprint
reader sensor. In particular, we mentioned how several existing
works [34], [14], [9] show the possibility to perform UI attacks,
and that a very recent work, dubbed Cloak & Dagger [21], can
achieve almost complete compromise of the device. In particular,
this last work showed that apps installed from the Play Store are
automatically granted the SYSTEM_ALERT_WINDOW permission
(which allows to create overlays windows on top of any other) and
that it is possible to lure the user to unknowingly grant accessibility
permissions to a malicious app through “clickjacking.”

These attacks are powerful, especially because they can be
performed by any unprivileged app (what we refer to as “non-root
attacker”). However, we note that the fingerprint API might be
one of the few aspects that could, at least in principle, prevent full
compromise: a physical fingerprint “touch” cannot be spoof via
UI-only attacks.

That being said, there are many attacks that one could perform.
These attacks are all instances of a confused deputy problem, and
they are all possible due to one key observation: no “Secure UI” is
currently used by the fingerprint API, and the user does not have
any mechanism to establish with which app she is interacting with.
As a very practical example of these attacks, Zhang et al. [53] show
how an attacker can create a fake “screen lock” to lure the user to
provide her fingerprint: the fingerprint, under the hood, is actually
“passed” to a security sensitive app in the background.

More in general, the lack of “secure UI” allows an attacker
(independently from the fingerprint usage scenarios described in
Section IV) to lure the user to present her fingerprint believing she
is authenticating with app A or authorizing transaction X, while
the fingerprint is actually used to unlock keys for a different app
B or to authorize transaction Y .

These attacks are affected by practicality aspects. First of all,
an attacker needs to solve two issues:

1) Put the victim app in a state in which, once the fingerprint
sensor is touched, an unwanted malicious action happens.

2) Lure a legitimate user to touch the sensor.

Second, the attacker needs to steal a fingerprint touch every single
time she wants to perform the attack. However, this last challenge
can be easily addressed: since the fingerprint is often used to
perform “screen unlock” and since the “screen unlock” action is
an action that a user is used to perform tens of times every day, it is
straightforward for an app to create a situation for which the user
would provide a fingerprint.

From a technical standpoint, an attacker can exploit this by
simulating that a device got automatically locked (which, by
default, happens after a few seconds of non-usage). To achieve
this, the attacker can show a fullscreen, black overlay on top
of any existing Activity.3 Moreover, by requiring the permission
WRITE_SETTINGS, the attacker can also minimize the background
light of the screen. At this point, the attacker can prevent the device
from automatically locking itself (by using the WakeLock API,
requiring the automatically-granted WAKE_LOCK permission). In
this scenario, a user will likely assume that the device got
automatically locked and try to unlock it by touching the fingerprint
sensor.

As an attempt to defeat these UI attacks, a countermeasure is
currently implemented by the Android framework. Specifically,
an app can only request the usage of the fingerprint sensor if it
is displayed in the foreground. Unfortunately, in evaluating if an
app is in the foreground, the Android framework only evaluates its
position in the Activity stack. Since the Android framework does
not deem screen overlays as part of the Activity stack, an Activity
will still be considered as in foreground, even when maliciously
covered by an overlay.

VII. AUTOMATIC ANALYSIS TOOL

We have developed a tool to automatically analyze how an
app uses the fingerprint API. The tool takes an Android app as
input and classifies its usage of the fingerprint API into Weak,
Decryption, and Sign usage, as defined in Section IV. We use the
tool above to perform the first systematic study on how Android
applications use the fingerprint sensor, pinpointing cases in which
this API is incorrectly used. We believe app developers and app
market operators can also use this tool to automatically understand
if there is any issue in how an app uses the fingerprint API. Figure 1
provides an overview of the developed tool.

3An Activity is the standard “unit of interaction” in Android and loosely
corresponds to a window in a desktop environment.

8

A. Challenges and Design Choices

Our tool performs static analysis on an app’s bytecode.
We choose static analysis on bytecode to be able to perform
our analysis without needing source code (which is typically
unavailable both to security researchers and market operators).
Moreover, many apps using the fingerprint API belong to the
“finance” category. This makes very difficult to automatically
perform dynamic analysis on these apps, since we do not have the
required financial account information needed to get past the login
stage. Even approaches able to automatically register accounts
while performing dynamic analysis, such as AppsPlayground [39],
cannot solve this problem by automatically creating bank (or
other financially related) accounts. This aspect also significantly
complicates our manual investigation of the results and our
attempts to dynamically execute a given app.

One of the main challenges when analyzing recent real-world
Android apps is the amount of code these applications include (on
average, the apps we have analyzed have about 51,000 methods).
This is often because apps include big libraries, which, even if only
marginally used, substantially increase the amount of code a static-
analysis tool may end up analyzing. Empirically, recent research [7]
has shown that even relatively easy data-flow analysis, such as flow-
insensitive taint analysis, often ends up using unpractical amounts
of resources and time, when applied to an entire app. However,
for the analysis we are interested in, we only need to precisely
characterize the usage of very specific API methods. For these
reasons, we adopted a more localized approach, which constructs
call graph and data-flow graphs starting from the APIs of interest,
limited to the specific parameters we are interested in.

B. Pre-processing

The first step of our analysis is to determine which apps poten-
tially use the fingerprint API. Since, to use the fingerprint hardware,
an app has to require the USE_FINGERPRINT permission, our
tool first checks whether a given app requires this permission
by reading its manifest file. Apps not requesting this permission
cannot use the fingerprint API.

After this step, we use the Java static analysis framework
SOOT [47] to obtain an intermediate representation of the app’s
bytecode. To simplify further data-flow analysis, we choose the
Shimple intermediate representation, which is in single static
assignment (SSA) form.

C. Call Graph Construction & Data Flow Analysis

Our analysis is based on two static analysis primitives: call
graph generation and data-flow graph analysis. The call graph
represents method invocations among different methods in the
analyzed app. In building the call graph, we perform intra-
procedural type-inference [36] to determine the possible dynamic
types of the object on which a method is called. If this analysis
fails, we over-approximate the possible dynamic types as all the
subclasses of its static type (including the static type itself).

Our call graph also considers some implicit control flow
transitions introduced by the Android framework [12]. In par-
ticular, when the onAuthenticationSucceeded callback is
invoked by the Android framework, typically developers call the
postDelayed method, by passing, as parameter, an instance of a
specific inner-class, implementing the Runnable interface. On

TABLE II. OVERVIEW OF THE COLLECTED FEATURES

authenticate Null/NonNull

onAuthenticationSucceeded
NoCrypto/Constant/
Decrypt/Signature

Key Properties
DecryptionKey/SigningKey
UnlockedKey/LockedKey

this inner-class, the method run will be later called and executed
in a different thread. This is a common behavior in Android,
since code dealing with UI elements has to run in a different
thread than code dealing with network operations, to ensure app’s
responsiveness.

Our tool handles these cases by identifying the possible dy-
namic types of the instance passed to the postDelayed method.
Then, it adds edges in the call graph between the postDelayed
method and the implementations of the run methods that can be
possibly called, according to the identified types (typically, just
one).

To perform data-flow analysis, starting from a variable of
interest V (e.g., a specific parameter of an API call), we recursively
follow the def-use chain to obtain an inter-procedural backward
slice. Moreover, when a field access is encountered, we continue
the analysis starting from all the instructions accessing it. As an
output of this analysis, we obtain a slice of instructions (encoded as
a tree) in which each instruction uses variables that may influence
the value of V .

D. Feature Extraction

At a high-level, our analysis extracts three kinds of features:

1) how the authenticate API is used;
2) which code is triggered when the onAuthentication-

Succeeded callback is called;
3) the parameters used to create cryptographic keys.

Table II enumerates the features we extract to characterize these
three aspects.

authenticate API Usage. For the authenticate API, for each
occurrence of a call to this method, our analysis generates a
backward slice, starting from the parameter named crypto. This
parameter is used to specify the cryptographic key that is “unlocked”
whenever a legitimate user touches the fingerprint sensor. Then,
by analyzing the generated slice, we check if the value of this
parameter is NULL. In this case, it means that the authenticate
API will activate the fingerprint sensor, but no key will be unlocked
when the user touches it. We mark this case as Null, otherwise we
mark it as NonNull.

onAuthenticationSucceeded Callback Usage. We analyze the
code that is executed when the onAuthenticationSucceeded
callback is invoked, to determine if and how cryptographic
operations happen after the user touched the fingerprint sensor.
Starting from each occurrence of a method overriding onAuthen-
ticationSucceeded, we start a forward exploration of the call
graph, looking for calls to specific cryptographic methods.

9

Specifically, if we encounter a call to the methods sign
or update of the class Signature, we mark this usage of
onAuthenticationSucceeded as Signature, whereas if we
encounter a call to the methods doFinal or update of the
class Cipher, we mark it as Decrypt.

As a special case, if after the onAuthenticationSuc-
ceeded callback a decryption operation is detected, but it is per-
formed on a fixed, hardcoded string (as explained in Section IV-B),
we mark this case as Constant (instead of Decrypt). To determine
this, we generate a backward slice starting from the parameter
specifying the decrypted content, and we analyze it to determine if
it results in a constant string.

In case we do not encounter any of the aforementioned
cryptographic methods we mark the usage of the onAuthenti-
cationSucceeded callback as NoCrypto, since it shows that no
cryptographic operation is performed as a consequence of the user
touching the fingerprint sensor.

Cryptographic Key Properties. To determine the type of the used
cryptographic keys, we generate a backward slice starting from the
purpose parameter of the KeyGenParameterSpec.Builder
constructor. In case we determine it to have the value PUR-
POSE_SIGN we mark the key as a SigningKey otherwise we mark
it as a DecryptionKey.

We also verify if the setUserAuthenticationRequired
method is invoked (by passing true for its required parame-
ter). If this is the case, we mark the key as Locked, otherwise, we
mark it as Unlocked.

Other Features. To integrate the information collected by
the features just described, we also check if an app
is using the getCertificateChain and setAttestation-
Challenge APIs. While we do not use this information to
classify how an app uses the fingerprint API, we will use this
information to study if apps use key attestation (see Section V-D
and Section VIII-G).

E. App Classification

After collecting the aforementioned features, we use them
to classify how the analyzed app uses the fingerprint API. The
rationale behind this classification rules is first to identify cases in
which the fingerprint API is not used (e.g., no fingerprint-related
API is called) or used in a Weak way (e.g., no cryptographic
operation is performed). Then, we analyze the properties of the
used cryptographic keys and the cryptographic methods called to
determine whether to classify the app as Decryption or Sign.

First of all, we note that for some of the analyzed apps that
request the USE_FINGERPRINT permission, we cannot identify
any usage of the authenticate API or the onAuthentica-
tionSucceeded callback. We classify these apps, together with
those not requesting the USE_FINGERPRINT permission, as “Not
Used.”

Then, we classify an app as Weak if any of the following
conditions are met:

1) We do not detect any key generation (i.e., the KeyGen-
ParameterSpec.Builder API is never used).

TABLE III. STATIC ANALYSIS TOOL RESULTS SUMMARY

Total Apps Analysis Errors Not Used
501 5 (1.00%) 72 (14.37%)

Category Weak Decryption Sign
Detected apps 269 (53.69%) 146 (29.14%) 9 (1.80%)

Misclassifications 0/20 1/10 1/9

2) All the usages of the authenticate API are marked
as Null. This corresponds to the case in which no
cryptographic key is unlocked as a consequence of the
user touching the fingerprint sensor.

3) All the usages of the onAuthenticationSucceeded
callback are marked as NoCrypto or Constant. This cor-
responds to the case in which no cryptographic operation
is performed after the user touched the sensor (or the
only cryptographic operation happening is performed on
a constant value).

4) An Unlocked key is used. In fact, in this case, the used
key is not locked, and any root attacker can immediately
use it, without having the user touching the fingerprint
sensor.

At this point, we know that some proper cryptographic
operation happens after the user touches the fingerprint sensor. To
determine whether the app uses the fingerprint API in a Decryption
or in a Sign way, we use the following rule. We classify an app as
Sign if any key marked as SigningKey is generated and any usage
of the onAuthenticationSucceeded callback is marked as
Signature. Otherwise, we classify the app as Decryption.

VIII. AUTOMATIC ANALYSIS RESULTS

A. Evaluation Methodology

To determine the correctness of the classification of our tool,
we employed the following two-step methodology:

1) Driving the App to Ask for Fingerprint: In the first step of
our evaluation, we manually drive the analyzed app to the point
where it starts communicating with the TEE for fingerprint-based
authentication.

One significant challenge in this step is that most of the
considered apps require specific accounts to go beyond the initial
login interface, and it is impractical to create accounts for many
such apps. This is because many of the apps we analyzed are
mobile-banking apps, for which it is not possible having an account
without also being customers of the connected bank. In other cases,
the app’s backend requires financial information such as Social
Security Numbers or debit card numbers to create an account,
which further hindered our ability to interact with these apps.

2) Verify the Existence of Expected Weaknesses: Once we
drive the analyzed app to start interacting with the TEE, we verify
our tool’s classification for this app by simulating a root attacker
and see if the fingerprint-based authentication is vulnerable to
weaknesses of the corresponding class as predicted in Section V.
For simulating a root attacker, we used the Xposed Framework [1],
a tool which allows us to easily modify apps’ and framework’s
Java code at runtime.

10

In particular, if our tool classifies the app as using the
Weak usage, our simulated attack modifies the behavior of the
authenticate API to directly call the onAuthentication-
Succeeded callback. Furthermore, we deal with the case in
which the victim app invokes any cryptographic operation using
a key stored inside the TEE. In this case, the app would raise an
exception, since this key has not been “unlocked.” This scenario
may occur in the case in which the result of the decryption is
not used (and therefore we classify the app as Weak), but still,
a TEE-protected key is used to decrypt a hardcoded string, as it
happens, for instance, in the Google’s sample code [25]. We deal
with this case, by masking the generated “User Not Authenticated”
exception.

For apps classified as using the fingerprint API in a Decryption
way, we first record the outputs of decryption operations using
TEE-protected keys (simulating a Root attacker). Then, we modify
the authenticate API as explained before and, additionally,
we replay the collected decryption outputs when necessary.

B. Dataset

We collected all the free apps classified as “Top” (i.e., most
popular) in each category of the Google Play Store. These apps
were downloaded in February 2017. Additionally, we added apps
preinstalled on a Nexus 5X device running Android 7. In total, we
created a dataset of 30,459 apps. Among these apps, 501 (1.64%)
declare the USE_FINGERPRINT permission and, therefore, can
potentially use the fingerprint API. In the rest of this section, we
will focus on this subset of 501 apps.

C. Apps Classification

Table III summarizes the outputs of our tool. We ran our tool
in a private cloud, and for the analysis of each app we provided
4 virtual-cores, 16 GB of RAM and 1 hour time limit. For the
501 apps, our tool needed on average 354 seconds (σ = 363) of
computation and used 6.13 GB (σ = 1.07) of RAM per app. In
5 cases (1.00%), our analysis did not finished due to bugs in the
SOOT framework or analysis timeout.

For 72 (14.37%) apps, although they ask for the
USE_FINGERPRINT permission, our tool did not detect any usage
of the fingerprint API. This result is not particularly surprising
since previous research has shown that apps tend to require more
permissions than they use [48]. To further verify this finding, we
manually analyzed a random sample of 10 of these apps. We both
manually run them and perform tool-assisted reverse engineering.
For 7 of them, we could confirm that they do not use the fingerprint
API, whereas for the other 3 our tool was unable to detect its usage
because these apps use native code components to activate the
fingerprint reader sensor, which our tool is unable to analyze.

For apps classified as Weak we took a random sample of 20
apps among those in which we were able to dynamically reach
the fingerprint interface. Our dynamic analysis confirmed that
they were all correctly classified (i.e., our simulated attack in
Section VIII-A2 is successful). Among these 20 apps, 16 access a
remote account or store secret data, therefore a Weak usage of the
fingerprint API is not appropriate (as explained in Section VI-A).

For apps classified as Decryption we took a random sample of
10 apps and we confirmed that 9 were correctly classified (using,
again, the simulated attack explained in Section VIII-A2), whereas
1 was classified as Decryption while in reality is Weak.

Finally, about the 9 apps classified as Sign, we were able to
dynamically reach the fingerprint interface in one app and dynamic
analysis confirmed the classification of this app as correct. This
app, called “True Key,” requires to sign an authentication token
during login and performs this operation with a TEE-protected
private key, “unlocked” only when the user touches the fingerprint
reader sensor. To have a better evaluation, we also extensively
reverse engineer the other 8 samples classified as Sign. Our manual
analysis revealed that 7 of them have been classified correctly,
whereas 1 has been classified as Sign while being Decryption.

In summary, we manually analyzed (either by reproducing our
attacks as explained in Section VIII-A2 or by reverse engineering)
39 apps and we found that all the apps except 2 were classified
correctly. In one case the misclassification is due to overapproxi-
mations in the call graph. In the other, the app “signs” some data,
but this data is constant, since it is provided by the backend when
the user logins the first time. For this reason, the app falls into the
Decryption category. In fact, an attacker can trivially replay the
result of this signing operation after it happened once. However, our
tool was unable to detect this scenario and, therefore, it classified
the app as Sign.

Overall, results show how our tool is reasonably accurate
in determining how an app uses the fingerprint API. Moreover,
the few misclassifications “overestimate” the security of an app
(classifying it as using the fingerprint API in a stronger way than
in reality). Therefore, we believe that our results, showing a low
usage of the fingerprint API in the Sign way and a high usage in
the Weak way, are particularly worrisome and confirm our intuition
that apps generally do not use appropriately the fingerprint API.
In the next sections, we will provide concrete examples of these
inappropriate usages.

D. Case Study: Unlocking “Unlocked” Keys

As explained in Section II-C, a key is stored inside the TEE and
“unlocked” by a fingerprint touch only if the setUserAuthenti-
cationRequired method is invoked (by passing true for its
required parameter) when the key is generated. On the contrary,
without calling this method, a generated key is always “unlocked,”
regardless of the usage of the fingerprint API.

Surprisingly, we found this aspect as a source of implemen-
tation errors. In particular, we looked for apps implementing
proper cryptographic operations as a consequence of the user
touching the fingerprint sensor (i.e., calling the authenticate
API to “unlock” a key used to decrypt or sign some data), but
not calling properly the setUserAuthenticationRequired
method. This indicates that the developers wanted to have a key
“unlocked” when the legitimate user touches the fingerprint sensor,
but forgot to “lock” the key in the first place.

To identify these apps, we checked for apps that

1) are classified as Weak by our tool;
2) do not call the setUserAuthenticationRequired

method (or they call it specifying false as its parame-
ter);

3) if they had called the setUserAuthenticationRe-
quired method properly they would have been classi-
fied as Decryption or Sign.

11

Our tool identified 15 apps in this scenario and we were able to
fully dynamically interact with 4 of them, verifying their improper
usage of the fingerprint API.

As an example, one of these applications allows a user to
purchase items in an online marketplace and requires the user
to touch the fingerprint sensor during the checkout procedure.
The user’s password is stored encrypted by a supposedly TEE-
secured key, as is common when the fingerprint API is used in a
Decryption way. During the checkout, when the user touches the
fingerprint sensor, this key is used to decrypt the user’s password.
However, we verified that the decryption key is not really “locked”
since the setUserAuthenticationRequired method is not
called. Therefore, from a cryptographic perspective, the use of the
fingerprint API is useless. As a consequence, a root attacker can
easily bypass its usage.

E. Case Study: Google Play Store

Among the apps our tool classified as Weak, one is the “Google
Play Store” app. This app is present on every Google-branded
phone, and it handles the purchase of apps, media, and in-app
purchases and can be setup to “protect” these purchases by a
fingerprint touch. In this case, the user would be required to
touch the sensor before every purchase. Since this app can directly
spend user’s money and interacts with a remote server, the most
appropriate usage of the fingerprint API would be Sign, as also
stated and exemplified in the guidelines from Google itself.

However, our tool classified the Google Play Store app as using
the fingerprint API in a Weak way and our evaluation (as described
in Section VIII-A) confirmed this result. In fact, this app calls
the authenticate API with a NULL value for its crypto
parameter, and, therefore, no key is “unlocked” and no sign
operation certifies that the purchase happened as a consequence of
the user touching the fingerprint reader sensor.

On July 2017, we contacted the Android’s security team. The
team promptly replied and forwarded our report to the Google
Play’s team, which is now aware of the issue and investigating it.

F. Case Study: Square Cash

Among the apps our tool classified as Decryption, one is the
“Square Cash” app. This app is a personal payment app, which
allows users to transfer money to and from connected debit cards
and bank accounts.

The app can be configured to require the user to touch the
fingerprint sensor before any transaction. The most appropriate
usage of the fingerprint API in this case would be to use it to
sign these transactions. However, Whorlwind, the open source
library that Square (and other apps in our dataset) uses to
implement the fingerprint functionality, implements a weaker
scheme. In particular, this library is used to decrypt a locally stored
authentication token. For this reason, by simulating an attacker
with Root capabilities, we were able to reuse the same decrypted
token to perform different payments.

We contacted the developers of the Whorlwind library in
August 2017, detailing our findings and why we think that a Sign
usage of the fingerprint API is more appropriate in this case.

G. Case Study: Key Attestation

We mentioned in Section V-D that, starting from Android 7,
a new mechanism has been implemented to allow developers
to “attest” public keys, ensuring they have been generated from
“trusted” TEEs. According to the API, a properly verified certificate
chain, “rooted at a trustworthy CA key,” is only provided if the
setAttestationChallenge API, with a non-NULL value for
attestationChallenge, is called.

Conceptually, apps using both the fingerprint API in a Sign
way and key attestation should be categorized in a different group
in Table III. However, in our dataset, our tool found no app calling
this API. This indicates that every app in our dataset is vulnerable
to a Root-at-Bootstrap attacker, who can interfere with the initial
key exchange process between the app and its remote backend.

IX. FINGERPRINT API IMPROVEMENTS

We will now propose some changes to the current fingerprint
API, which would significantly improve its security. In this section,
we will assume that apps use the fingerprint API in a Sign way,
which, as previously shown in Section V, it is the right way to
provide stronger security. However, even with proper usage, this
API currently has some shortcomings, which we will address here.

A. Trusted-UI

The biggest limitations of the current API and its implementa-
tion are:

1) Users have no trusted way to understand what they are
signing by touching the fingerprint sensor.

2) A malicious application (with or without “root” privi-
leges) can interfere with what is shown to the user when
asked to touch the sensor.

To solve both issues, we propose a mechanism in which the
TEE can directly show to the user the content of a sign operation
performed by a fingerprint-unlocked key. This mechanism is
based on the known idea of having a trusted video path directly
between the TEE and the device’s screen. TEE-enforced video
paths are already implemented in some Android devices (for DRM
purposes) [49] and academia explored its use for authentication
purposes [45]. However, differently from previous solutions, what
we propose is also based on a trusted input which is the fingerprint
reader sensor, able to directly communicate with the TEE.

We propose to change the current authenticate method
to also take as an input a message string parameter, for instance
“Do you want to authorize a payment of $1,000 to Friend?” This
message would be shown on a TEE-enforced Secure UI dialog
window, alongside with a standardized graphic UI asking the user
to touch the fingerprint sensor. Untrusted code, outside the TEE,
cannot interfere with the visualization of this window, due to the
usage of a secure video path. Specifically, untrusted code cannot
read the content of this dialog window nor modify it.

When the sensor is touched by a legitimate user, a signature of
this string (generated using the private key “unlocked,” specified
when the authenticate method is called) is available using a
method called getSignedMessage. The remote backend can
then verify that this message has been signed correctly and,

12

therefore, be sure of what the user has authorized by touching
the sensor. In other words, the remote backend can verify the “user
intention,” which is signed by the TEE.

The security of this system is guaranteed by the fact that both
the code for handling the sign operation and the code for visualizing
the message are within the TEE. Therefore, an attacker, even having
root privileges, cannot decouple what is being shown to the user
with what is being signed by the fingerprint-unlocked key. An
attacker can still interfere with the communication between the
backend, the app, and the TEE. However, this will be detectable
by the user. In fact, suppose that the attacker changes the request
the app sends to the backend from “Pay Friend $1,000” to “Pay
Attacker $1,000.” As a consequence the backend will send the
following message to be signed by the TEE: “Do you want to
authorize a payment of $1,000 to Attacker?”. In this case, the
user will be able to notice that the message does not correspond to
her intention.

Another issue is how to prevent an attacker from showing
a malicious dialog window that resembles the window shown
by the TEE when asking the user to touch the fingerprint sensor.
Without requiring extra hardware (e.g., an LED would be turned on
when “secure output” is displayed), we can exploit the fingerprint
sensor itself to mitigate this attack. Since the fingerprint sensor can
communicate directly and exclusively with the TEE, we propose
that the TEE shows a hard-to-spoof visual clue (e.g., a loading bar)
while the user touches the sensor.

Attackers would be unable to show this bar at the right time,
since, outside the TEE, it is unknown when the user touched the
sensor. Therefore, the absence (or the improper behavior) of this
visual element would indicate to the user that the shown dialog
window is not legitimate. Another possible solution, although less
practical since it requires a setup phase, would be to use a secret
(i.e., only know by the user and the TEE) personalized security
indicator. This mechanism has been shown as an effective defensive
mechanism in the Android ecosystem [9].

It is important to notice, however, that even without this defense,
an attacker would not be able to lure users to sign a malicious
transaction, but only to pretend that a transaction happened.

B. Other UI Changes

While a solution based on hardware-enforced secure-UI is the
best way to address current API shortcomings, we understand
that its adoption and deployment may be problematic because
it requires non-trivial modifications to the code running inside
the TEE and the coordination between this code, the Android
operating system, and the display hardware. Therefore, we also
propose easier-to-implement modifications to the current Android
user-level framework. While attackers having “root” privileges can
trivially bypass these mechanisms, they are still effective against a
non-root attacker.

In particular, Android should automatically dismiss overlay
windows on top of interfaces asking the user to touch the fingerprint
sensor. A similar solution is already applied in the latest Android
versions to protect “security sensitive” interfaces, such as the one
used to grant/remove apps’ permissions. In addition, the name
(and the icon) of the app asking the user’s touch should be clearly
shown. To implement both solutions, a standard interface, which
apps cannot modify except showing some text on it, should be

shown when the authenticate API is called. In the current
implementation, custom interfaces are possible, but uncommon.
In fact, most of the apps show very similar interfaces (Android
guidelines precisely define how this dialog should appear [29]),
thus they will not need to significantly change their UI.

C. Better Attestation Mechanisms

As we previously mentioned, a key attestation mechanism has
been implemented, starting from Android 7. However, in its current
implementation state, this mechanism has several weaknesses.

First of all, the API defines two possible “levels” for the
attestation “software” and “hardware,” where only the latter
guarantees that a key has been generated by the device’s TEE.
The level of attestation can be retrieved by parsing the attestation
certificate associated with a generated public key. However, in the
devices we have tried (Nexus 5X and Pixel XL, running Android 7),
the generated keys are always “software” attested.

More fundamentally, while analyzing the generated certificates,
we did not find any indication of the specific instance of the device
generating a key. As also pointed out by the paper presenting
the Security Key protocol [32], there is a trade-off between
user’s privacy and security of the protocol. Having a system that
can identify the specific device generating a key would allow
remote backends to detect suspicious situations in which the key
associated with a specific user changes. Moreover, it would hinder
the ability of an attacker to “proxy” key creation to an attacker-
controlled TEE, since too many keys (used by many different
users) generated by the same device would be easily detected as
suspicious. However, this would violate user’s privacy, allowing
unique user’s identification among different apps. Therefore, we
recommend, as in the Security Key protocol, the implementation
of a batch attestation scheme, in which a set of devices, using
the same hardware (and potentially affected by the same security
issues), shares the same attestation key.

Finally, we note that the current documentation about how to
verify key attestation certificates is insufficient and the only official
sample code [24] does not cover all the possible cases that need to
be handled while parsing this type of certificates.

X. LIMITATIONS AND FUTURE WORK

This paper focuses on the most common fingerprint API in
Android, used by Google’s devices. However, Samsung’s and
Huawei’s devices offer their custom fingerprint hardware and
a different API. Moreover, outside of the Android ecosystem,
similar systems are offered on Apple’s devices [3], [4]. Studying
similarities and differences among these APIs and how apps
that want to be compatible with multiple devices handle this
fragmentation is the main future direction of this work.

Our static analysis is based on call graph generation and data-
flow graph analysis. This approach has been proved effective by
previous research [17] in determining how specific APIs are used
in Android. However, this approach is unable to analyze reflective
code, dynamically loaded, or native components. Regarding the
first two aspects, we do not expect them to be a significant source
of imprecision when analyzing non-malicious code and we did
not find any sample misclassified because of these reasons. We
consider the analysis of components written in native code outside

13

the scope of this paper. Empirically, we found that the usage of
native code prevented us from analyzing three apps (among those
manually verified), as explained in Section VIII-C.

More fundamentally, the implemented static analysis can
indicate the way in which an app uses locally the fingerprint API,
but it cannot fully evaluate how this aspect affects the overall
authentication mechanism implemented by the app and its backend.
This analysis usually requires probing the remote backend (when,
as it is typically, the backend’s code is not available) to determine
if it properly checks user’s authentication. Merging our tool with
more general remote protocol analyzers (as, for instance, the one
proposed by Zuo et al. [55]) represents another interesting future
direction.

XI. RELATED WORK

Zhang et al. [53] show how UI attacks were extremely easy in
Samsung devices (Samsung Galaxy S5 and S6) running Android 5.
Specifically, these attacks were possible because, after a legitimate
user touched the fingerprint reader sensor, a malicious app could
use fingerprint-protected cryptographic keys generated by other
apps. In addition, they show how in some devices it was possible to
steal raw fingerprint information. In our work, we focus primarily
on the newer Google’s fingerprint API (released with Android 6),
in which each app utilizes app-specific keys.

A few other works focus on aspects concerning the security
of the fingerprint hardware sensor and the storage of fingerprint
data [40], [16]. In our work we expand and generalize findings of
these previous works and, in addition, we systematically study how
apps use the fingerprint API and how this aspect affects the overall
security of an app’s authentication scheme.

There is a number of works related to two-factor authentication
and authentication in mobile systems. Lang et al. [32] describe
“Security Keys,” second-factor devices that protect users against
phishing and man-in-the-middle attacks. They also discuss the
deployment of this technology to the Chrome browser and Google
online services. Throughout our paper, we show how the fingerprint
API could potentially offer the same or better security properties,
but some shortcomings in its implementation and in how apps use
it prevent this from happening.

One-Time Passwords (OTPs) are a (weaker) alternative to
Security Keys. TrustOTP [45] shows how smartphones can act as
secure OTP tokens. Dmitrienko et al. [15] highlight weaknesses in
the design and adoption of two-factor authentication protocols and
mechanisms. In particular, they show how an attacker can mount
cross-device attacks and bypass 2FA mechanisms such as SMS-
based TANs (Transaction Authentication Numbers) used by banks,
or login verification systems such as Google, Twitter, and Facebook.
Chen et al. [13] discuss different OAuth implementations and their
adoption by mobile applications.

Several works focus on the automatic detection of classes
of vulnerabilities in Android apps. Previous work focused on
detecting over-privileged apps [6], component-hijacking vulnera-
bilities [33], vulnerable content providers [54], permission leak-
ing [31], and vulnerabilities related to the unsafe usage of crypto-
related APIs [17], [55], SSL connections [18], and dynamic code
loading [38]. Other recent works show how some apps implement
vulnerable custom authentication schemes (trying to minimize
users’ effort during login) [10] and how apps often use payment

libraries insecurely [50]. Acar et al. provide an overview of the
different security mechanisms implemented in Android and the
improvements suggested by academia [2].

Other relevant works are those focusing on highlighting GUI-
related vulnerabilities and problems. For example, Felt et al. [19],
Niemietz et al. [34], Chen et al. [14], Bianchi et al. [9], and Ren et
al. [41] study the use of UI attacks to lure users to enter their
credentials into malicious UIs. Moreover, a recent work shows
how redressing attacks can even lead to complete compromise of
the device UI [21], since an app can use these attacks to stealthy
obtain “accessibility” permission and take full control of the user’s
input and the display’s output.

XII. CONCLUSIONS

This work provides the first systematic study on the usage of
the fingerprint API in Android. We show that its usage is not well
understood and often misused by apps’ developers. In particular,
our study shows that several apps, including popular ones such as
Google Play Store and Square Cash, do not use this API in the most
secure way. We believe that the fingerprint API could significantly
improve the security and the usability of existing authentication and
authorizations schemes, especially because the hardware it needs is
commonly available in modern mobile devices. We hope this paper
will highlight current weaknesses and push Google to provide
better documentation and to address the remaining problematic
issues.

ACKNOWLEDGMENT

We would like to thank Martina Lindorfer for providing us
the dataset we used in this paper and Carter Yagemann for the
insightful discussion about user authentication.

This research was supported by the ONR under grants
N0001409-1-1042, N00014-15-1-2162 and N00014-17-1-2895,
by the DARPA Transparent Computing program under contract
DARPA-15-15-TC-FP-006, by the NSF under grant CNS-1408632,
and by the Google’s “Security, Privacy and Anti-Abuse Award.”
Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the ONR, DARPA, NSF, or Google.

REFERENCES

[1] “Xposed Installer,” http://repo.xposed.info/module/de.robv.android.xposed.
installer, 2017.

[2] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “SoK:
Lessons Learned From Android Security ResearchFor Appified Software
Platforms,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2016.

[3] Apple, “About Touch ID advanced security technology,” https://support.
apple.com/en-us/HT204587, 2015.

[4] ——, “Get your apps ready for Touch Bar.” https://developer.apple.com/
macos/touch-bar/, 2017.

[5] ARM, “ARM TrustZone,” https://www.arm.com/products/security-on-arm/
trustzone, 2017.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android Permission Specification,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2012.

[7] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining Apps for Abnormal Usage of Sensitive Data,”
in Proceedings of the International Conference on Software Engineering
(ICSE), 2015.

[8] A. Bianchi, “Source Code of the Developed Static Analysis Tool,” https:
//github.com/ucsb-seclab/android broken fingers, 2018.

14

http://repo.xposed.info/module/de.robv.android.xposed.installer
http://repo.xposed.info/module/de.robv.android.xposed.installer
https://support.apple.com/en-us/HT204587
https://support.apple.com/en-us/HT204587
https://developer.apple.com/macos/touch-bar/
https://developer.apple.com/macos/touch-bar/
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://github.com/ucsb-seclab/android_broken_fingers
https://github.com/ucsb-seclab/android_broken_fingers

[9] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna, “What the App is That? Deception and Countermeasures in the
Android User Interface,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2015.

[10] A. Bianchi, E. Gustafson, Y. Fratantonio, C. Kruegel, and G. Vigna,
“Exploitation and Mitigation of Authentication Schemes Based on Device-
Public Information,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2017.

[11] Board of Governors of the Federal Reserve System, “Consumers and Mo-
bile Financial Services 2016,” https://www.federalreserve.gov/econresdata/
consumers-and-mobile-financial-services-report-201603.pdf, 2016.

[12] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, and
Y. Chen, “EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework,” in Proceedings of the Annual
Network & Distributed System Security Symposium (NDSS), 2015.

[13] E. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague, “OAuth
Demystified for Mobile Application Developers,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2014.

[14] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking Into Your App Without
Actually Seeing It: UI State Inference and Novel Android Attacks,” in
Proceedings of the USENIX Security Symposium (Usenix SEC), 2014.

[15] A. Dmitrienko, C. Liebchen, C. Rossow, and A. Sadeghi, “On the
(In)Security of Mobile Two-Factor Authentication,” in Proceedings of the
International Conference on Financial Cryptography and Data Security
(FC), 2014.

[16] T. Does and M. Maarse, “Subverting Android 6.0 fingerprint authentication,”
Master Thesis at University of Amsterdam, 2016.

[17] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Empirical Study
of Cryptographic Misuse in Android Applications,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2013.

[18] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2012.

[19] A. P. Felt and D. Wagner, “Phishing on Mobile Devices,” in Proceedings of
the IEEE Workshop on Web 2.0 Security & Privacy (W2SP), 2011.

[20] FIDO Alliance, “What is FIDO?” https://fidoalliance.org/about/
what-is-fido/, 2017.

[21] Y. Fratantonio, C. Qian, P. Chung, and W. Lee, “Cloak and Dagger: From
Two Permissions to Complete Control of the UI Feedback Loop,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2017.

[22] D. Goodin, “Thieves drain 2fa-protected bank accounts by abusing SS7
routing protocol,” https://arstechnica.com/information-technology/2017/05/
thieves-drain-2fa, 2017.

[23] Google, “New in Android Samples: Authenticating to remote servers using
the Fingerprint API ,” https://android-developers.googleblog.com/2015/10/
new-in-android-samples-authenticating.html, 2015.

[24] ——, “Android Key Attestation Sample,” https://github.com/googlesamples/
android-key-attestation/tree/master/server, 2016.

[25] ——, “Android FingerprintDialog Sample,” https://github.com/
googlesamples/android-FingerprintDialog, 2017.

[26] ——, “Android Keystore System,” https://developer.android.com/training/
articles/keystore.html, 2017.

[27] ——, “Android Security Bulletins,” https://source.android.com/security/
bulletin/, 2017.

[28] ——, “FingerprintManager,” https://developer.android.com/reference/
android/hardware/fingerprint/FingerprintManager.html, 2017.

[29] ——, “Material Design – Patterns – Fingerprint,” https://material.io/
guidelines/patterns/fingerprint.html, 2017.

[30] ——, “Verifying Boot,” https://source.android.com/security/verifiedboot/
verified-boot, 2017.

[31] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” in Proceedings of the
Annual Network & Distributed System Security Symposium (NDSS), 2012.

[32] J. Lang, A. Czeskis, D. Balfanz, and M. Schilder, “Security Keys: Practical
Cryptographic Second Factors for the Modern Web,” in Proceedings of the
International Conference on Financial Cryptography and Data Security
(FC), 2016.

[33] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in Proceedings of
the ACM Conference on Computer and Communications Security (CCS),
2012.

[34] M. Niemietz and J. Schwenk, “UI Redressing Attacks on Android Devices,”
Black Hat Abu Dhabi, 2012.

[35] OWASP-MSTG, “Local Authentication on Android,” https:
//github.com/OWASP/owasp-mstg/blob/master/Document/
0x05f-Testing-Local-Authentication.md, 2017.

[36] J. Palsberg and M. I. Schwartzbach, “Object-Oriented Type Inference,”
in Proceedings the ACM Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA), 1991.

[37] B. Parno, “Bootstrapping Trust in a “Trusted” Platform,” in Proceedings of
the USENIX Summit on Hot Topics in Security (HotSec), 2008.

[38] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute
This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android
Applications,” in Proceedings of the Annual Network & Distributed System
Security Symposium (NDSS), 2014.

[39] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Automatic Security
Analysis of Smartphone Applications,” in Proceedings of the ACM Confer-
ence on Data and Application Security and Privacy (CODASPY), 2013.

[40] M. Rehman Zafar and M. Ali Shah, “Fingerprint Authentication and Security
Risks in Smart Devices,” in Proceedings of the International Conference on
Automation and Computing (ICAC), 2016.

[41] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards Discovering and
Understanding Task Hijacking in Android,” in Proceedings of the USENIX
Security Symposium (Usenix SEC), 2015.

[42] A. Roy, N. Memon, and A. Ross, “MasterPrint: Exploring the Vulnerability
of Partial Fingerprint-Based Authentication Systems,” IEEE Transactions
on Information Forensics and Security, vol. 12(9), 2017.

[43] J. Scott-Railton and K. Kleemola, “London Calling – Two-Factor Authenti-
cation Phishing from Iran,” https://citizenlab.ca/2015/08/iran two factor
phishing/, 2015.

[44] J. V. Stoep, “Android: protecting the kernel,” https://events.linuxfoundation.
org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf,
2016.

[45] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP: Transforming Smartphones
into Secure One-Time Password Tokens,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2015.

[46] Telegram, “Keep Calm and Send Telegrams!” https://telegram.org/blog/
15million-reuters, 2016.

[47] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot – a Java Bytecode Optimization Framework,” in Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative Research,
1999.

[48] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission Evolution in
the Android Ecosystem,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2012.

[49] Widevine, “Widevine DRM Architecture Overview,” https://storage.
googleapis.com/wvdocs/Widevine DRM Architecture Overview.pdf,
2017.

[50] W. Yang, Y. Zhang, J. Li, H. Liu, Q. Wang, Y. Zhang, and D. Gu, “Show Me
the Money! Finding Flawed Implementations of Third-party In-app Payment
in Android Apps,” in Proceedings of the Annual Network & Distributed
System Security Symposium (NDSS), 2017.

[51] yubico, “FIDO U2F,” https://www.yubico.com/solutions/fido-u2f/, 2017.
[52] yubico, “YubiKeys,” https://www.yubico.com/products/yubikey-hardware/,

2017.
[53] Y. Zhang, Z. Chen, and T. Wei, “Fingerprints On Mobile Devices: Abusing

and Leaking,” in Black Hat USA, 2015.
[54] Y. Zhou and X. Jiang, “Detecting Passive Content Leaks and Pollution in

Android Application,” in Proceedings of the Annual Network & Distributed
System Security Symposium (NDSS), 2013.

[55] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic Forgery of Cryptograph-
ically Consistent Messages to Identify Security Vulnerabilities in Mobile
Services,” in Proceedings of the Annual Network & Distributed System
Security Symposium (NDSS), 2016.

15

https://www.federalreserve.gov/econresdata/consumers-and-mobile-financial-services-report-201603.pdf
https://www.federalreserve.gov/econresdata/consumers-and-mobile-financial-services-report-201603.pdf
https://fidoalliance.org/about/what-is-fido/
https://fidoalliance.org/about/what-is-fido/
https://arstechnica.com/information-technology/2017/05/thieves-drain-2fa
https://arstechnica.com/information-technology/2017/05/thieves-drain-2fa
https://android-developers.googleblog.com/2015/10/new-in-android-samples-authenticating.html
https://android-developers.googleblog.com/2015/10/new-in-android-samples-authenticating.html
https://github.com/googlesamples/android-key-attestation/tree/master/server
https://github.com/googlesamples/android-key-attestation/tree/master/server
https://github.com/googlesamples/android-FingerprintDialog
https://github.com/googlesamples/android-FingerprintDialog
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html
https://source.android.com/security/bulletin/
https://source.android.com/security/bulletin/
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.html
https://material.io/guidelines/patterns/fingerprint.html
https://material.io/guidelines/patterns/fingerprint.html
https://source.android.com/security/verifiedboot/verified-boot
https://source.android.com/security/verifiedboot/verified-boot
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05f-Testing-Local-Authentication.md
https://citizenlab.ca/2015/08/iran_two_factor_phishing/
https://citizenlab.ca/2015/08/iran_two_factor_phishing/
https://events.linuxfoundation.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://telegram.org/blog/15million-reuters
https://telegram.org/blog/15million-reuters
https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf
https://storage.googleapis.com/wvdocs/Widevine_DRM_Architecture_Overview.pdf
https://www.yubico.com/solutions/fido-u2f/
https://www.yubico.com/products/yubikey-hardware/

	Introduction
	Background
	Android Security Mechanisms
	TEE and TrustZone
	The Fingerprint API in Android
	Two-Factor Authentication Schemes

	Threat Model
	Levels of Compromise
	Attacker Capabilities
	Out-of-Scope Attacker Capabilities

	Fingerprint API usages
	Weak Usage
	Decryption Usage
	Sign Usage
	Sign + Key Attestation Usage

	Protocol Weaknesses and Attack Scenarios
	Weak Usage: Fake TEE response
	Decryption Usage: Replay Attack
	Sign Usage: Man-in-the-Middle Attack
	Sign + Key Attestation Usage: Key Proxying

	Discussion
	Application Contexts
	Practicality and Impact of UI Attacks

	Automatic Analysis Tool
	Challenges and Design Choices
	Pre-processing
	Call Graph Construction & Data Flow Analysis
	Feature Extraction
	App Classification

	Automatic Analysis Results
	Evaluation Methodology
	Driving the App to Ask for Fingerprint
	Verify the Existence of Expected Weaknesses

	Dataset
	Apps Classification
	Case Study: Unlocking ``Unlocked'' Keys
	Case Study: Google Play Store
	Case Study: Square Cash
	Case Study: Key Attestation

	Fingerprint API Improvements
	Trusted-UI
	Other UI Changes
	Better Attestation Mechanisms

	Limitations and Future Work
	Related Work
	Conclusions
	References

