
T
H

È
S
E

2017 ENST 0065

i
EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique »

présentée et soutenue publiquement par

Onur CATAKOGLU
le 30 Novembre 2017

Using Web Honeypots to
Study the Attackers Behavior

Directeur de thèse : Davide BALZAROTTI

Jury
William ROBERTSON, Northeastern University Rapporteur
Magnus ALMGREN, Chalmers University of Technology Rapporteur
Yves ROUDIER, University of Nice Sophia Antipolis Examinateur
Albert LEVI, Sabanci University Examinateur
Leyla BILGE, Symantec Research Labs Examinateur

TELECOM ParisTech
École de l’Institut Télécom - membre de ParisTech

Using Web Honeypots to
Study the Attackers Behavior

Thesis

Onur Catakoglu
Onur.Catakoglu@eurecom.fr

École Doctorale Informatique, Télécommunication et Électronique, Paris
ED 130

November 30, 2017

Advisor:
Prof. Dr. Davide Balzarotti
EURECOM, Sophia-Antipolis

Reviewers:
Prof. Dr. William ROBERTSON,
Northeastern University

Prof. Dr. Magnus ALMGREN,
Chalmers University of Technology

Examiners:
Prof. Dr. Yves ROUDIER,
University of Nice Sophia Antipolis

Prof. Dr. Albert LEVI,
Sabanci University

Dr. Leyla BILGE,
Symantec Research Labs

Acknowledgements
First and foremost I would like to express my gratitude to my supervisor, Davide
Balzarotti. He was always welcoming whenever I need to ask questions, discuss
any ideas and even when he was losing in our long table tennis matches. I am
very thankful for his guidance throughout my PhD and I will always keep the
mental image of him staring at me for various reasons as a motivation to move on
when things will get tough in the future. I would also like to thank my reviewers
for their constructive comments regarding this thesis.

Of course, I owe my friends and colleagues from the S3 group and Eurecom a big
thank you for making it so much fun for me. All the coffee breaks, night-outs,
tennis matches, barbecues, CTFs and games would not be enjoyable without
them: Jonas, Marius, Melek, Leyla, Aurelien, Xavier, Emanuele, Fabio, Dario,
Tom, Giovanni, Sebastian, Samuele, Iskander and Antonio.

I would also like to thank you all the Eurecom’s administration staff and especially
to Audrey Ratier for taking care of all the bureaucratic problems and making it
easier for me. Your patience was always appreciated by me and I owe you my
gratitudes.

When things were looking a bit down or when I needed some encouragement, I
listened some of the greatest artists to find my strength. They helped me before
the PhD, and they helped again during my time in Eurecom. Thus, I would
like to thank Metallica, Megadeth, Iron Maiden, Children of Bodom, Avenged
Sevenfold, Harun Kolcak and many more that gave me courage to continue.

Last but definitely not least, I cannot thank enough to my beautiful wife, Merve,
and my parents and my sister for all the support they have been given to me.
They were there when things were not looking the brightest but they found a
way to cheer me up, ease my burden to make all this possible. I am very grateful
for having such inspiring people as family in my life.

Acknowledgements

Abstract

Despite a continous effort from the security community, attacks against web ap-
plications are still one of the most common forms of compromise. The increasing
rate of vulnerable websites continues to be a concern not only to the site owners,
but also to the rest of the Internet. While the phenomenon of web attacks has
been thoroughly studied from a client-side perspective, only a few work focused
on the nature of this phenomenon. Hence, our understanding of attacks against
web applications still relies on rudimentary tools and tedious manual analysis
efforts.

In this thesis, we adopt a server-side approach to study the attackers behavior
on the Web, by analyzing the information collected by using a high-interaction
honeypot.

In the first part of the thesis, we propose for the first time an automated tech-
nique to extract and validate Indicators of Compromise, which are forensic arti-
facts used as signs that a system has been compromised, for web applications.
Our experiments show that our solution is able to automatically generate web
indicators of compromise that have been previously used by attackers for long
periods of time without being detected by other conventional approaches.

In the second part, we explore the attack landscape in the secluded parts of
the Internet, known as Dark Web, which are operated by decentralized and
anonymous-preserving protocols like Tor. We deployed a high interaction honey-
pot in the Tor network for a period of seven months to conduct a measurement
study of the type of attacks and of the attackers behavior that affect this still
relatively unknown corner of the Web.

In the last part of the thesis, we shift our focus to server-side malicious code
and we introduce the first fully-automated PHP code analysis sandbox. Our
system consists of an instrumented PHP interpreter and a replay component
that automatically extracts the required HTTP requests from the target web
server log and use them to stimulate the server-side code mimicking exactly
the action of the attacker. We validated our system using a large dataset of
over 8.000 real attack sessions, and we discuss our findings and distill some key
insights on the behavior of web attacks.

v

Résumé

Malgré les efforts de la communauté de la sécurité, les attaques contre les appli-
cations Web sont encore l’une des formes les plus courantes de compromission.
Le taux de sites Web vulnérables continue d’être une préoccupation non seule-
ment pour les propriétaires des sites, mais aussi pour les autres. Même si le
phénomène des attaques web a été étudié à fond du côté client, seuls quelques
travaux ont exploré la nature de ce phénomène. Par conséquence, notre com-
préhension des attaques contre les applications Web repose toujours sur des
outils rudimentaires et des efforts d’analyse manuelle fastidieux. Dans cette

thèse, nous adoptons une approche côté serveur pour étudier le comportement
des attaquants sur Internet en analysant les informations recueillies par un pot
de miel à forte interaction. Dans la première partie de la thèse, nous proposons

pour la première fois une technique automatisée pour extraire et valider les in-
dicateurs de compromis, qui sont des artefacts utilisés comme des signes qu’un
système a été compromis, pour des applications Web. Nos expériences montrent
que notre solution peut produire automatiquement les indicateurs de compromis,
dans des cas où les attaquants n’avaient pas été détecté par d’autres approches
conventionnelles. Dans la deuxième partie, nous explorons les menaces dans les

parties isolées d’Internet, connu comme toile profonde, basé sur des protocoles
décentralisés et anonyme comme TOR. Nous avons déployé un pot de miel a
haute interaction dans le réseau de TOR pour une période de sept mois, pour
mener une étude sur les types d’attaque et sur le comportement des attaquants,
dans le coin toujours relativement inconnu du Web. Dans la dernière partie de

la thèse, nous passons à l’analyse du mali ciel côté serveur et nous présentons le
premier environnement de test entièrement automatisé pour PHP. Notre système
consiste d’un interpréteur PHP instrumenté et d’un composant pour rejouer les
attaques, qui extrait automatiquement les requêtes HTTP depuis le journal du
serveur Web cible, et les utilise pour stimuler le code côté serveur, imitant ex-
actement l’action de l’attaquant. Nous avons validé notre système avec un grand
nombre de données de plus de 8000 attaques réelles. Nous discutons nos décou-
vertes et nous donnons quelques aperçus sur le comportement des attaquants
dans le monde du Web.

vi

Contents

Abstract v

1 Introduction 11

1.1 Problem statement . 16

1.2 Contributions . 17

1.3 Organization of this Manuscript 18

2 Related work 21

2.1 Detection of Compromised Websites and URLs 21

2.2 Analysis of Malicious Code on the Web 24

2.2.1 Client Side Approaches 24

2.2.2 Server-Side Approaches 26

2.2.3 Replaying the Web Attacks 27

2.3 Previous Studies on the Dark Web 27

I Analysis of Web Attacks Based on Live Honeypot Data 31

3 Web Indicators of Compromise 35

3.1 How Web Applications gets Compromised 37

3.2 Approach . 39

3.2.1 Data Collection . 39

3.2.2 Extraction of Candidate Indicators 40

3.2.3 Searching the Web for Indicators 41

3.2.4 Features Extraction . 42

vii

viii CONTENTS

3.2.5 Clustering . 44

3.2.6 Impact on End Users 45

3.3 Experiments . 45

3.3.1 Dataset . 45

3.3.2 Model Training . 46

3.3.3 Results . 46

3.3.4 Antivirus Telemetry . 48

3.4 Case Studies . 49

3.5 Limitations . 52

3.6 Conclusions . 53

4 Attack Landscape in Dark Web 55

4.1 Honeypot in the Dark web . 56

4.2 Honeypot Setup and Deployment 59

4.3 Data Collection and Analysis 62

4.3.1 Impact of Advertisement Strategies 63

4.3.2 Role of Tor Proxies . 63

4.3.3 Honeypot Templates . 65

4.4 Attack Examples . 67

4.4.1 Scattered attacks . 67

4.4.2 Automated Attacks through Tor 68

4.4.3 Manual attacks . 69

4.5 Conclusions . 70

II Dynamic Analysis of Server-Side Malicious Code 71

5 Automatic Analysis of Web Attacks using a PHP Sandbox 75

5.1 The Role of Dynamic Analysis 77

5.1.1 Use Cases . 78

5.2 Approach . 79

5.2.1 PHP Instrumentation 80

Ph.D. Thesis — Onur Catakoglu

CONTENTS ix

5.2.2 Attack Replay . 82

5.3 Experiments . 84

5.3.1 First Phase: Extracting the Malicious Files 84

5.3.2 Second Phase: Attack Analysis 85

5.3.3 Information Gathering 86

5.3.4 Disguised & Obfuscated Files 87

5.4 Results . 88

5.5 Case Studies . 91

5.5.1 Case I . 91

5.5.2 Case II . 92

5.6 Discussions & Limitations . 93

5.7 Conclusions . 93

6 Conclusion and Future Perspectives 95

6.1 Future Work . 96

6.1.1 Public external resources 96

6.1.2 Unexplored aspects of the Dark Web 96

6.1.3 Improvements on Server-Side Analysis of Web Attacks . . 97

6.2 Concluding thoughts . 97

A Résumé en français 99

A.0.1 Déclaration de problème 106

A.0.2 Contributions . 107

A.0.3 Organisation de ce manuscrit 108

List of Publications 111

Bibliography 113

Using Web Honeypots to Study the Attackers Behavior

Chapter 1

Introduction

The Web nowadays resembles a big shopping mall with a worldwide audience for
its goods and services. In this medium, businesses interact with their customers
via web applications, which enable the presentation and/or sale of various prod-
ucts and services. However, adopting this communication channel brings new
challenges, one of which is the security of such web applications. Although large
companies tend to take this matter seriously, small to medium businesses of-
ten lack the skills, the time, and the resources to properly secure their systems.
As a result of the fact that developers are frequently not aware of the different
threats and their possible consequences, even the most basic security precautions
are overlooked.

One common belief amongst many e-business owners is that the Internet is huge
and thus, their website won’t be noticed by miscreants. However, hackers com-
monly use automated scanners and search engine crawlers to find vulnerabilities.
While targeted attacks (such as the data breach that affected LinkedIn in 2016)
require a rigorous and time consuming process (including a meticulous recon-
naissance and a well planned strategy and execution), automation provides mass
exposure and higher odds of success by reaching many more possible targets far
quicker. Furthermore, automated tools can also be used with success by inexpe-
rienced attackers – resulting in a constant background of not very sophisticated,
but still very effective, attacks that can easily reach every vulnerable website on
the Web.

Despite the considerable effort of the security community, the percentage of
vulnerable websites did not show any sign of recession over the past years. In fact,
a stunning 76% of websites scanned by security researchers in 2016 contained
vulnerabilities [Sym17,Aka17]. Adversaries are routinely searching for vulnerable
servers on the Web in order to exploit and take advantage of these exposed
systems. Once compromised, web applications are abused for various purposes
– including deploying botnets, serving exploit kits, installing phishing kits, or
simply serving as a stepping stone for launching further attacks.

11

12 1. INTRODUCTION

Figure 1.1: Usage of dorks for finding targets

Although cyber-criminals may also rely on dedicated web servers as part of their
malicious infrastructure, compromising legitimate web servers are usually more
advantageous as they are often perceived as trustworthy by other users and do
not attract the attention of the security community. Moreover, a compromised
Web server may allow further access to a private network that would normally be
protected by a firewall. All these factors suggest that the security of web appli-
cations remains a crucial aspect of the entire security ecosystem as compromised
sites still put customers, other businesses, and even public and government sites
in danger.

Web Attack – An Overview

Before getting into the details of web attacks, it is essential to understand the
process behind of this phenomenon. Because of the Internet’s large and complex
nature, the term web attack also has a very broad meaning. However, as this
thesis focuses on the security of web applications, we narrow down our attack
model to this particular domain.

The initial phase of an attack usually consists of the identification of the possible
targets. For this purpose, attackers often start by taking advantage of popular
search engines, by relying on automated bots to search for a set of keywords
(typically called Google dorks [TACB16]) tailored to identify web sites that are
either mis-configured or that are likely affected by a known vulnerability. For
example, web sites that expose MySQL history files can be retrieved using the
Google query "?intitle:index.of?".mysql_history". Using the same tech-
nique it is also possible to find specific versions of vulnerable applications, for
instance by looking for known banners like "Powered by OsCommerce". The
typical scenario of the identification phase is depicted in Figure 1.1.

Once the attacker finds her targets, she can proceed with the exploitation phase,
again typically performed by automated scripts. In this thesis, we are particularly

Ph.D. Thesis — Onur Catakoglu

13

Figure 1.2: A general web attack model for web applications

interested in what happens after the attacker has successfully compromised the
target application – in what Canali et al. [CB13a] called the post-exploitation
phase. In this phase, presented in Figure 1.2, attackers try to achieve their final
goal, which normally involves either uploading new files on the compromised
machine or tampering with the content of existing code and HTML pages.

In particular, a very common tool which is often installed after an application
has been exploited is called a web shell. The goal of these scripts is to allow
the attackers to easily control the compromised machine and execute arbitrary
commands by using an intuitive web interface. Web shells can be used for
different purposes, such as leveraging other exploitation techniques to escalate
privileges, gathering information about the system, scanning the internal network
of the host machine, or exfiltrate documents and application data.

Another example of popular tool installed after a compromise is a phishing kit.
Phishing is a type of scam to lure victims into providing sensitive data such as
credit card details, passwords, or personal information used for identity theft.
A phishing kit is a toolkit that mimic the appearance of existing websites (e.g.,
Bank of America or Paypal), thus allowing people with little technical experience
to launch a phishing campaign. Individuals may use this toolkit to send spam
mails or to turn the hosting machine into a fraudulent website for scamming
people.

Attackers may also simply choose to deface the home page of the compromised
web server by introducing a personalize message. Motivations behind website
defacements may differ. For instance, attackers who are against a particular
movement or a government (hacktivists) may choose to leave a political message,

Using Web Honeypots to Study the Attackers Behavior

14 1. INTRODUCTION

others may simply taunt the site admins or advertise themselves for the sake of
gaining fame.

Aside from the above mentioned examples, there are countless different types of
malicious files and scripts that are uploaded on compromised web applications,
each serving a different and specific purpose such as joining a botnet, sending
large volumes of spam emails, or scanning the network for other possible vic-
tims. Throughout this dissertation, we will present many kinds of such attack
instruments and we will further discuss their impact.

Understanding the Nature of Web Attacks

The analysis of nature, motivation, and technical details of how web attacks are
conducted can provide an valuable information to the security community. Since
miscreants usually leave traces after they compromise a system, studying their
actions and the patterns they follow during and after an attack can be of great
value. Understanding how miscreants infiltrate the system can help to secure it
and fix possible vulnerabilities. Additionally, specific patterns, a unique file, or
sometimes even just a keyword could help to identify similar cases of infections.
A simple example would be an attacker who uses the same unique image to
deface the homepage of his targeted web sites. Given the common usage of
automated tools, such information may allow large-scale detection of the very
same attack.

While no system is totally immune to web attacks, site owners can take ad-
ditional precautions if they know how miscreants discover their targets. Such
precautions are especially important in the existence of 0-day exploits, i.e., when
the application suffers from previously unknown vulnerabilities for which a patch
is not yet available. For example, a 0-day vulnerability affecting a certain version
of a web Content Management System (CMS) would encourage miscreants to
automatically identify such websites. By knowing the strategies attackers use
to pinpoint their targets, it might be possible to evade attacks even though the
website is still vulnerable per se [TACB16].

Moreover, revealing the motivation of an attacker can help to quickly recover
after a compromise. If user data is leaked, clients should be notified to change
their passwords; or if miscreants placed a backdoor, the security officers should
patch it as soon as possible. Understanding how miscreants develop their attack
vector and how they deliver malicious content are crucial for such investigation.
For example, a certain behavioural pattern observed in a similar attack may help
to identify the purpose of the attack, and consequently such information can be
used to find impacted parts of the system.

To sum up, we believe that fighting against web attacks cannot be achieved only
by building defense mechanisms. Equally important is the ability to understand
the nature of the attacks and the motivation behind them.

Ph.D. Thesis — Onur Catakoglu

15

Honeypots

In the previous section, we highlighted the necessity of having a system which
allows the observation of web attacks to improve the security of web applica-
tions. In order to study the nature of the attacks at a large scale, one of the
most common approaches is to set up vulnerable-looking bait systems – which
are typically called honeypots. Honeypots can be built for almost any commu-
nication protocol, both at the network and application layer (e.g. HTTP, SSH,
Telnet, and SMTP). However, since this dissertation concentrates on web at-
tacks targeting web applications, we will only cover web-application honeypots
for the rest of thesis.

We mainly separate web honeypots into two categories: client-side honeypots
and server-side honeypots.

Client-side honeypots (also known as honey-clients) are software behaving like
traditional web browsers which interact with remote web servers. The goal of
these systems is to proactively search, find, and analyze malicious or compromised
web applications. A common way to implement such system is to instrument
an existing web browser [NWS+16]. These instrumented applications usually try
to detect signs of anomalies while visiting a web site by, for example, tracking
certain events during the execution of its JavaScript code [CKV10]. Another
common use of honey-clients is to automatically collect malware samples from
the web, by crawling malicious web sites [CGZ+11].

On the other hand, server-side honeypots aim to attract the attackers by ex-
posing seemingly vulnerable services. Server-side honeypots are divided into
two classes: low interaction honeypots and high interaction honeypots.
Low-interaction honeypots are simulated systems that do not necessarily contain
and run real services. While they are very convenient for information gathering
and monitoring incoming attacks, their ability to capture the attack details is
quite limited. For instance, they don’t provide any backend or operating system
functionality because they are not intended to be really exploited. Consequently,
the data collected by low interaction honeypots may cover the recognition and
exploitation phases but fails to accurately reflect the attackers’ behavior and true
intentions.

High-interaction honeypots are used instead to unravel the actual objectives of
the adversaries. They are genuine systems in which the attackers can actually
exploit a real web application and interact with the underlying operating system
afterwards. The most common use case of deploying such system is to perform
long-term monitoring of the attackers steps and inspect and analyze her behav-
ior. Despite their advantages over simulated systems, high-interaction honeypots
present also important challenges, as mentioned also in previous works [CB13a].
In particular, since they are real systems under control of an attacker, they can
pose a risk for other services. Virtualisation by itself cannot contain all possible

Using Web Honeypots to Study the Attackers Behavior

16 1. INTRODUCTION

scenarios, since a malicious web server does not only pose a threat to itself but
also to other parties on the Internet.

Since this dissertation focuses on attackers monitoring and on the analysis of their
behavior, high-interaction honeypots are the natural observation mechanisms
adopted for this thesis. Later, we will further discuss how we overcome the
challenges presented by running honeypots for long periods of time and how we
tailor them according to our needs.

1.1 Problem statement

This thesis is focused on the problem of collecting and analyzing the attacker
behavior by using web honeypots. More specifically, this dissertation addresses
three main problems, summarized as follows:

• Existing detection methodologies are unable to keep up with the current
rate at which websites get compromised. In fact, we will show how key
artifacts used by the attackers can remain undetected for up to four years.
Thus, new techniques are necessary for distinguishing potentially harmful
websites from the benign ones in a simple and automated way.

• Thanks to the effort of previous researchers, it is now common knowledge
how websites are exploited on the Web. However, the secluded part of the
Web (also known as Dark Web) did not receive much attention from the
security community in terms of analysis of its attack landscape. As cyber-
criminals adopted the Dark Web as a platform to conduct their illegal
activities, including hosting malware [O’N] and operating botnets [Bro10],
it is still unclear how adversaries conduct attacks against the hidden ser-
vices hosted on these private networks.

• To date, researchers have mainly focused their attention on techniques to
study client-side malicious code, and only recently have looked at server-
side code from a static analysis perspective. Meanwhile, incident response
teams need to analyze web server logs and manually de-obfuscate scripts to
try to make sense of which actions were performed as part of a successful
attack. Such analysis process is very time-consuming and error-prone –
and it could benefit from automated techniques similar to the ones we use
today to analyze malicious binary samples.

Ph.D. Thesis — Onur Catakoglu

1.2. CONTRIBUTIONS 17

1.2 Contributions

To address the problems presented in Section 1.1, the following contributions
are presented in this dissertation.

• In Chapter 3, we propose for the first time an automated technique to
extract and validate Indicators of Compromise (IOCs), which are forensic
artifacts that are used as signs that a system has been compromised by an
attack or that it has been infected with a particular malicious software, for
web applications. We achieve that by analyzing the information collected
by a high-interaction honeypot. Our experiments show that our system
is able to automatically generate web indicators of compromise that have
been used by attackers for several months (and sometimes years) in the
wild without being detected. So far, these apparently harmless scripts
were able to stay under the radar of the existing detection methodologies
– despite being hosted for a long time on public web sites.

• We try to understand if the nature and the volume of web attacks have a
parallel in the Dark Web compared to the traditional Web in Chapter 4.
In particular, by deploying a high interaction honeypot in the Tor network
for a period of seven months, we conducted a measurement study of the
type of attacks and of the attackers behavior that affect this still relatively
unknown corner of the Web. Our results show that web applications on
Dark Web can receive automated attacks from the Surface Web with the
help of Tor gateways that act as a proxy service. Moreover, we found
that attacker behavior involves more manual activity instead of taking
advantage of automated bots.

• Lastly, we introduce the first PHP code analysis sandbox in Chapter 5. Our
system consists of an instrumented PHP interpreter and a replay compo-
nent that automatically extracts the required HTTP requests from the
target web server log and use them to stimulate the server-side code mim-
icking exactly the action of the attacker. This combination allows an
unprecedented view over all steps performed during a web attack, which
are captured by our sandbox and summarized in a clear report. We vali-
dated our system using a large dataset of over 8.000 real attack sessions,
and we discuss our findings and distill some key insights on the behavior
of web attacks.

Using Web Honeypots to Study the Attackers Behavior

18 1. INTRODUCTION

1.3 Organization of this Manuscript

In this thesis, we collect and analyze the behavior of attackers and its impact
on web applications and web servers by using high-interaction server-side web
honeypots. We also conduct experiments to evaluate the nature, volume, and
outcome of web attacks. The rest of the dissertation is organized as follows:

Chapter 2 – Related work
Chapter 2 provides an outline of the state-of-the-art in this field. The text
provides information on client-side approaches, which are mostly relevant for
Chapters 3 and 5 since they cover the automatic detection of malicious web
applications and the analysis of malicious code in the wild. On the other end,
while previous work on high-interaction honeypots serves as background for all
following chapters, it is especially relevant to Chapter 5, because of the pre-
sented dynamic server-side analysis technique to study web attacks. Finally, the
related work ends with an outline of previous studies focused on measuring the
characteristics of the Dark Web, which motivates our experiments presented in
Chapter 4.

Chapter 3 – Web Indicators of Compromise
In this chapter, we introduce the use of Web Indicators of Compromise (WIOC)
and an automated technique to automatically extract them from compromised
machines. The chapter starts from the observation, derived from several years
of operation of a web-application honeypot, that innocent looking components
can be used as a leverage to pinpoint compromised pages. We then explains how
these items can be used as WIOCs and introcue possible use cases. We then
describe which features we identified to distinguish valid from invalid indicators
and present the evaluation conducted on a number of live experiments. The
work based on this chapter has been published in 25th International World Wide
Web Conference (WWW) in 2016 [CBB16].

Chapter 4 – Attacks Landscape in Dark Web
This chapter describes the design and deployment of a high interaction honeypot
in the Tor network for a period of seven months. Our goal was to understand
if the threats traditional web applications are exposed to have a parallel in the
Dark Web. In particular, the chapter discusses the main differences, in terms of
advantages and disadvantages, between deploying and maintaining a honeypot
in the traditional Web versus operating a similar infrastructure as a Tor hidden
service. We detail the different advertisement strategies and their impact on data
collection and finally discuss the results of our experiments. The work presented
in this chapter has been published in The 32nd ACM SIGAPP Symposium On

Ph.D. Thesis — Onur Catakoglu

1.3. ORGANIZATION OF THIS MANUSCRIPT 19

Applied Computing (SAC) in 2017 and won the best paper award for the System
Software and Security track [CBB17].

Chapter 5 – Automatic Analysis of Web Attacks using a PHP
Sandbox
In this chapter, we introduce a novel dynamic approach to analyze malicious
server-side web applications. We first explain the challenges of understanding
attacks against web applications and how the current static and manual analysis
techniques can be time-consuming and error-prone procedure. This serves as
motivation for resorting to dynamic analysis and designing a dedicated sandbox
for server-side web attacks analysis. The chapter ends by elaborating on the
results obtained by replayed over 8,000 attacks which helped us to demonstrate
how the attackers behavior can differ based on the target environment.

Chapter 6 – Conclusions
Finally, we conclude the thesis by summarizing previous chapters, reviewing their
main contributions, sketching possible future work in the area.

Using Web Honeypots to Study the Attackers Behavior

Chapter 2

Related work

In this chapter, we cover the state of the art of using web honeypots to better
understand web attacks. The chapter is divided in three main section. First,
we outline previous studies focusing on the detection of compromised websites
and malicious URLs. We then present papers covering three forms of malicious
code analysis: client-side approaches, server-side approaches, and mechanisms
to replay past attacks. Finally, we dwell into the darker side of the web and
introduce previous studies that tried to understand the attack landscape in the
Dark Web.

2.1 Detection of Compromised Websites and URLs

Previous work on detecting compromised websites includes a combination of
anomaly detection, content monitoring, and custom feature extraction tech-
niques. In Chapter 3, we discuss a technique to detect compromised pages by
applying indicator of web compromise. However, since there were no previous
studies on this topic, in this section we include a coverage of previous works
focusing on detecting and analyzing malicious URLs.

To the best of our knowledge, the work most closely related to the solution
presented in Chapter 3 is the study to automatically detect malicious web pages
conducted by Invernizzi et al. [IBC+12]. The authors start with a set of URLs
that are already known to be malicious and then make a guided search using a
web crawler to find other pages that share certain similarities with the initial set
of URLs. In this process, the authors use Wepawet, Google Safe Browsing, and
their custom fake AV detector to check if the guided search results are successful
in detecting malicious websites. In the work presented in Chapter 3, we gathered
instead URLs from remote components uploaded to our honeypot during real
attacks. Instead of analyzing the maliciousness of web pages, we analyze the
features of the URLs that are frequently used by the attackers. These URLs

21

22 2. RELATED WORK

may or may not be malicious, but they still indicate a compromised or malicious
page.

Most of previous work on the maliciousness of URLs includes a classification
stage implemented by using machine learning algorithms. For example, Ma
et al. [MSSV09a, MSSV11] used lexical and host-based features (IP address,
domain name, etc.) to classify malicious and benign URLs. Their aim is to
differ malicious URLs from the benign ones by training their models with the data
gathered by querying blacklists (for the malicious URLs) and Yahoo’s random
URL selector (for the benign set).

A more recent study presented by Soska et al. [SC14] tries to predict if a benign
web page will turn malicious in the future. The authors use traffic statistics, file
system structure, and the web page content as features and they use the data
gathered from a number of blacklist to build their ground truth. The authors
trained their classifier on over 400,000 web sites and they were able to achieve
66% true positive rate to predict if a website would turn malicious within one
year.

Zhao et al. [ZH13] presents two cost-sensitive learning algorithms in order to
detect malicious URLs. They evaluate theoretical performances of their proposed
algorithms on a large-scale real-word data set. Their study showed that it is
possible to efficiently detect a malicious URLs by querying an extremely small
fraction of the dataset used for classification.

Provos et al. [PMM+07] described several server-side and client-side exploita-
tion techniques which are used for the distribution of malware. The authors
instrumented Internet Explorer in a virtual machine to analyze anomalies when
a malicious binary is downloaded while visiting a defaced or malicious web site.
They then visited a large number of URLs and looked for suspicious elements
such as an iFrame pointing to a host known to be malicious. If no such element
was found, the authors further investigated the interpreted JavaScript contained
in each page.

Webcop [SASC10] aims at finding the relations between malicious URLs and
malware distribution sites. The authors used the data of a commercial Anti-
Malware clients to decide if a URL is hosting malicious code. Then they used
a web graph constructed by a commercial search engine crawler to find the
malicious URLs directly linked to malware distribution sites via hyperlinks.

Nikiforakis et al. [NIK+12] draw attention to the fact that a website can be
compromised if the remotely included libraries are changed by the owner of the
remote server. The authors investigated the trust relationship of websites with
their JavaScript library providers. In particular, they crawled popular websites
to collect millions of URLs and measure the quality of the JavaScript providers
based on various features – including hosts availability, cookies, anti-XSS and
anti-clickjacking protocols, and their SSL/TLS implementation. The authors

Ph.D. Thesis — Onur Catakoglu

2.1. DETECTION OF COMPROMISED WEBSITES AND URLS 23

then manually assigned a weight for each feature and evaluated their metrics,
showing that even the highly popular websites can get compromised through
their external library providers.

Bartoli et al. [BDM10] presents a compromised website detection service, called
Goldrake, based on anomaly detection. The authors monitored websites and
analyzed various elements including contents of the web page, frequency of items,
typical defacement signatures (e.g. common phrases, black background) without
requiring any kind of assistance from the monitored web page. Although they
managed to keep the false positive rate low, their work is hard to extent to
detect defaced web applications in the Internet, due to the fact that the proposed
solution requires to continuously monitor the selected websites.

Evil Searching [MC09] takes a different approach to the detection of compro-
mised websites by analyzing the search queries that attackers use to find the
vulnerable pages to deface. In this work, the goal of the authors is to analyze
the methods that attackers use to detect possible targets in the wild. Their aim
is to find phrases, called “evil searches”, that can be used in phishing attacks. In
comparison, in the experiments presented in Chapter 3, we instead use search
engines to find “evil scripts” that can be used in many types of attacks including
phishing.

Akiyama et al. [AYY+17] tried to analyse the malicious behavior of URL redi-
rections by conducting a long-term measurement study. For this purpose, they
implemented a honeypot-based monitoring system that ran for four years and
observed over 100K malevolent URL redirections which were collected from 776
different websites. The authors discovered that domain generation algorithms,
which are usually adopted by botnets, gained popularity for the sake of increas-
ing the entropy of URLs to evade blacklisting. By using the results of their
experiments, the authors then proposed a set of countermeasures against such
malicious redirections.

Corona et al. [CBC+17] presented an anomaly detection approach to detect
phishing pages in compromised websites. The authors simply used the HTML
source code and visual differences of potential phishing pages compared to le-
gitimate web pages as key features of their presented work. They claim that
their approach also works against evasion techniques based on manipulation of
the HTML code of the phishing page to mislead pre-deployed security measures,
such as Google’s Phishing Pages Filter. They experimented with more than 1K
phishing pages and almost 4,5K legitimate websites to evaluate their method.
The results showed that their technique, DeltaPhish, was able to correctly detect
99% of the phishing pages with only 1% misclassification rate.

A static analysis approach that analyses the changing features of the two different
versions of the same website was proposed by Borgolte et al. [BKV13]. The
authors leveraged a machine learning algorithm to outline the changes of the
website and determine whether they were harmful or not. Based on change-

Using Web Honeypots to Study the Attackers Behavior

24 2. RELATED WORK

related features, the researchers implemented a prototype called Delta-system
which was able to detect web-based infection vectors. More specifically, the
authors used a fuzzy tree difference algorithm to extract significant changes
in the DOM tree and discard the small modifications. The paper includes an
evaluation of the Delta-system over 26 million website pairs.

Finally, the same researchers, who this time focus on the detection of defaced
pages, presented a tool called Meerkat [BKV15], in which they trained a classifier
with the screenshots of the defaced web pages. After the learning phase, Meerkat
was able to automatically detect newly-defaced websites. While not strictly
related to our objective and methodology, our system can also be adapted to
detect defaced websites by identifying their possible use of certain indicators of
compromise.

2.2 Analysis of Malicious Code on the Web

Malicious code on the Web exists in many different forms and researchers have
proposed a wide range of approaches to study and measure its characteristics.
Thus, we divide previous work on malicious code analysis in three subsections,
respectively dedicated to client-side approaches, server-side solutions, and attack
replaying techniques.

2.2.1 Client Side Approaches

Most of previous research on the analysis of malicious code on the Web has
focused on the client side. In particular, many researchers have looked at how
to identify exploit kits [EV14,mWBJ+06,SLZ16], JavaScript malware [CKV10,
RLZ09,KLZS12,KSC+13] and malicious Flash advertisements [FCKV09].

Cova et. al. [CKV10] proposes to use an instrumented web browser to track
certain events during the execution of JavaScript or interpretation of HTML
code. Some of these events that were found to be strong indicators of malicious
behavior include a high number of redirections or the use of JavaScript functions
related to dynamic code evaluation and deobfuscation. The findings were then
assessed with an anomaly detection tool to identify malicious content.

Eshete et. al. [EV14] analyzed the inner workings of exploit kits and incorporated
this information into machine learning features to detect if a given URL is hosting
an exploit kit. They performed their analysis by setting up a virtual environment
for exploit kits and visiting the corresponding URLs of the kits with honeyclients.
Once the features of each exploit kit were extracted, the authors trained their
learning algorithm and later evaluated its accuracy by conducting a number of
live experiments.

Ph.D. Thesis — Onur Catakoglu

2.2. ANALYSIS OF MALICIOUS CODE ON THE WEB 25

Honeymonkey [WBJ+06] is a client-side honeypot, which consists of several
vulnerable web browsers running in virtual machines of different patch levels.
The honeypot can be used to scan web pages to detect the malicious ones. The
authors used these virtual machines with vulnerable browsers to visit various
URLs and observe the exploit-related modifications occurring to the system (such
as newly created executables, child processes, registry entries). Moreover, for
malicious URLs, a redirection analysis was performed to get all the steps involved
in the exploit. Finally, the same malicious URLs were analyzed on fully patched
virtual machines to test if the attacks were still successful. This process also
helped to find zero-day exploits. In their experiments, the authors discovered
752 URLs from 288 web sites that can successfully exploit different browser
vulnerabilities.

Stock et al. [SLZ16] proposed an approach that aims to take advantage of
reused code segments in exploit kits for signature-based detection. The authors
first clustered exploit kits according their unpacking behavior, using the k-means
clustering algorithm. Then, they located a common substring of maximum 200
tokens for each cluster. Such sub-sequences were then analyzed to create a
regular expression that can be used as a signature. To evaluate the generated
signatures, the authors run a one month-long experiment, where they found that
the accuracy of their automatically generated signatures are comparable to those
manually created by experts.

In Nozzle [RLZ09], the authors tried instead to detect heap spraying attacks
where the attackers use embedded JavaScript code to exploit browser-related
vulnerabilities. The proposed method monitors heap objects at runtime by in-
strumenting memory allocation and deallocation routines. This approach was
used to detect several published exploits, as well as synthetically generated ones.
In Rozzle [KLZS12], the authors developed a multi-execution virtual machine
to analyze multiple execution paths of a JavaScript code in a single run. This
approach can identify environment-dependent JavaScript malware much more
efficiently, compared to other traditional static and dynamic analysis techniques.

Kapravelos et. al. [KSC+13] proposes to dynamically execute JavaScript code
in a browser emulator, to detect evasive behavior and identify scripts similarity
(polymorphism). Using the data collected from Wepawet [CKV10], the authors
detected more than 4K evasive scripts and more than 101K scripts that contain
code in a packed form.

Taylor et al. [TSOM16] introduced a honeyclient to detect malicious behavior of
the visited websites by temporarily caching the HTTP traffic to reduce the cost
of their analysis on selected suspicious unseen exploitable files. By imitating the
client, they dynamically run exploit kits in a controlled virtual environment and
compared the performance of the honeyclients against content-based signature
approaches, showing that their method outperforms other solutions at the time
of the attack. They authors ran their framework on a campus network for five

Using Web Honeypots to Study the Attackers Behavior

26 2. RELATED WORK

days to conduct a live traffic analysis.

J-Force [KKK+17], a forced execution engine for JavaScript, analyses the func-
tion parameters to discover suspicious DOM injections and further reveal ma-
licious behavior of the web-based malware. Its authors evaluated J-Force’s ef-
fectiveness on 50 exploits taken from popular exploit kits and over 12K Google
Chrome extensions.

2.2.2 Server-Side Approaches

Researchers have also investigated solutions to analyze server-side malicious
code, but so far mainly from a static analysis perspective.

In this category, the majority of previous studies focused on the static analysis of
exploit kits [KM,AKM13,DMKS+14,EAM+15]. Among them, Kotov et al. [KM]
reported on the leaked source codes of 30 different exploit kits. They showed
that such tools actually don’t have a complex and sophisticated architecture to
pinpoint the client vulnerabilities but rather adopt a brute-force approach. In
[AKM13], authors again followed a similar path by analyzing ten leaked exploit
kits from the black market. They deployed each exploit kit in an isolated environ-
ment called MalwareLab and tested the reliability of such tools against changing
software configurations. The authors also reported on different strategies taken
by the adversaries when implementing such tools and explained the trade-off
between the longevity of the exploit kit and its infection rate.

Maio et al. [DMKS+14] extended Pixy [JKK06b], a data flow analysis tool for
PHP, to propose a system called PExy for the automated static analysis of the
source code of exploit kits. Using this tool, the authors performed taint and
behavioral analysis to produce signatures for exploit kits. In addition, Eshete et
al. [EAM+15] identified several vulnerabilities in exploit kits and demonstrated
the feasibility of automated exploit generation for those kits.

Server-side honeypots have also been used to study web-based attacks. Canali
et al. [CB13a] have analyzed the attack post-exploitation phase by redirecting
the traffic from 500 domains to a high-interaction honeypot containing different
vulnerable applications. Although the authors made some analysis on the attacks
collected using their honeypots, our approach presented in Chapter 5 is much
more comprehensive, as it allows the analyst to monitor each step of the attacks
thanks to our instrumented PHP interpreter – instead of simply analyzing the
uploaded files as done by Canali et al.

Starov et al. [SDA+16a] focused instead on malicious web shells and they re-
ported on how attackers can take advantage of visible/invisible features and on
the backdoors often planted in those shells. While the authors also adopt a
dynamic approach by setting up honeypots, they only focused on the analysis of

Ph.D. Thesis — Onur Catakoglu

2.2. ANALYSIS OF MALICIOUS CODE ON THE WEB 27

the web shells’ home phoning feature, which is a mechanism that notifies the
author once a web shell is installed on a compromised web site. Our dynamic
approach allows us to also precisely observe how attackers are interacting with
the uploaded shells.

Han et al. [HKB16] make use of server-side honeypots to collect different kinds
of phishing kits and sandbox them in order to monitor not just attack itself
but also the victims interaction with the phishing kits. The authors measured
the lifetime of phishing kit and analyzed the distinguishing behavioral factors of
attackers, victims, and third part researchers. The valuable findings presented
in their work emphasize once again the importance of dynamic analysis of web
malware.

2.2.3 Replaying the Web Attacks

Another line of research close to our work focused on recording and replaying
web attacks for forensic, offline analysis, and repeatability reasons.

In this category, Clickminer [NPLN14] reconstructs the user-browser interac-
tions by actively replaying the HTTP network traces via an instrumented web
browser. Researchers were able to reconstruct almost 90% of the user-browser
interactions with around 1% false positive rate through a user study that involved
21 participants.

Nelms et al. [NPAA15], on the other hand, focuses on the web paths which lead
real users to download a malware. The authors tried to automatically analyze the
sequence of web pages prior to the attack by deploying their proposed system,
called WebWitness. Then, by using the information they gathered during their
analysis, the authors identified the malware download paths and discovered the
most prominent attack trends. The same authors also proposed a defense module
to decrease the infection rate for a specific type of drive-by-download attack.

Chen et al. [CGZ+11] implemented a system to automatically collect web-
based malware by using honey clients and replaying malware infection scenarios.
The presented system mimics a real human interaction by simulating the web
browsing behavior of the real users. Using this approach, the authors identified
1̃,8K exploit-URLs hosted in 741 web sites.

Finally, Mohamed et al. [MAS16] proposed a methodology for forensic exam-
ination of Web-browser artifacts and implemented a Firefox browser-extension
to investigate malicious URLs that host malicious executables. By comparison,
our work presented in Chapter 5 aims instead at understanding the attackers’
behavior on the server side, by replaying their interaction with the vulnerable
web application or with the additional components uploaded during the attack
itself.

Using Web Honeypots to Study the Attackers Behavior

28 2. RELATED WORK

2.3 Previous Studies on the Dark Web

Attacks against web applications have already been studied by using either low-
interaction or high-interaction web honeypots as we previously covered in Sec-
tion 2.2. However, all these works targeted the Surface Web and we believe we
are the firsts to document attacks in the Dark Web by mean of the practical
deployment of a high-interaction honeypot.

A related set of studies focused on measuring the characteristics of the Dark Web,
including its size, the connection between websites, and the different services (i.e.
protocols) provided over the Tor network. OnionScan, for example [Lew], lever-
ages hyperlinks contained in web pages and other features (like correlation on
ssh fingerprints and ftp banners), to build relationships among hidden services.
This dataset consists of about 5,600 active sites that were scanned in June 2016.

In a similar work, Ciancaglini et al. [CBMR] actively crawled the Dark Web
for a period of two years and reported on the cyber-criminal services and illicit
goods available in the Dark Web– including marketplaces, laundering services for
crypto-currencies, and hosting platforms for malware.

When it comes to attacks in the Dark Web, or against the darknets used to oper-
ate the Dark Web, a consistent amount of literature has been produced. A first
category of papers propose attacks aimed at de-anonymizing hidden services,
e.g. by recovering the public IP address on which the hidden service operates.
CARONE [MKC15] makes use of heuristics to match information in the content
of the hidden service and certificates chain with candidate Internet endpoints.
Kwon et al. [KAL+15] propose instead an attack in which a combination of web-
site fingerprinting and circuit fingerprinting techniques are used to de-anonymize
hidden services. While website fingerprinting is already widely used (e.g., in the
Surface Web), authors revealed that during the circuit construction phase be-
tween clients and hidden services, darknets as Tor exhibit fingerprintable traffic
patterns that allow an adversary to efficiently and accurately identify and cor-
relate the circuits involved in the communication. Panchenko et al. [PLZ+16]
propose a more general approach that identifies the content of encrypted and
anonymized connections (e.g., Tor) by observing patterns of data flows such as
packet size and direction. Researchers from Carnegie Mellon recently received
media attention when they revealed their ability to de-anonymize users and hid-
den services in Tor [car, 201].

A different class of attacks has been analyzed in [WKM+14] and [SN]. Winter
at al. [WKM+14] document malicious exit relays in the Tor that are injecting/-
modifiyiing HTML and conducting man-in-the-middle (MitM) attacks over TLS
and SSH. The authors developed Exit Relays Scanners for credential har-
vesting and MitM attacks, and used them to identify malicious exit relays nodes.
By operating two exit relay scanners for several months, they found 65 relays
that were misconfigured and/or malicious. They also demonstrated a number of

Ph.D. Thesis — Onur Catakoglu

2.3. PREVIOUS STUDIES ON THE DARK WEB 29

countermeasures in which they implemented scanners that probe the exit relays
for different kinds of MitM attacks.

More recently, Sanatinia et al. [SN] exposed another category of misbehaving Tor
relays that are integral to the functioning of the hidden services. In their short
paper, the authors found that some of the Tor relays, more specifically Hidden
Service Directories (HSDirs) which are somehow the equivalent to DNS servers
on Surface Web, indeed scans the Tor network for well-known vulnerabilities.
However, their report on this phenomenon is very limited and covers only minimal
part of the real attack landscape of the Dark Web.

On top the Dark Web-specific attacks described so far, denial of service (DoS)
attacks against hidden services have also been reported in the wild [FB]. In fact,
with the increase on the number of business-related websites been deployed in
hidden services, well-understood attacks (like DoS) have been observed more
and more frequently in the Dark Web. What it is not clear, so far, is how much
a hidden service is exposed to threats like web-based attacks (e.g. SQLi, path
traversal, etc..), bruteforce attacks, and how these attacks are conducted in the
Dark Web– e.g., if manually or automatically. This thesis is trying to answer
this questions in Chapter 4.

In a recent study by Sanchez-Rola et al. [SRBS17], the authors explain the link
between Surface Web and Tor hidden services and analyze the web tracking
behavior of those services. Though this work focuses on the privacy analysis
of the web pages hosted in the Tor network, it is essential for revealing the
connected nature of Surface Web and Dark Web. In fact, the researcher found
out that more than 20% of the resources are fetched directly from Surface Web.
This also proves that the attack landscape of the Dark Web is worth exploring as
it may suffer from the same weaknesses present in the Surface Web and further
emphasize the importance of our work presented in Chapter 4.

Using Web Honeypots to Study the Attackers Behavior

Part I

Analysis of Web Attacks
Based on Live Honeypot

Data

31

33

In this first part we investigate how to deploy and use high-interaction web-
application honeypots to collect data about web attacks, process this information
to better understand the attackers behavior, and use the results to protect users
or detect compromised applications.

This part covers two separate contribution. In Chapter 3, the collected data from
a traditional web honeypot is used to build an automated detection mechanism
for compromised websites. Here, we address the common misconceptions about
honeypots and discuss which steps should be taken to benefit from the artifacts
uploaded by the miscreants.

In the next chapter, we shift our attention to the Dark Web. Our goal is to
explain the differences and possible similarities between Surface Web and Dark
Web in terms of their attack landscape. We will show how, despite the isolated
nature of the Dark Web, the web sites hosted as Tor hidden services may still
be exposed to large volumes of attacks coming from the Surface Web.

Using Web Honeypots to Study the Attackers Behavior

Chapter 3

Web Indicators of
Compromise

*This chapter is based on a publication which has been presented at the World Wide
Web conference (WWW) in 2016 [CBB16].

In 2013, Canali et al. [CB13b] performed a study to measure the typical behav-
ior of an attacker after a website has been compromised – showing that many
attacks result in the installation of new pages (e.g., phishing kits) or the mod-
ification of existing ones (e.g., to serve malicious code or redirect the victims
to another location). This happens so frequently that it is very hard for the
security community to react in time, detect the malicious or newly infected web
pages, and update existing blacklists (such as Google SafeBrowsing [Goo15a] or
Phishtank [Phi15]) to protect users.

In fact, existing approaches based on honeyclients [WBJ+06,IHF08], web crawlers
[CCVK11,SKV13,IBC+12], or user reports [Phi15], are not able to keep up with
the current rate of infections. Therefore, we need new techniques to automati-
cally distinguish, in a simple but effective way, “bad” pages from benign ones. To
detect the presence of malicious programs in traditional systems, the forensics
community relies on Indicators of Compromise (IOCs), i.e., simple network or
operating system artifacts whose presence is a reliable indicator of a computer
intrusion or malware infection. For example, the presence of a certain entry in
the Windows Registry or of a file with a given MD5 in a temporary directory may
be associated to a certain banker trojan. These indicators are often used as part
of malware detection and investigations [HYL13] and are often shared between
experts as part of other threat intelligence informations [Man15]. Unfortunately,
to the best of our knowledge, the use of indicators of compromise has never been
studied in the context of web applications.

35

36 3. WEB INDICATORS OF COMPROMISE

Our work starts from a simple observation, which we made after operating a
web honeypot for several years: Attackers often use external components in
their malicious or compromised pages. For example, these pages often rely
on JavaScript code to perform a wide range of actions. In our experience we
noticed that these accessory scripts are rarely installed by the attacker on the
compromised hosts, but they are instead included from public URLs hosted on
remote machines. A possible reason for this behavior is that this choice provides
more flexibility for the attacker to update these components without the need
to modify all the pages they had previously compromised. However, this may
also seem like a potential weakness, as this part of their infrastructure could be
easily detected and taken down – jeopardizing a large number of infected pages.

Quite surprisingly, while investigating some of these remote components, we
discovered that in the vast majority of the cases they were not malicious per se.
For instance, we identified three main classes of external components: popular
JavaScript libraries (e.g., jquery), scripts to control the look and feel of the
page (e.g., by adding dynamic effects to its text), or scripts that implement
reusable functionalities (e.g., to fingerprint the user browser, to disable the right
click of the mouse, to overlap the page with transparent frames, or to insert an
advertisement banner in the page). Since none of these categories is harmful to
the final user, these components can be safely hosted by the attackers on public
pages or shared hosting services, with no risk of being detected and blocked by
security scanners.

The main idea behind the work we present in this Chapter is that, while these
components are indeed innocuous, their presence can be used to precisely pin-
point compromised or malicious pages. In other words, the link to a particular
benign JavaScript can be considered as some sort of signature of the attack –
therefore acting as an indicator of compromise for web applications. We call
this new types of indicators, Web Indicators of Compromise (WIOCs).

We believe that the extraction and use of indicators of compromise has several
important advantages. In particular, while most of the existing approaches focus
on the detection of malicious pages, our solution allows to detect compromised
pages. This category is much broader and much harder to identify in a black-
box manner. In fact, compromised pages are not necessary harmful for the user
browser, but also include defacements, phishing pages, or banners to redirect
users into other web sites.

Our experiments show that our system was able to extract, in average, one new
indicator per day. These indicators were then used by Trend Micro, a popular
antivirus vendor, to cross-check their customers’ requests in their web telemetry
dataset, finding thousands of users each day visiting previously unknown com-
promised websites.

To summarize, this Chapter makes the following contributions:

Ph.D. Thesis — Onur Catakoglu

3.1. HOW WEB APPLICATIONS GETS COMPROMISED 37

• To the best of our knowledge, we are the first to propose the use of
indicators of compromise for web applications.

• We propose a novel technique to automatically extract and validate these
indicators – starting from the data collected by a web honeypot.

• We discuss several features that can be used to distinguish good indicators
of compromise from components that are also used as part of benign
websites.

• We tested our system over a period of four months. In this period, almost
100 new WIOCs were extracted and validated from our dataset. Finally,
we use these indicators in collaboration with Trend Micro to estimate the
number of users that are affected by compromised webpages that include
these components.

3.1 How Web Applications gets Compromised

In Chapter 1, we briefly explained how attackers approach and compromise a vul-
nerable web application, summarizing their actions during and after the attack is
performed. There, we described the methods followed by the attackers including
how they take advantage of search engines and how they rely on automated bots.
This process, also described also in previous studies [CB13b,JYX+11], serves as
motivation for this study.

Here, we are particularly interested in what happens after the attacker has suc-
cessfully compromised the target application – in what Canali et al. [CB13b] also
called the post-exploitation phase. In this phase, attackers try to achieve their
final goal which could be to install a webshell, to deface the home page with
a political message, to send spam, or to install a phishing page as we already
discussed previously. These goals are generally achieved by either uploading new
files on the compromised machine or by modifying the sources of the existing
HTML pages. Either way, the attacker often needs to use a number of JavaScript
libraries which can be uploaded as well on the compromised machine or just in-
cluded from a remote source. Since our primary goal is to identify indicators of
compromise for web applications based on these remote components, in the rest
of the chapter we will not focus on means of exploitation and on the techniques
commonly used to compromise the web applications.

One common misconception about the post-exploitation phase is to consider
all the components uploaded by the attacker after a successful exploitation as
malicious. Although among all these uploaded components a portion of them is
indeed responsible to perform some sort of malicious activity (such as malware

Using Web Honeypots to Study the Attackers Behavior

38 3. WEB INDICATORS OF COMPROMISE

1 ...
2 <head>
3 <meta http-equiv="Content-Language" content="

en-us">
4 <meta http-equiv="Content-Type" content="text/

html; charset=windows-1252">
5 <title>4Ri3 60 ndr0n9 was here </title>
6 <SCRIPT SRC=http ://r57.gen.tr/yazciz/ciz.js>

</SCRIPT>
7 ...

Figure 3.1: HTML example of a compromised web page

distribution, exploit kits, or phishing pages), we discovered that the majority of
them are often not related to any type of malicious behavior. On the contrary,
the post-exploitation phase usually involves the usage of a number of harmless
JavaScript components to work properly.

For example, Figure 3.1 shows a snippet of code extracted from a compromised
web application. In this example, the attacker injects a remote JavaScript code
(i.e., ciz.js) to the defaced victim web page. By retrieving this remote compo-
nent, we discovered that it only contained two lines of code, which are reported
in Figure 3.2. The script first creates a new image object and then its source
URL is set according to the value of location.href.

The goal of this component seems to be to log compromised web pages by
sending a signal back to the attackers. Interestingly, the same script is included
in a number of popular web shells which are distributed (and backdoored) by the
same hacking group, as a mechanism to promptly detect and gain access to third
party installations. Even though this code may look suspicious when manually
examined because of the use of the r00t leetspeak in the URL, automated
scanners only looks at the maliciousness of the file itself and, inevitably, this
simple piece of code is not detected as malicious by any available system or
antivirus product. As a result, this JavaScript component could be hosted on
any public page, without the risk of raising any suspicion from security tools.
Moreover, this gives the attacker the advantage of rapidly changing the URL in
all compromised pages, without the need to re-deploy the JavaScript file on all
the target machines.

As we further investigate the websites which use this JavaScript as an external
resource, we foud that other websites which include the same script were also
compromised by the same hacking group. Also in the other compromised sites
the script was included at the same place in the code as it is shown in Figure 3.1,
and all the defaced pages looked identical when visited.

Ph.D. Thesis — Onur Catakoglu

3.2. APPROACH 39

1 a = new /**/ Image();
2 a.src = ‘http://www.r57.gen.tr/r00t/yaz.php?a=’ +

escape(location.href);

Figure 3.2: Source code of ciz.js

This very simple example perfectly summarizes the idea behind our technique:
a little and harmless script included by attackers in compromised pages could
be used to precisely fingerprint the action of these attackers and therefore can
serve as an indicator of compromise for web applications. In our experiments,
as described in more details in Section 3.3, we identified many of these exam-
ples ranging from few to thousands lines of code, and from custom scripts to
popular libraries. We believe that this type of indicators of compromise can com-
plement existing detection techniques that are purely based on manual reports
or on automated scanners that – unfortunately – can only identify malicious
components.

3.2 Approach

As explained in the example presented in the previous section, our idea is to
analyze compromised and malicious web pages – looking for seemingly innocuous
external resources that can be used to identify a certain group of attackers or a
certain attack campaign.

In the rest of this section we describe each step of our automated technique.

3.2.1 Data Collection

Honeypot Virtual Machines
Linux ContainerwebX-host

webX

.

.

.

Gateway Proxy Server

VPN

.

.

.

Manager

snapshot

analysis

database

Redirect
Requests

Connect
via SSH Domain 1

Domain 2
Domain 3

.

.

.
Domain 500

webX-host

webX-host

Linux Container

Linux Container

webX

webX

Figure 3.3: Overview of the Honeypot Infrastructure

The first component of our system is a high-interaction honeypot that we use to
observe the behavior of the attackers and collect the pages they modify or they

Using Web Honeypots to Study the Attackers Behavior

40 3. WEB INDICATORS OF COMPROMISE

upload into the vulnerable system. The role of this component is only to collect
a large number of pages compromised by attackers. Other techniques could be
used to obtain a similar dataset, for instance by crawling the web or by using
intelligence feeds from security companies.

Our honeypot infrastructure, summarized in Figure 3.3, is implemented as pre-
viously described by Canali et al. [CB13b]. The deployment consists of proxy
services (associated to 500 different domain names), which redirect the traf-
fic through a VPN gateway to seven virtual machines running in our premises.
Each VM is responsible to run a different vulnerable web applications isolated in
a Linux container. As attackers exploits these applications, they gain full con-
trol of the corresponding container – where they are free to modify existing web
pages and install new ones.

In order to discover what has been modified after an attack is performed, each
VM automatically collects and compares the original state of the container with
the exploited state. When a difference is detected between two states, all the
files that are modified or uploaded by the attacker are extracted by our system.
Moreover, the vulnerable applications are reverted back to their original “clean”
state at the end of each day. All the collected data is stored in a database
hosted by the manager machine, which is also responsible to run the subsequent
analysis.

We configured each virtual machine to prevent attackers from using the honeypot
as stepping stone to run attacks and propagate over the network. For this end,
we run all services as non privileged user and keep each of our honeypots up
to date with software and security patches. Additionally, we drop all outgoing
connection in order to prevent attackers to use our system to perform attacks or
send spam messages. We also mitigate the problem of hosting malicious content
by reverting virtual machine back to its clean state on a regular basis.

3.2.2 Extraction of Candidate Indicators

The second component of our system is in charge of pre-processing the collected
data to automatically extracts the URLs of the components remotely included
in the attackers’ files, and to store them along with some additional information
in our database. This requires our system to analyze each HTML file and collect
the addresses of all the external resources.

In addition to the URL, we store the base date, which is the date when the
URL was first seen in our honeypot, and the last date in which we observed it.
Moreover, our system periodically probes on a daily basis each URL to verify if
it returns a valid response. If it does not encounter any error, it updates the last
good response date in the database. Finally, we also store the information of
how many times a URL is included in the uploaded components from the base
date to the last date.

Ph.D. Thesis — Onur Catakoglu

3.2. APPROACH 41

While our technique can be applied to any resource type (e.g., JPEG images),
in this work we focus in particular on JavaScript files. In particular, since we
extract the JavaScript URLs from the uploaded files after an actual attack is
performed, one would probably expect that the vast majority of these scripts
would contain malicious code. However, a manual inspection reveals that it is
quite common for an attacker to include simple scripts that implement simple
visual effects or common JavaScript libraries in their code. Unfortunately, this
makes the identification of indicators of compromise much more complex. In
fact, considering the fact that many of the scripts are not malicious in nature
but they might still be used for malicious intents, it is impossible to tell whether
a certain URL is in fact a good indicator of compromise by just looking at the
content of the JavaScript code.

For example, simple scripts designed to prevent the right click of the mouse,
which are not malicious per se, are widely used by attackers to prevent users
from inspecting the source code of an infected page. However, to be certain that
one of these scripts can be used to indicate that an attack has been successfully
performed against the website which includes it, we need to extend our analysis
to inspect not just the script content per se, but also the context in which it is
used and the other pages on the Web that import it.

3.2.3 Searching the Web for Indicators

As we shift our focus more on the web pages that include each candidate indi-
cator, we need a way to search the World Wide Web for a particular snippet of
source code. Unfortunately, common search engines do not provide such func-
tionality. For example, Google provides a search operator, intext:, that lets
users search for a term contained in the text of the document. However, this only
includes the content of a page that is displayed to the user, and not its HTML
tags. As a result, it is not possible to use popular search engines to search for
JavaScript entries or for other file included in a HTML document. Therefore,
we needed a more sophisticated tool that indexes the source code of each visited
page. For this reason, our prototype applications uses Meanpath [Mea15], a
search engine that also captures and index HTML and JavaScript source codes.
While Meanpath does not have the same coverage as other classical search en-
gines such as Google or Bing, its archive of over 200 Million web sites can help us
to identify the web pages that actually include external scripts. In our context,
these scripts are the ones pointed by our candidate indicator URLs.

Using Web Honeypots to Study the Attackers Behavior

42 3. WEB INDICATORS OF COMPROMISE

3.2.4 Features Extraction

For each candidate indicators, we extract five different groups of features:

• Page Similarity
The vast majority of the attacks are largely automated, and therefore
attackers tend to re-use the same template for each website they compro-
mise. We capture this characteristic by looking at the similarities of the
web pages that include a candidate indicator URL as an external resource.
For this purpose, our system automatically queries Meanpath to find web-
sites that include the candidate URLs and it then downloads the HTML
source code of the first 100 results. We use a fuzzy hashing algorithm
(ssdeep [Kor06]) to compute the similarity of the content of each website
and then group the similarity of each unique pairwise comparison in one
of five categories: low (similarity below 0.25), medium-low (0.25 to 0.5
similarity), medium (0.5 to 0.75 similarity), high (0.75 to 0.97 similarity)
and perfect match (higher than 0.97 similarity). For each class we count
the number of web pages that falls in the corresponding range. So if the
high similarity count of a candidate indicator is high, it means that our
tool came across almost the same content over and over again in the top
100 websites that include that indicator. Likewise, if the lowest similarity
count is high, it means that all the websites that include the candidate
URL have almost nothing in common.

• Maliciousness
Although the majority of the candidate indicators are not malicious, they
are often included as an external resource inside malicious pages. Hence,
we also compute the maliciousness of the top 100 web pages that include
a certain candidate URL, as part of the features we use to distinguish a
normal script from a indicator of compromise. To this end, we automat-
ically scan each website using the VirusTotal API [Goo15b] and Google
SafeBrowsing [Goo15a]. We then categorize websites into three categories
according to their maliciousness level: maybe malicious if less than five AV
detected as so, likely malicious if five to ten AV return a positive match,
and malicious if it is identified as so by SafeBrowsing or when the positive
matches are more than 10 out of the 60 available AVs. Finally, we use
the total number of websites in each category as features for clustering
candidate indicators.

• Anomalous Origin
We also observed that attackers sometimes use popular JavaScript libraries
in their pages. However, instead of including them from their original
domain, they host their own copy on other servers under their control.

Ph.D. Thesis — Onur Catakoglu

3.2. APPROACH 43

For instance, an attacker may include the very popular JQuery library
(e.g., jquery-1.11.3.min.js) not from jquery.com but from a per-
sonal server located in Russia. This could be a suspicious behavior, and
in fact we encountered many examples in which web pages that include
popular JavaScript libraries from external domains were compromised. In
particular, we observed two different phenomena. First, some attackers use
popular library names to hide code that has nothing to do with the library
itself. For instance, we found a jquery.js file that was used to disguise
a modified version of the ciz.js script shown in Figure 3.2. In a different
scenario, attackers use instead a copy of the original script, often obfus-
cating its content (possibly to hide small modifications or customizations
of the code). While this feature alone is not sufficient to generate WIOCs,
our experiment demonstrates a high correlation between these cases and
compromised websites.

• Component Popularity
As the popularity of the external component increases, it is less likely that
it is associated only to malicious activities, and therefore that it is a good
indicator of compromise. For instance, some scripts associated to the
Facebook Software Development Kit (e.g., connect.facebook.net/en_
US/all.js) can also be found in the remote components uploaded by
the attackers on our honeypot. However, since the same script is used by
millions of other websites, it is unlikely that it is used only for malicious
intents. Even if this was the case, it would have probably already attracted
the attention of the security community and therefore other protection
mechanisms and blacklists would be sufficient to protect the end users.
Therefore, in our system we use the total number of search results from
Meanpath as a feature to filter out very popular URLs.

• Security Forums
In addition of using Meanpath to retrieve the pages that include a certain
resource, we also query Google to collect how many times the candidate
indicator is mentioned on the Web. From these results we extract two
separate features: the total number of search results, and how many of
the top 10 results mention the candidate indicator together with certain
security related keywords such as “hacked”, “malware”, “compromised”, and
“antivirus”. This is used to capture online forum discussions or threat web
pages maintained by antivirus companies – in which people discuss the
role of certain JavaScript files or ask for more information after a piece of
JavaScript has been detected in their websites.

Using Web Honeypots to Study the Attackers Behavior

jquery.com
connect.facebook.net/en_US/all.js
connect.facebook.net/en_US/all.js

44 3. WEB INDICATORS OF COMPROMISE

3.2.5 Clustering

After we automatically extracted all the features for each candidate external URL
component, we applied an unsupervised learning algorithm to separate different
classes of components. The reason for not using a supervised classifier is that it
would require a considerable effort to build a ground truth. In fact, verifying if a
certain URL is a good WIOC can take a large amount of time also for a skilled
manual analyst. On the contrary, we believe that the features of good and bad
indicators would differ enough to be clearly separated by a clustering algorithm.

In particular, we are interested in differentiating three main cluster categories:

• Good Indicators of Compromise
This category includes the components that are, to the best of our knowl-
edge, used only by attackers when they compromise a web page or install
a malicious one. Although in our experiments the page similarity was the
most distinctive feature to detect good indicators, all features contributed
to the identification of this category.

• Invalid Indicators of Compomise
This category covers the opposite case, in which a certain component is
used as part of attacks but also as part of benign pages. As expected, the
most distinctive feature in this category is the popularity of the candidate
URLs.

• Undecided
This cluster category describes those components for which the available
data was not sufficient to take a final decision. Therefore, the URLs which
fall into this category cannot be labeled as either good or bad indicators,
even after a manual inspection. In fact, some components are so rare that
both Google and Meanpath return no results (even though the remote
JavaScript is online and can be retrieved by our system). In other cases,
only few of matches are found in the search engines. Even if they were all
examples of compromised pages, it would still be too risky to classify the
indicator with such a limited amount of information.

We conducted a number of experiments with different thresholds and finally
obtained the best results by using the K-means algorithm with k equal to eight.
Other values of k may provide equivalent results, as our goal in this phase is only
to show that it is possible to clearly separate the different behaviors in distinct
groups. With this setup, the clustering algorithm was able to clearly separate
each behavior and group candidate indicators in clusters that only contained a
certain type (valid, invalid, or undecided).

To verify the accuracy of our approach, we manually verified a number of random
items picked from each cluster. Out of the eight clusters identified by our

Ph.D. Thesis — Onur Catakoglu

3.3. EXPERIMENTS 45

algorithm, one contained only bad indicators, five only good indicators (three
mainly defacements and two mainly malicious pages), and two were associated
to the undecided group. In the Experiment Section we report on the accuracy of
our clustering approach when applied to categorize potential indicators extracted
by our live honeypot.

3.2.6 Impact on End Users

To measure the impact of our technique, we collaborated with Trend Micro, a
popular antivirus vendor, to estimate how many real users have interacted with
our WIOCs. Using a cloud-based infrastructure, the vendor collects over 16
terabytes of data per day from 120 million client installations worldwide. We
based our analysis on a subset of this data, based on a telemetry feed that
collects information on the URLs that are accessed by users over HTTP(S) –
using their browser or any other client.

Whenever one of the AV client visits a page that includes our web indicators of
compromise, her browser sends an HTTP request to fetch the missing component
and we can detect and log this action.

In an operational environment, we envision that our approach could be deployed
in three ways. First, to generate a blacklist that a company can use to prevent
users from visiting compromised web pages. Second, by combining the Referer
HTTP header with the telemetry information, a security company can use our
indicators of compromise to automatically discover, in real time, new URLs of
infected pages. While we were not able to test this configuration in our ex-
periments, we believe that this scenario would provide even greater advantages
compared with other existing mechanisms to detect malicious web pages. Fi-
nally, our indicators could be used as seeds to quickly search for malicious or
compromised pages on the web. It would be enough to query for the pages that
include these components to build a list of candidate targets, which can then be
visited with more sophisticated scanners or honeyclients solutions.

3.3 Experiments

In this section, we explain the tests we conducted to evaluate our approach and
the results of our experiments. We also discuss the impact of our solution by
correlating our data with the telemetry information of Trend Micro.

3.3.1 Dataset

Over a period of four years, our honeypots collected over 133K unique URLs of
remote components – either uploaded by the attackers as part of their pages or

Using Web Honeypots to Study the Attackers Behavior

46 3. WEB INDICATORS OF COMPROMISE

as modification of the honeypot pages themselves. Note that in this study we
were not interested in distinguishing between attack types, nor in measuring the
frequency of attacks, or time period between successive threats. The reader may
refer to previous studies [CB13b] for a detailed analysis of these characteristics.

Out of all the remote components, our analysis focused on 2765 unique JavaScript
files. In average, each of them was re-used several times (an average of seven
and a maximum of 202) as part of different, likely automated, attacks. However,
more than half of the JavaScript URLs were observed only once – as confirmation
that our honeypot also captured unique events probably performed manually by
the attackers.

To test our system, we trained our feature extraction and validation routines
on the data collected between January and April 2015. While older data was
available in our database (and it was used to analyze long-lasting campaigns),
some of the features used by our technique need to be computed in real-time.
Therefore, we were forced to operate only on the attacks performed after we
started our study of indicators of compromise. We then used the result of the
clustering to classify the new URLs observed by our honeypot over a period of
four months starting in mid-April. The results are presented in the following
sections.

3.3.2 Model Training

In order to evaluate our work, we first used our clustering approach to divide
the URLs in the training set in different categories. The dataset included 373
candidate indicators. The clustering was performed using Weka [HFH+09] – a
common open source tool for machine learning and data mining tasks. After the
clustering operation was completed, we manually inspected the content of each
cluster to assign it with the correct label (i.e., good indicator, invalid indicator
or undecided), as described in Section 3.2.5.

This phase allowed us to tag five clusters as valid web indicators of compromise,
for a total of 12% of the total number of candidate indicators. However, the
goal of the clustering was not to detect indicators, but instead to separate the
features space and provide reference values for the next phase.

3.3.3 Results

Our live experiment was conducted over a period of four months. During this
time, the honeypot continued to collect new URLs of external components and to
pass them to our analysis framework. The analysis system collected the external
information and then computed the individual features. Finally, it computed
the distance between the features of each URL and the different clusters built

Ph.D. Thesis — Onur Catakoglu

3.3. EXPERIMENTS 47

during the training phase and it assigned the URL to the category of the closest
cluster. So, if a new candidate indicator was close to a cluster marked as “Invalid
Indicators”, the URL would be considered invalid as well and discarded. If,
instead, the closest cluster was flagged as “Good Indicators”, then the candidate
URL was considered valid. Table 3.1 shows the results of our classification.

As we already mentioned, the page similarity was the most distinctive feature,
followed by the presence in security forums and by the number of hits in Virus-
Total. Interestingly, most of the websites that include an indicator URL were
not detected as malicious. However, even a single page flagged by VT in the set
of hundred results can be a very distinctive factor once combined with the other
features. On the other end of the spectrum, the component popularity feature
was the one with the highest negative correlation.

With a considerable manual effort, we investigated each single case to understand
if our system was correct with its classification and to look for possible false
positives. As we better discuss in the next section along with a number of
examples and case studies, we only found two false positive out of 303 analyzed
URLs.

The first false positive is a very popular library provided by Google and used as
external resource by many websites (including some defaced and some malicious
ones). Unfortunately, some of these websites were duplicated in different domains
(therefore with exactly the same content) and this caused an increase in the
similarity rate which, inevitably, results in a false positive. The other false positive
is a JavaScript file used for video and animated online ads (AdInterax). Although
there were no results on Meanpath for this URL, it was often discussed on security
forums by users who were afraid it was a malicious component.

Except for these two isolated cases, we were able to confirm that the web in-
dicators of compromise extracted by our tool were indeed constantly associated
with malicious activities and did not appear in benign pages.

Almost 20% of those indicators were URLs of JavaScript component that we
never observed before in our honeypot. Interestingly, the remaining 80% were
instead components that were observed several times by our honeypot during the
previous years. In average, these indicators of compromise were first observed
20 months before our experiment, with a maximum of 44 and a minimum of 5
months. Figure 3.4 shows the difference between the first seen date and the last
seen date for each valid indicators of compromise identified by our tool. The
graph shows that the average lifetime of these JavaScript components is very
high. This is likely a consequence of the fact that the majority of these scripts
are not malicious per se, and therefore the identification of these components is
very difficult by using existing techniques. As a result, some stay unnoticed for
months or even years. Figure 3.5 shows instead the total number of times each
indicators was used in attacks against our honeypot.

Using Web Honeypots to Study the Attackers Behavior

48 3. WEB INDICATORS OF COMPROMISE

Figure 3.4: Differences in days between the first seen date and the last seen date of
the Valid Indicators of Compromise

Category Number of Items
Invalid Indicator 22
Valid Indicator of Compromise 96
Not-enough-data 185

Table 3.1: Clustering results for the detection set

3.3.4 Antivirus Telemetry

To assess the impact of our indicators of web compromise in a real deployment,
we asked Trend Micro to cross-check our results. For this purpose, we sent them
the set of our indicators and asked them to match the URLs against their web
telemetry dataset collected in the same time period.

Overall, over 90% of our web indicators were previously unknown to the vendor
and were considered benign by their internal intelligence database. Moreover,
the vast majority of pages that included those components were not detected as
infected by any AV tool used by VirusTotal. In total, only 5.3% of the webpages
including an indicator were detected by at least for one antivirus products. Once
more, this confirms our initial hypothesis that existing automated scanners only
flag a page when there is an clear evidence of malicious activity and fail to detect
more subtle signs of a possible compromise.

Interestingly, some of our indicators were hosted on domains for which Trend
Micro observed only hits toward the URL of that particular Javascript and nothing

Ph.D. Thesis — Onur Catakoglu

3.4. CASE STUDIES 49

Figure 3.5: Total number of uploads of WIOCs

else in their telemetry dataset, as if that component was the only item hosted
on the same domain.

In average, each indicators was requested by 47 different users per day. However,
the distribution was quite unbalanced, with one case that was never observed in
the wild and one case that had more than 800 visits per day.

However, we believe that an automated system that could prevent each day
thousands of users from visiting malicious or compromised websites – not caught
by any other detection systems and by the blacklists already in use at the antivirus
vendor – is a promising result that shows the value of our idea and the need for
more research in the area of web indicators of compromise.

3.4 Case Studies

The 96 indicators extracted over four months by our system belong to different
categories. For instance, 26% of the JavaScript components were used to im-
plement simple visual effects (such as moving or teletype text, or a snow effect
over the page) commonly used in defacement campaigns. Other were used as
part of phishing pages, or to redirect the visitors towards other websites.

In this section we discuss in more details some of these cases, to try to show dif-
ferent scenarios and different types of malicious activity detected by our system.

Using Web Honeypots to Study the Attackers Behavior

50 3. WEB INDICATORS OF COMPROMISE

Affiliate Programs

Attackers often try to monetize the traffic towards web sites they compromise,
for example by joining affiliate programs or including Adwares banners. In our
evaluation, we identified several cases of JavaScript dedicated to this purpose.

For example, one of the indicators found by our system1 is part of a large affiliate
network called VisAdd [Vis]. The script acts as a traffic redirection system – i.e.,
a sort of proxy that brings the users of the exploited web page to the affiliate web
site. In this way, the miscreant get rewarded for each visitor of the site she was
able to compromise. Interestingly, VisAdd also makes use of a malicious software
called A.Visadd.com2 to bring additional visitots into its network. By correlating
this indicators with Trend Micro’s web telemetry dataset, we confirmed that an
average of 620 users per day were affected by sites including this JavaScript. In
another example, a malicious browser plugin – in form of an Internet Explorer
Browser Helper Objects (BHOs) was loaded by a JavaScript file at run-time in
order to hijacking the browser’s user’s session. We observed the same Javascript
embedded in a multitude of defaced web sites.

In both cases, it is interesting to observe that cyber criminals used a combination
of client-side approaches – like malware and BHOs – and server-side compromised
websites to redirect legitimate traffic to affiliate programs. We recorded an
average of 594 visits per day to this indicator.

Since these JavaScript files were quite popular in the antivirus dataset, it would
be possible to use them to track the activity and evolution of this large campaign,
whose list of compromised websites is still increasing at the time this work was
submitted.

Web Shells

A second class of indicators that we automatically identified as malicious are
related to web shells, which are often deployed by the attackers and hidden in
compromised web sites. Their goal is to allow the attackers to easily control
the compromised machine and execute arbitrary commands by using an intuitive
web interface. We found several cases in which, despite the attacker protected
the access to the web shell via password, our system was able to automatically
flag these cases because they embedded a malicious indicator.

As already described in the example of Section 3.2, we also discovered a small
JavaScript responsible to send a signal back to the attackers every time someone
visited one of the installed web shells. Some of these (e.g. http://r57shell.
net/404/ittir.js) automatically leak the information of the visit to the at-
tacker’s dropzone, e.g. by embedding the request in the form of a image retrieval

1http://4x3zy4ql-l8bu4n1j.netdna-ssl.com/res/helper.min.js
2http://malwaretips.com/blogs/a-visadd-com-virus-removal/

Ph.D. Thesis — Onur Catakoglu

http://r57shell.net/404/ittir.js
http://r57shell.net/404/ittir.js
http://4x3zy4ql-l8bu4n1j.netdna-ssl.com/res/helper.min.js
http://malwaretips.com/blogs/a-visadd-com-virus-removal/

3.4. CASE STUDIES 51

– in a technique similar to a CSRF. The inclusion of this URL on compromised
websites is a clear indicator of an organized network in which the attackers mon-
itor the websites they infected as well as the ones infected by other groups that
reuse the same web shells.

Code Repositories

In our dataset, we found a considerable amount of indicators of compromise
hosted in public code repositories, such as Google Code. Even though it is not
unexpected for attackers to use such repositories, it was surprising to observe
how long these indicators can survive before they get noticed and taken down
by the maintainer or the security community.

For example, we found two indicators hosted on Google Drive and eight on Google
Code. Interestingly, one of them was online for at least 729 consecutive days
before it was finally suspended by Google and just in a single month MeanPath
reported dozens of defaced websites and drive-by pages using this script.

During the manual verification of this case, we realized that most of the web
pages that include WIOCs look almost identical. Furthermore, even a quick
search on Google returned many forums in which people complained about how
their website got hacked as well as scan results from popular sandboxes. This case
confirms that our features provides an accurate characterization of indicators.

Mailers

Another use of compromised websites is to turn them into a spam mailing server
to send large amounts of fraudulent emails. Instead of switching between differ-
ent providers or relying on botnet-infected machines, attackers often search for
non-blacklisted vulnerable websites to use as part of their infrastructure.

In our experiments, our system reported two indicators of compromise corre-
sponding to two copies of the JQuery library, hosted respectively on Google
and Tumblr. The majority of websites using these libraries (e.g., http://www.
senzadistanza.it/ and http://www.hprgroup.biz/) contained pages in-
jected with a popular mailer called Pro Mailer v2, which is often shared among
hackers in underground forums. Because of the popular domains used by these
indicators, and because of the fact that they were unmodified copy of popular li-
braries, these files very likely misclassified as benign by both automated scanners
and manual inspection. Therefore, we believe this particular example is very im-
portant, since it emphasize the fact that even the most harmless and legitimate
URLs can be valid indicators of compromise.

Using Web Honeypots to Study the Attackers Behavior

http://www.senzadistanza.it/
http://www.senzadistanza.it/
http://www.hprgroup.biz/

52 3. WEB INDICATORS OF COMPROMISE

Phishing

Phishing pages are commonly found in our dataset, as attackers try to install
copy of popular websites in our honeypot after they compromise one of our web
applications. As a last example, we want to discuss two borderline cases we
found in our results.

In these cases, the attackers installed phishing pages for the Webmail portal
of two popular websites, AOL and Yahoo. Instead of simply uploading the en-
tire content of the site on our honeypot, they re-used the original AOL and
Yahoo JavaScript files hosted on their respective provider’s domain. Since
the components were clearly also used by benign websites, these URLs were
misconceived as benign and classified as false positive during manual verifi-
cation. However, a quick search for both examples returned many websites
including these scripts that were clearly not related to AOL or Yahoo (e.g.,
http://www.ucylojistik.com/ for AOL and http://fernandanunes.com/
for Yahoo), and that turned out to be all compromised to host phishing pages.

We decided to discuss this case as it demonstrates how a benign URL can be
used to leverage phishing pages. Even though both URLs also serve for benign
purposes, they are also excellent indicators of compromise when they are observed
on web sites registered outside of their original domain or autonomous system. In
other words, any time users requested these JavaScript files while visiting a page
that was not on the AOL/Yahoo domain, then they were victims of phishing.
However, since these components are also used by their legitimate service, we
did not count their hits in the AV dataset in our report.

3.5 Limitations

Since our method relies on the fact that attackers remotely include resources in
their pages, it is possible to evade our technique by using a different deployment
strategy. For example, attackers could include their code inline rather than
importing the indicator’s URL from an external source, or they could generate
a different URL for each target. Even though these techniques would effectively
undermine our ability to extract valid indicators of compromise, these changes
would also result in a loss of flexibility (e.g., the attacker would not be able
to change at once the code used in hundreds of compromised pages) or in an
increased complexity in the deployment of the code.

In our current implementation, our system relies on a clustering phase to separate
the good from the bad indicators. While we did not need to repeat this training
during our experiments, it may be helpful to update the clustering at least once a
year – to account for possible changes in the features distribution. For example,
it is possible that security forums become more popular in the future, or that
the results returned by Meanpath increase (or decrease) over time.

Ph.D. Thesis — Onur Catakoglu

http://www.ucylojistik.com/
http://fernandanunes.com/

3.6. CONCLUSIONS 53

Finally, while this work is the first to introduce the concept of web indicators
of compromise, we expect more researchers to focus on this interesting problem
and to propose more sophisticated and more robust solutions to extract WIOCs
in the future.

3.6 Conclusions

In this chapter we presented a novel technique to use the information collected by
a high interaction honeypot of vulnerable web applications. Our approach starts
from the observation that attackers often include remote JavaScript components
in the pages they modify or they upload after a successful attack. These com-
ponents are rarely malicious per se, but their URLs can still be used to precisely
pinpoint the activity of a certain group and therefore the fact that a web page has
been compromised. For this reason, in this chapter we proposed a technique to
collect these components, validate them using a number of features, and finally
use them as Web Indicators of Compromise (WIOCs).

We implemented our system and run it on our premises for several months.
After an unsupervised training phase, we tested for four months its ability to
automatically extract valid WIOCs. The results showed that these indicators
cover several types of malicious activities, from phishing sites to defacements,
from web shells to affiliate programs. Moreover, most of these components have
been used for a long time by the attackers, who hosted them on public websites
– since their apparently harmless content was not detected as suspicious by any
of the existing tools and techniques.

We believe that more research is needed in this area, to help the security com-
munity to reliably extract and share this new type of indicators of compromise.

Using Web Honeypots to Study the Attackers Behavior

Chapter 4

Attack Landscape in Dark
Web

*This chapter is based on a paper presented at the 32nd Annual ACM Symposium on
Applied Computing (SAC) in 2017 [CBB17], where it won the best paper award for the
security track.

Based on the accessibility of its pages, the Web can be divided in three parts: the
Surface Web – which covers everything that can be located through a search
engine; the Deep Web – which contains the pages that are not reached by
search engine crawlers (for example because they require a registration); and the
more recent Dark Web – which is dedicated to websites that are operated over
a different infrastructure to guarantee their anonymity, and that often require
specific software to be accessed.

The most famous “neighborhood” of the Dark Web is operated over the Tor
network, whose protocols guarantee anonymity and privacy of both peers in a
communication, making users and operators of (hidden) services in the Dark
Web more resilient to identification and monitoring.

As such, over the last years, miscreants and dealers in general have started
to adopt the Dark Web as a valid platform to conduct their activities, includ-
ing trading of illegal goods in marketplaces, money laundering, and assassina-
tion [CBMR]. Moreover, Tor has been reported to be leveraged in hosting mal-
ware [O’N], and operating resilient botnets [Bro10]. While, to a certain extent,
these studies have shown how the Dark Web is used to conduct such activities,
it is still unclear if and how miscreants are explicitly conducting attacks against
hidden services, like a web application running within the Tor network.

In the previous Chapter we described how we can use a web honeypots deployed
on the Surface Web to automatically discover other compromised websites. The
study was based on a number of observations on the behavior of web attackers,

55

56 4. ATTACK LANDSCAPE IN DARK WEB

Area Impact Better in

Attack Identification Results Surface Web
Service Advertisement Operation Surface Web
Stealthiness Deployment Dark Web
Operational Costs Deployment Dark Web
Collected Data Operation Surface Web

Table 4.1: Advantages and Disadvantages of Operating a High-Interaction honeypot
in the Dark Web

which however may be specific to the common Web. In fact, while web attacks,
or attacks against exposed services on the Internet, are common knowledge and
have been largely studied by the research community [CB13a,CBB16,SDA+16b],
no previous work has been conducted to investigate the volume and nature of
attacks in the Dark Web.

To this extend, in this Chapter we discuss the deployment of a high-interaction
honeypot within the Dark Web to collect evidence of attacks against its services.
In particular, we focus our study on web applications to try to identify how at-
tackers exploit them (without a search engine for localization) and what their
purpose is after a service has been compromised. Our preliminary measurement
casts some light on the attackers’ behavior and shows some interesting phe-
nomena, including the fact that the vast majority of incoming attacks are unin-
tentional (in the sense that they were not targeted against Dark Web services)
scattered attacks performed by automated scripts that reach the application
from the Surface Web through Tor2web proxies.

4.1 Honeypot in the Dark web

In this section, we discuss the main differences, in terms of advantages and
disadvantages, between deploying and maintaining a honeypot in the Surface
Web versus operating a similar infrastructure in the Tor network.

In fact, the anonymity provided by Tor introduces a number of important dif-
ferences. Some are positives, and make the infrastructure easier to maintain
for researchers. Some are instead negative, and introduce new challenges in the
honeypot setup and in the analysis of the collected data.

Table 4.1 summarizes the five main differences between the two environments,
mentioning their impact (on the deployment, operation, or on the results col-
lected by the honeypot) and which environment (Dark or Surface Web) provides
better advantages in each category.

Ph.D. Thesis — Onur Catakoglu

4.1. HONEYPOT IN THE DARK WEB 57

Attack identification

The most significant difference between a deployment on the surface Web and
on the Tor network is the anonymity of the incoming requests. In a tradi-
tional honeypot, individual requests are typically grouped together in attack
sessions [CB13a] to provide an enriched view on the number and nature of each
attack. A single session can span several minutes and include hundreds of dif-
ferent requests (e.g., to probe the application, exploit a vulnerability, and install
post-exploitation scripts).

Since many malicious tools do not honor server-side cookies, this clustering phase
is often performed by combining two pieces of information: the timestamp of
each request, and its source IP address. Thus, requests coming in the same
empirically-defined time window and from the same host are normally grouped
in a single session.

Unfortunately, the source of each connection is hidden in the Tor network, and
therefore the identification of individual attacks becomes much harder in the
Dark Web. Moreover, if the attacker uses the Tor browser, also the HTTP
headers would be identical between different attackers.

Stealthiness

If on the one hand the anonymity provided by the Tor network complicates the
analysis of the attacks, on the other it also simplifies the setup of the honeypot
infrastructure. In fact, a core aspect of any honeypot is its ability to remain
hidden as the quality of the collected data decreases if attackers can easily
identify that the target machine is likely a trap.

For instance, the nature of the Surface Web reveals information like the Whois
and SOA records associated with a domain name, or the geo-location of the IP
address the honeypot resolves to. To mitigate this risk, Canali et al. [CB13a]
employed a distributed architecture including hundreds of transparent proxy-
servers that redirected the incoming traffic via VPN to the honeypots hosted on
the researchers’ lab. This solution successfully solve the problem of hiding the
real location of the web applications, but it is difficult to maintain and requires
the proxies to be located on many different networks (often on online providers).

Luckily, this problem does not exist on the Dark Web. The honeypot can run any-
where, without additional expedients as the Tor network is sufficient to guarantee
the anonymity of the endpoints. Moreover, if a particular domain is blacklisted
by the attackers, it is sufficient to generate a new private key/hostname pair to
host content under a new domain name.

Using Web Honeypots to Study the Attackers Behavior

58 4. ATTACK LANDSCAPE IN DARK WEB

Service advertisement

As the most important value of a honeypot is the collected data, it is essential to
attract a large number of attackers. On the Surface Web, it is typically the role
of search engines to make the honeypot pages visible to the attackers interested
in a certain type of target. For instance, honeypots often employ vulnerable
versions of popular CMSs, as attackers routinely look for them by using Google
Dorks [ZNG14].

It is also possible for a website on the Surface Web to attract attackers by
simply placing some keywords or specific files as John et al. described in their
work [JYX+11]. For example, including a known web shell or disclosing the
vulnerable version of an installed application along with its name is a widely
used strategy to lure attackers.

These popular “advertisement” approaches are not straightforward to apply to
services hosted on the Tor network. As we later discuss in Section 4.3, it is
still possible for .onion web sites to be indexed by Google. However, in order
to gain popularity and attract attackers, researchers should carefully employ
alternative techniques – such as advertising the website in forums, channels, or
link directories specific to the Dark Web.

Operational costs

Since, as explained above, operating a honeypot in the Dark Web does not
require any special domain registration or dedicated hosting provider, the total
cost of the operation is typically very low. Canali et al [CB13a] had to register
hundreds of domain names (and routinely change them to avoid blacklisting) as
well as several dedicated hosting providers – which are often difficult to handle
because they often block the accounts if they receive complains about possibly
malicious traffic.

In comparison, an equivalent infrastructure on the Dark Web only requires the
physical machines where the honeypot is installed, as creating new domains is
free and can be performed arbitrarily by the honeypot administrator.

Nature of the collected data

Some criminals use the Tor network to host illicit content like child pornography,
since it protects both the visitors and the host by concealing their identities.
Therefore, as we explain in Section 4.2, we had to take some special precau-
tions to prevent attackers from using our honeypot to store and distribute this
material. Unless researchers work in collaboration with law enforcement, these
measures are required to safely operate a honeypot in the Dark Web.

Ph.D. Thesis — Onur Catakoglu

4.2. HONEYPOT SETUP AND DEPLOYMENT 59

Honeypot

root

debian-tor

MYSQL

INTERNET

Logs

FirewallInotify

Web Page

Manager

Collect Files

Snapshot

Figure 4.1: Simplified Honeypot Infrastructure

4.2 Honeypot Setup and Deployment

In this section we describe the setup of our honeypot. Our deployment is com-
posed of three types of web-based honeypots and a system-based honeypot. Each
of them is installed in a separate virtual machine (VM) hosted on our premises.
The use of virtual machines allow us to revert the honeypots to a clean state
after they are compromised. All honeypots are connected to the Tor network
and made available as hidden services.

Note that each VM was fully patched to prevent privilege escalation, i.e. an
attacker who compromised any of our machines would not be able to modify any
system file and could only interact with the content of few selected directories1.

Moreover, we used a set of firewall rules to restrict the attackers’ network ca-
pabilities. In particular, we blocked all incoming and outgoing connections from
all ports, except the ones used by Tor to operate, and ports associated to ser-
vices that we explicitly offered. The firewall was also configured to enforce strict
rate-limits to prevent denial-of-service attacks.

1Excluding attacks leveraging 0-days and undisclosed vulnerabilities

Using Web Honeypots to Study the Attackers Behavior

60 4. ATTACK LANDSCAPE IN DARK WEB

Web Applications

To mimic the setup used by a casual user, we decided to install all the applications
in their default configuration, e.g. with all files located under /var/www and
owned by the user debian-tor.

In each honeypot we installed ModSecurity [mod], a popular monitoring and
logging tool for the Apache web server. We configured ModSecurity to log the
content of all HTTP POST requests along with their headers.

We also used a real-time file system event monitoring framework called inotify
to detect all newly created/modified files, and copy them in a private directory
for later inspection. Most importantly, using inotify we promptly detected,
deleted, and shred any multimedia file uploaded by an attacker – to prevent our
servers from hosting illegal material.

After we completed the configuration of our honeypots, we took a VM snapshot
of their clean state. Later, every night, our system was configured to automat-
ically retrieve all the files collected by inotify and a copy of all log files, and
then to revert each VM to its original snapshot. A simplified representation of
our honeypot infrastructure is given in Figure 4.1.

In order to bait the attackers, we decided to deploy three different honeypot
templates:

1. A website disguised as an exclusive drug marketplace that only
trades between a close circle of invited members – The website was
realized using an old version of the popular OSCommerce e-marketing
application. The version used in our experiments contains several known
vulnerabilities, which allow an attacker to take over the admin panel and
arbitrarily manipulate accounts and files.

2. A blog site that advertises customized Internet solutions for hosting
in the Tor network – The website was realized using an old version of
WordPress, which contained several known vulnerabilities.

The honeypot also contained a number of sub-directories with different web
shells, in order to mimic the fact that the site was already compromised by
other attackers. The website was misconfigured to allow directory listing,
so that an attacker (or an automated script) could easily navigate through
the structure of the website and locate the shells.

3. A custom private forum that only allowed registered members to
login – The website described the procedure to become a member, which
required a valid reference from another existing member. In this case, we
manually included a custom remote file-inclusion vulnerability that allowed
an attacker to upload arbitrary files by manipulating PHP filters. The vul-
nerability was designed to be quite “standard”, mimicking many existing

Ph.D. Thesis — Onur Catakoglu

4.2. HONEYPOT SETUP AND DEPLOYMENT 61

Advertised on
Tor

Clone #1
(CMS #1)

INTERNET

Tor2
Web

Accessed with
Tor2Web

Clone #2
(CMS #1)

Indexes

Advertised on
Surface

Clone #3
(CMS #1)

Advertised on all to maximize traffic

CMS #1:
osCommerce

CMS #2:
Shells & WP

CMS #3:
Custom Vuln.

Honeypot #4:
FTP, SSH, IRC

Figure 4.2: Initial deployment of honeypots with different advertisement strategies

vulnerabilities of the same type reported in other applications. However, it
was also designed not to be straightforward to identify for automated scan-
ners, as the goal of this third honeypot service was to collect information
about manual attacks.

Although slightly tailored for our scenario in terms of advertised content, the
first two templates were also used by a previous study of web honeypot [CB13a].
These were intentionally chosen to be able to compare the types of attacks
received on the Dark Web with those normally observed in the Surface Web.

The third template was instead specifically designed to avoid automated scan-
ners and study more sophisticated attackers who may be interested in manually
exploiting services hosted in the Dark Web.

We started by advertising our honeypot applications in three different ways: (i)
by posting their URLs in several Tor network’s forums, channels, search engines
and yellow pages, (ii) by visiting (twice a day) the applications via the Tor2Web
proxy – which shares the visited URLs with Ahmia [ahm], a search engine for
Tor, and (iii) by posting their URLs to several pages on the Surface Web.

In particular, to measure the success of our approaches, we deployed the first
template three times (i.e., one for each advertisement technique). On top of that,
we also deployed a copy of all templates by using a more aggressive strategy that
includes all the three mechanisms described above.

Using Web Honeypots to Study the Attackers Behavior

62 4. ATTACK LANDSCAPE IN DARK WEB

Other Services

We also decided to include in our system a machine dedicated to collect system-
level attacks directed towards other type of services appropriately configured to
facilitate reconnaissances from attackers (e.g., by leaking the list of users via
finger) or to expose weaknesses or misconfiguration.

This machine, reachable only over the Tor network, ran the following services:

1. We used finger to broadcast the list of active users and we provided a file
containing the hashed version of a user’s password on an open FTP server.
We also used message-of-the-day informative to advertise our honeypot as
a file-server.

2. We offered an open (anonymous) FTP server. We served a valid upload
directory (incoming) for hypothetical illicit uses like drop-zone and ex-
ploitation, and we provide some documents for download, one of which
contained the password for one of the system users.

3. We enabled SSH login on 2 users. The shell was chroot jail protected.
Both accounts were easily guessable, i.e. the first having a straightforward
name and password combination (guest:guest); the second having the
base64-encoded version of the password leaked in the FTP document.

4. IRC. Chats are known to be used as rendez-vous points to discuss illicit
offers (e.g. stolen accounts) or host C&C servers of botnets. With the
intent of understanding whether attackers would try to abuse chats in the
Tor network, we installed an open IRC service (UnrealIRCd) and registered
anonymous logins.

This machine was also advertised using all the previously described channels (for
the Tor2web case, we used the proxy to access a static webpage hosted on the
honeypot, describing the machine as a Dark Web file hosting server). Figure 4.2
shows a summary of the initial deployment strategy used in our experiments.

4.3 Data Collection and Analysis

We run our experiments over a period of seven months between February and
September 2016. Due to maintenance and re-configuration of the honeypots,
the individual honeypot services were online for a total of 205 days.

The experiments were divided in three phases. During the first phase (which
lasted for 37 days until the end of March) we applied the three advertisement
strategies described in Section 4.2 on a single honeypot template (CMS #1), to

Ph.D. Thesis — Onur Catakoglu

4.3. DATA COLLECTION AND ANALYSIS 63

Clone #1
(Tor Only)

Clone #2
(Tor2Web)

Clone #3
(Surface Only)

GET 3.29M 1.26M 1.02M
POST 20 147 1

Table 4.2: Number of GET & POST requests for different advertisement strategies

measure their impact on the incoming traffic and on the number of attacks. In
the second phase (from the 1st of April to end of May) we advertised the three
templates using all available strategies, to maximize the amount of collected
data. Finally, for the last four months of experiments, we restricted the access
to our honeypot by blocking Tor2web proxies, in order to exclusively focus on
attacks within the Tor network.

In the rest of the section we describe the impact of these three factors on the
collected data: the advertisement strategy, the source of the attack (from the
Surface or the Dark Web), and the type of honeypot template.

4.3.1 Impact of Advertisement Strategies

As we mentioned in Section 4.2, we created three clones of our first honeypot
template (CMS #1), which we then advertised using different channels.

In Table 4.2, we present the total number of requests received by the three
clones. Quite interestingly, all clones received a comparable amount of overall
traffic (between 1 and 3.3M hits). However, looking at the POST requests
the picture is quite different. For instance, the honeypot advertised on Tor
only received over 3M GET requests but only 20 POSTs. The first number is
inflated because the same visitor may have requested multiple resources – and we
already discussed how difficult it is to track visitors in the Dark Web, when using
the same browser and no endpoint information are available. In addition, since
attackers required a POST request eventually to upload their files, we decided
that looking at POST requests was a better way to estimate the “interesting”
traffic, and filter out most of the harmless visitors, automated Internet scanners,
and other forms of background noise.

Finally, it is interesting to note how the second clone – advertised through
Tor2web, was the only one to receive attacks (over 20) in this first phase of
our experiments.

4.3.2 Role of Tor Proxies

The Tor2web2 projects provide a simple way for users to access resources on
the Dark Web by simply appending special extensions to onion domains. These

2https://www.tor2web.org/

Using Web Honeypots to Study the Attackers Behavior

https://www.tor2web.org/

64 4. ATTACK LANDSCAPE IN DARK WEB

Proxy Online Transparent

*.onion.to 3 7

*.onion.link 3 7

*.onion.city 3 7

*.onion.nu 3 3

*.onion.cab 3 3

*.onion.direct 71 Unknown
*.onion.lt 72 Unknown
*.onion.sh 7 Unknown
*.onion.ink 7 Unknown
*.tor2web.org 7 7

*.tor2web.fi 73 7

*.onion.rip 3 7

1 discontinued
2 website is offline
3 redirects to tor2web.org

Table 4.3: List of inspected Tor proxies

special domains (such as .onion.to, .onion.link, and .onion.city) resolve
to one of the Tor2web operators which in turn act as proxies from the Surface
Web to the Dark Web. These services facilitate the access to the Tor network
with the disadvantage of sacrificing the anonymity of their users.

Since Tor proxies make hidden services in Tor reachable with a normal HTTP
request over the Internet and with no additional configuration, they can be used
by traditional browsers but also by automated scripts and crawlers. The presence
of these proxies turned out to be extremely important for our experiments. In
fact, once a proxy domain is indexed by a search engine, the target website
can be located using traditional Google Dorks [TACB16] and therefore becomes
implicitly a target of automated exploitation scripts [CB13a].

Once we noticed this phenomenon and the fact that the vast majority of the at-
tacks indeed came through these proxy services, we decided to block the request
coming from Tor2web.

Table 4.3 shows a list of different operators, mentioning those that were on-
line during our experiments and those that we could identify by looking at
the HTTP headers they append. For example, some of the Tor2web opera-
tors like .onion.to, .onion.link, and .onion.city includes extra headers
in the request field (such as HTTP_X_TOR2WEB, HTTP_X_FORWARDED_PROTO and
HTTP_X_FORWARDED_HOST). This allowed us to identify and block the requests
coming from these services, by serving them a static page explaining that our
services were only available from the Tor network.

Ph.D. Thesis — Onur Catakoglu

4.3. DATA COLLECTION AND ANALYSIS 65

April May June July August September
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

4.40 3.67 1.00 1.50
8.88

160.95

6.00

43.74

26.57

9.33
2.00

71.33

1.80

29.80

2.53

CMS #1

CMS #2

CMS #3

Tor2web Filtering

Figure 4.3: Average number of daily post requests

CMS #1
(OsCommerce)

CMS #2
(Shells & WordPress)

CMS #3
(Custom Vuln.)

Tor2web 115 (8 days) 1,930 (23 days) 0
TOR 0 2,146 (79 days) 689 (5 days)

Table 4.4: Number of attack-related POST requests

This change – implemented from June in our experiments, lead to a sharp drop
in the number of incoming requests and in the number of incoming attacks (see
Figure 4.3).

Interestingly, blocking Tor2web proxies also had a clear effect on the type of
files uploaded by the attackers. For example, we stopped receiving phishing kits
or mailers (see Section 4.4 for more details) after we implemented our blocking
strategy. Therefore, it is safe to say that even though it was possible that some
requests still came through transparent proxies, our countermeasure was able to
effectively prevent most of the automated attacks specific to the Surface Web–
which, indeed, was our initial goal.

4.3.3 Honeypot Templates

As we explained in Section 4.2, we used three honeypot templates based on
different web applications and, more importantly, with different types of vulner-
abilities.

Using Web Honeypots to Study the Attackers Behavior

66 4. ATTACK LANDSCAPE IN DARK WEB

Table 4.4 shows the number of attack-related POST requests along with the
number of days in which we received at least a single attack. We consider a
request as attack-related if it contains an attempt to exploit a vulnerability or if
it is involved in the post-exploitation phase – for example, to upload further files
on the exploited application or to inspect the host through a webshell.

Predictably, the web shells installed on CMS #2 served as bait to attract the
highest number of attack-related requests. CMS #1, instead, received less at-
tacks and all originating through proxy services likely as the result of using Google
Dorks.

Interestingly, some attackers used dorks on Tor-specific search engines. For
instance, an attacker found one of the honeypots through a Tor search engine3

by simply querying the set of keywords “Index of /files/images/” .

Finally, CMS #3 (i.e., the one containing our custom vulnerability) received
the lowest number of attacks and none of them actually succeeded. Even more
interestingly, while CMS #1 was only attacked from the Surface, CMS #3 was
only attacked from the Tor network. This is in line with our expectations: well-
known vulnerable CMSs are targeted by automated scripts using dorks, while
custom websites are only targeted by humans or dedicated scanners (which in
our case were run in the Tor network).

Afterward, we manually analyzed all POST requests to identify the successful
attacks, i.e. those in which the attacker successfully compromised the honeypot
application. CMS #1 was successfully compromised by attacks originating from
the Surface Web. Out of 115 attack-related requests, 105 (91%) of them were
successful attacks. After we started blocking Tor proxies, we did not observe
further attacks.

For CMS #2, we counted an attack as successful if it exploited the WordPress
vulnerability or if it used one of the existing webshell to install or modify a file in
the system (i.e., a simple inspection of the system was not considered a success-
ful attack). Overall, 1,255 (65.0%) of the attack-related requests originating
through Tor2web succeeded. On the contrary, only 154 (7.2%) of the ones
coming through the TOR network succeeded. This is a very interesting result,
and it shows that the majority of the attackers who interacted with our shells
from the Surface Web ended up performing some change on the system. The
attackers from the Tor network instead mostly inspected the system and moved
away without touching any file (more about this phenomenon will be discussed
in Section 4.4).

CMS #3 never received a single attack from Tor2web, if we exclude some manual
attempts to guess a valid username and password (which we did not count as
an attack in our statistics). As we mentioned in the beginning of this section,
this one never received a successful attack.

3http://hss3uro2hsxfogfq.onion

Ph.D. Thesis — Onur Catakoglu

http://hss3uro2hsxfogfq.onion

4.4. ATTACK EXAMPLES 67

4.4 Attack Examples

Over the entire experiment, attackers uploaded on our honeypot 287 files (an
average of 1.4 per day). In comparison, Canali et al. [CB13a] collected over
850 files per day – but they used 500 clones (against the 3 we used in our
experiments). In fact, the goal of our study was not to collect a large number of
attacks, but rather to study their nature and how the effect of different factors
like the advertisement channel, the type of service, and the source of the attack
affected.

In the following sections, we classify the attacks into three different categories:
automated scattered attacks from the Surface Web, automated attacks from the
Tor network, and manual attacks. For each category, we present some examples
and we discuss in more details the attacks most commonly observed in our
honeypots.

4.4.1 Scattered attacks

As we described previously, regular search engines unexpectedly index web pages
hosted on the Dark Web through Tor2web proxies. As a result, websites located
in the Tor network receive part of the background noise of automated attacks
that plague the Web, scattered through the proxies that act as gateways between
the two “sides” of the Web.

For this reason, the vast majority of the attacks observed in our honey-
pot were simple, and very similar to what was observed by previous stud-
ies [CB13a,JYX+11]. Basically, the modus operandi of these attackers consisted
of locating our websites using Google Dorks, and employing automated scripts
to visit the pages, exploiting the known vulnerabilities, and possibly uploading
files for the next phase of the attack. In the majority of the cases, these attacks
involved the use of web shells, which allowed the attackers to later run system
commands on our honeypot. Using these web shells, attackers could upload
other files including web mailers, defacement pages, and phishing kits.

The completely automated nature of these attacks and the types of files uploaded
in the honeypot make us believe that in the majority of the cases the attackers
were not even aware of the fact that they compromised applications hosted in
the Dark Web.

Web shells – We collected 157 unique variations of web shells uploaded by the
attackers. This was an expected behavior since most of the time the attackers
made use of automated scripts for the first phase of the attack. We also observed
that once a web shell was deployed, other shells were often uploaded using this
first web shell, over a short period of time. Usually, while the initial shell was
unobfuscated, the subsequent ones were protected with a password. Some of

Using Web Honeypots to Study the Attackers Behavior

68 4. ATTACK LANDSCAPE IN DARK WEB

the collected web shells were base64-encoded and they were configured to de-
obfuscate at run time by means of the PHP’s eval function.

Phishing kit & Mailers – Surprisingly, attackers uploaded six phishing kits for
popular targets (in particular Paypal). Having a phishing kit for such applications
does not make much sense in our setting, since there is no Paypal on Tor to begin
with. But the fact that all the phishing-related attacks were coming through
TOR proxies, strengthen our hypothesis that the attackers (or their automated
scripts) were probably not aware of the location of the exploited application.
Similarly, 22 mailers were uploaded through Tor proxies, but none of them was
ever used by the attackers.

Defacements – Our web applications got defaced 33 times. Usually, a web
shell was uploaded before the defacement and subsequently the index page was
modified or a brand new one was uploaded by using the prior web shell. From
an analysis, this process looked automated since the same pattern was observed
multiple times with the same defacement page. Half of the attacks originated
from the Surface Web, and the rest came directly from the Tor network.

In one defacement specific to Dark Web, the defacer modified the index page of
CMS#2 to promote one of his sites called Infamous Security4, where the authors
apparently advertise their hacking services.

4.4.2 Automated Attacks through Tor

Automated Scans – Our honeypots received over 1,500 path
traversal attempts (e.g. to fetch ../../etc/passwd, or
../../etc/vmware/hostd/vmInventory.xml). As we could infer from
the User Agent, attackers seemed to be using the NMap5 scripting engine for
scanning their targets.

Access to the Service Private Keys – One of the most common scan attempt
we received within the Tor network was the download of the private key that we
voluntarily hosted on the web applications’ root directory.

Every time the Tor service starts, it creates a private key (if not existing) and
assigns the corresponding hidden-service descriptor (i.e. the hostname) to this
private key. While the private key must not be accessible with default Tor and
Apache configurations, in our case we intentionally misconfigured the service to
let it accessible from the Web for CMS #3 starting from mid Agust. Exposing
a private key simply means that the owner risks losing the hostname to the
adversary (and therefore potentially all incoming traffic). Thus, the first and the
easiest automated attack is to fetch this key, if its location and permission are
not configured correctly.

4http://5eaumbq2k6yc4sjx.onion/
5http://nmap.org

Ph.D. Thesis — Onur Catakoglu

http://5eaumbq2k6yc4sjx.onion/
http://nmap.org

4.4. ATTACK EXAMPLES 69

During the operation of our honeypot, we observed and confirmed over 400
attemps to fetch the private key. Attackers could use those keys to impersonate
our honeypot and conduct attacks like phishing or hosting of malware.

Other Services – We reported a number of successful connections to our FTP,
SSH, and IRC services that, most likely, represent instances of banner grabbing
or information gatherings. In total, we confirmed 74 SSH connections (client-
side terminated or timeout), 61 successful FTP (anonymous) logins and 91 IRC
logins.

4.4.3 Manual attacks

Post-Exploitation Actions – We noticed that attackers connecting via Tor
network (instead of using Tor proxies) were generally more careful and spent more
time to investigate the environment. For instance, their first action when using
a web shell was to gather additional knowledge by listing directories, checking
the content of the local database, fetching phpinfo and system files such as
crontab, passwd, fstab and pam.conf.

Such attackers never went beyond exploring the system, compared to the ones we
mentioned in Section 4.4.1 – who almost always installed additional components.
In fact, manual attackers from the Tor network often deleted their files and left
the honeypot after their initial inspection. In few cases, the attackers also left
messages (such as “Welcome to the honeypot!”) or redirected our index page to
a pornographic video. In one example, the attacker downloaded 1GB of random
data from a popular website to test the network download speed and renamed
the file as ‘childporn.zip’ – supporting the fact that many attacks from Tor were
manually operated and resulted in a successful identification of the honeypot.

While these cases support the fact that there are people manually exploiting
websites on the Dark Web, all these attacks used previously installed web shells
or extremely popular CMS vulnerabilities. None of them was able to exploit the
(still relatively simple) custom vulnerability on CMS #3.

FTP and SSH – Overall, we identified 71 FTP file downloads. Interestingly,
all occurred in a sub-directory and none on the root directory of the server –
showing the manual nature of the action and the interest in accessing specific
data. In one case, the miscreant used our bait login credentials included in our
honey-document to log in to the SSH server. This was an interesting scenario,
in which the attacker was able to manually extract information collected from
one service to connect to another service.

Even more interestingly, the attacker first connected to the SSH server sending
his real username for the login, likely due to the fact that this is performed
automatically by ssh clients. The attacker then immediately killed the session
and reconnected with the correct username previously gathered from the honey-
document.

Using Web Honeypots to Study the Attackers Behavior

70 4. ATTACK LANDSCAPE IN DARK WEB

Attacks Against the Custom Application – The application with the custom
vulnerability received little attention through the entire experiment. Except for
some automated background noise of SQL injections and directory traversal at-
tempts, we noticed 87 requests (GET and POST) that attempted to tamper with
the parameter vulnerable to remote file inclusion, but without any success. One
attacker analyzed the entire website using the Acunetix [acu] web vulnerability
scanner but the tool was unable to exploit the vulnerability. Another attacker
focused on the login form and run the sqlmap6 tool to try to detect a possible
SQL injection, again without success.

4.5 Conclusions

This study discusses the deployment of a high-interaction honeypot in the Tor
network, to explore the modus operandi of attackers in the Dark Web. We con-
ducted our experiments in three different phases over a period of seven months
and we assessed the effectiveness of advertisement strategies on the number and
nature of the attacks. Our preliminary results show that also hidden services can
receive automated attacks from the Surface Web with the help of Tor proxies.
Moreover, we found that miscreants in the Dark Web tend to involve more man-
ual activity, rather than relying only on automated bots as we initially expected.
We hope that our work will raise awareness in the community of operators of
hidden services.

6http://sqlmap.org

Ph.D. Thesis — Onur Catakoglu

http://sqlmap.org

Part II

Dynamic Analysis of
Server-Side Malicious Code

71

73

To carry out the experiments presented in the previous Chapters, we performed
a considerable amount of manual attack analysis. This was required for a variety
of reasons, including building a ground truth, detailing different attack vector,
measuring the impact of a compromise, and better understanding the attackers
behavior. While it was necessary, it was a very time-consuming task and any
future attempts to study attacks against web application will inevitably face the
same difficulties. This also poses obvious limits to the scalability of server-side
analysis – as static approaches such as investigating the log files or identifying the
attack-related components may become impractical in presence of large datasets.

Therefore, in this second part we present a solution to automate the analysis
of previously-collected data (e.g., from web application honeypots) and discuss
the effectiveness of adopting a dynamic approach inspired by the sandbox used
today to process traditional malware samples.

Using Web Honeypots to Study the Attackers Behavior

Chapter 5

Automatic Analysis of Web
Attacks using a PHP
Sandbox

*This chapter is based on a paper which is currently under submission.

In the first part of this dissertation we have studied the prevalence of web attacks
and how the security community can benefit from their analysis. In particular,
we emphasized the importance of such analysis in Chapter 3 by automatically
detecting compromised websites, while in Chapter 4 we proved that also the
hidden parts of the Web are not immune to the background noise of automated
attacks. However, these studies also revealed that the analysis of the attackers
behavior is a challenging and time-consuming task – which so far required a
considerable amount of manual analysis.

In fact, while a large number of studies have focused on client-side (i.e.,
JavaScript-based) malicious code [GL09, Naz09, EVW11,MSSV09b], malicious
server-side code have instead attracted much less attention and its analysis has
so far being performed either manually or by using static analysis tools. For
example, the previous study on the attackers behavior conducted by Canali et
al. [CB13a] relied on static clustering to categorize the files uploaded by the
attackers on compromised web applications. Although such approach is able to
capture the essence of the attacks, they often overlook the details of how the
attack progresses. For instance, attackers may end up uploading a certain tool
(e.g., to send spam emails) in a compromised server only after having carefully
investigated the machine and having tried other paths without success. More-
over, as we will demonstrate in the following sections, attackers often obfuscate
the contents of malicious files beyond what can now be handled by static deob-
fuscators. This complicated a manual inspection and make it more difficult to
determine the purpose of the attack by static analysis.

75

76 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

In this study, we also argue that the analysis of malicious server-side scripts is
fundamentally different from the analysis of other forms of malicious code (such
as traditional malware binaries). In fact, attackers interact with most of these
server-side components through a, often complex, web interface. Therefore, the
same tool can be used to perform a great variety of different tasks, depending
on where the attacker clicked and which sequence of commands (i.e., HTTP
requests) she sent to the aforementioned interface. The nature of these attacks
forces security analysts and forensic examiners to reconstruct the individual steps
of a compromise by a tedious process of correlating the incoming requests’ logs
with the de-obfuscated code of the server-side components. The result is a time-
consuming and error-prone procedure, that often results in a poor reconstruction
of the attack behavior.

To solve this problem, in this work we present the first dynamic approach to
analyze malicious server-side web applications. In particular, we introduce a
fully-automated dynamic analysis solution to study malicious PHP files, inspired
by existing malware analysis sandboxes. The main difference between our sys-
tem and a malware analysis sandbox is that our solution uses real attack traces
extracted from web server log files as input, to drive the malicious application
and observe its behavior. This allows an unprecedented view over the actions
performed during a web attack, including the extraction of fine-grained informa-
tion about any external interaction between the attacker’s tool and the target
environment.

We achieve this by instrumenting the PHP interpreter and further installing it in a
virtual environment. We chose PHP as server-side programming language in our
prototype since it is used by the large majority of websites [W3T17] and almost
the totality of malicious code and web shells. Our sandbox supports HTTP logs
that are often collected by server-side monitoring systems, and then it identifies
and replays all HTTP requests involved in an attack against our instrumented
sandbox. Finally, our system automatically generates a detailed report containing
all the details of the monitored attack session. In few seconds, and without any
manual interaction, our approach can provide a complete overview on the actual
behavior of the adversaries.

In summary, in this chapter we make the following contributions:

• We propose a method to dynamically analyse web attacks’ server-side
code. To the best of our knowledge, we are the first to perform this type
of analysis, which was so far conducted either manually or with the support
of static analysis techniques.

• We evaluate our system by replaying more than 8000 attacks collected over
two years by two web application honeypots. This is the largest dataset
of real attack sessions that have ever been analyzed to date.

Ph.D. Thesis — Onur Catakoglu

5.1. THE ROLE OF DYNAMIC ANALYSIS 77

• By looking at the behavioral report generated by our system, we present
a detailed overview of numerous aspects of web attacks.

5.1 The Role of Dynamic Analysis

Today, the analysis of malicious code largely rely on dynamic analysis techniques.
While static binary and code analysis could provide enormous advantages to bet-
ter understand what a piece of code can do, the vast majority of modern examples
of malicious code rely on obfuscation and packing techniques that defeat any
attempt to statically analyze the sample. Therefore, for the analysis of tradi-
tional malware, researchers designed special sandboxes [CWS17] where samples
can be executed in an instrumented environment, and the runtime behavior of
the sample can be captured and analyzed. This solution is today a standard
technique used by security companies to process hundred of thousands binaries
each day.

Despite this success, researchers have failed to export the same model to other
environments. In particular, the analysis of malicious code on the Web is still
largely delegated to manual investigation or to static analysis routines designed
to de-obfuscate the code and extract a number of indicators about its possible
(benign or malicious) behavior.

The Impact of Obfuscation

Several de-obfuscators tools and services exist for Web-related languages – such
as the PHP evalhook extension [Ste10] and JavaScript JSUnpack [JSU]. These
solutions typically execute the obfuscated code intercepting common language
and API functions (such as eval, gzip, and base64) to retrieve and dump
the original deobfuscated code. It is also interesting to note that, similar to
packing techniques used for program binaries, also packed Web scripts often rely
on multiple nested layers of obfuscation – even over 100 in few cases reported
by Canali et al. [CB13a]. To further complicate the task, the deobfuscation
process can also be parametrized, for instance by receiving a decryption key
by the attacker or by extracting elements from the DOM tree of the webpage.
Canali et al. [CB13a] also encountered PHP files obfuscated with commercial
tools – such as ionCube PHP Encoder – which the authors were not able to
de-obfuscate.

As explained more in details in Section 5.3, in our experiments almost one third
of the attackers’ scripts were packed. Even worse, some of those used complex
techniques that are not supported by state-of-the-art static PHP de-obfuscators.

Using Web Honeypots to Study the Attackers Behavior

78 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

The Difference between Attack and Code Analysis

This is an important aspect which is often overlooked in the case of traditional
malware. In fact, for Windows binaries, researchers are typically interested in
what a sample can do and not just what it actually did on a singe execution.
This is because the focus is on the sample rather than on the particular attack.
For example, it is important to know that a malware can encrypt files on the disk
or steal social network passwords, even if this behavior may only be triggered in
particular circumstances.

However, on the Web this may be different. According to previous studies,
almost 40% of the attacks against web application result in the upload of a web
shell [CB13a], which is later used by the attacker to interact with the target
system and perform its malicious objectives. In this case, an analysis of what
a web shell can do is of limited interest. First because most of them provide a
rich and somehow equivalent set of functionalities, and second because what it
really matters in this case is what the attacker did with the tool and not what
the tool itself can do.

File-based categorizations have been used so far for the classification of web
attacks, but results can be misleading if the actual behavior of the attackers
cannot be extracted. For example, Canali et al. mitigated this problem by
developing custom parsers for the commands received by a number of standard
web shells [CB13a]. Unfortunately, with thousands of existing variants, this
method is hard to scale. Our approach aims instead at providing a more general
solution for web attack analysis based on PHP files.

5.1.1 Use Cases

This study proposes a dynamic analysis sandbox for server-side web attacks. We
envision that such tool can be extremely useful in three main scenarios.

Incident Response

Our solution allows to automatically reply and analyze full attack sessions, start-
ing from an Apache mod-security log and a pre-defined entry point. This makes
our approach useful for breach investigations and incident response cases that
involve a web application compromise. In this case, the analyst needs to first
locate the attack vector, e.g., the initial malicious request or the vulnerability
used by the attacker to exploit the system. This information can come from an
intrusion detection system, a web anomaly detector or web application firewall,
or can be extracted from vulnerability reports or security patches. Then, the
analyst just need to feed this entry point to our system together with the web

Ph.D. Thesis — Onur Catakoglu

5.2. APPROACH 79

server logs and a copy of the target application. Our system can keep track of
any other file uploaded by the attacker and generate a complete behavioral report
containing all the attack steps that have been performed on the compromised
machine.

Live behavioral analysis integrated in high interaction honeypots

Another possible use of our system is to integrate it in an existing web-based
high interaction honeypot. In this case, there is no need of using the log files,
as the instrumented PHP engine can simply replace the one provided by the
operating system and produce aggregated behavioral reports for each incoming
attack.

Replay and Analysis of previously collected attacks

Finally, our system can be used for experiment reproducibility. It allows re-
searchers to replay previously collected attacks, both from real-world systems or
from honeypot deployments. The experiments performed in this work belong to
this category, as it allows to quickly reproduce and analyze thousands of different
attacks.

5.2 Approach

The goal of our study is to design a sandbox to dynamically analyze the execution
of malicious PHP files, while providing the exact same input used during a real
attack. For this reason, our sandbox employs an instrumented PHP interpreter
installed in a pre-configured virtual machine (VM). This setup, inspired by other
common malware sandboxes, allows the analyst to easily revert back the VM to
a clean state after an analysis is completed.

An important difference when compared with traditional malware analysis sand-
boxes is that to make sense of a web attack, looking at the malicious PHP files is
often not enough. In fact, these files provide a visual web interface to some tools,
and need to be ‘stimulated’ to actually perform different tasks. Therefore, the
final behavior is a consequence of the interaction between the attackers and the
web interface of the uploaded components, which is captured by the parameters
of the incoming HTTP requests.

Our sandbox captures this interaction by replaying the input used by the attacks,
as it is logged by Apache ModSecurity – a very popular tool for web application
monitoring, logging and access control, which also allows logging POST requests’
payload. Other log formats could be supported by simply extending our request

Using Web Honeypots to Study the Attackers Behavior

80 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

Table 5.1: List of Patched Components

Component Name
of Patched
Functions

Examples

Standard
Zend 1 zend_make_compiled_...
Basic Functions 1 move_uploaded_file
Dir 3 scandir
Exec 3 php_exec, shell_exec
File 9 file_get_contents, fwrite
Fsock 1 php_fsockopen_stream
Head 1 setcookie
Link 2 symlink, readlink
Mail 1 mail
Streamfuncs 2 stream_socket_client

Extensions
Curl 1 curl_init
Ftp 4 ftp_connect, ftp_get
Mysql 6 mysql_db_query
Mysqli 3 mysqli_common_connect
Posix 25 posix_getpid, posix_getuid
Sockets 3 socket_recv, socket_send

parsing module. Our tool replay the requests extracted from the server logs
towards our sandbox, where the behavior of the malicious application is dissected
and analyzed in detail.

In the following sections, we will explain how we instrumented the PHP inter-
preter, our tool to automatically replay and extract the details of the attacks,
and how we put all components together to create our sandbox.

5.2.1 PHP Instrumentation

As we mentioned in Section 5, we implemented our dynamic analysis system
for the PHP language because it is very popular among web applications and
among attackers (e.g., most of Web Shells and malicious server-side scripts are
implemented in PHP).

To determine the methods to instrument on the PHP interpreter, we started by
examining a set of malicious files that we previously collected through our web
honeypot to identify popular PHP methods and API used in malicious code. Ad-
ditionally, we further checked the PHP documentation to find equivalent methods

Ph.D. Thesis — Onur Catakoglu

5.2. APPROACH 81

1 s t a t i c i n t php_mysql_select_db (php_mysql_conn ∗mysql , cha r ∗db
TSRMLS_DC)

2 {
3 PHPMY_UNBUFFERED_QUERY_CHECK() ;
4 // Fo l l ow i ng 4 l i n e s added
5 FILE ∗ f p ;
6 f p=fopen ("/ va r / l o g / phpsys . l o g " , "a") ;
7 f p r i n t f (fp , "Mysql da tabase s e l e c t e d : %s \n" , db) ;
8 f c l o s e (fp) ;
9 // −− f i n

10 i f (mysql_se lect_db (mysql−>conn , db) != 0) {
11 r e t u r n 0 ;
12 } e l s e {
13 r e t u r n 1 ;
14 }
15 }

Snippet 5.1: Patching example for mysql_select_db function

1 Pos i x : g e t e u i d
2 Pos i x : getpwuid
3 Pos i x : g e t e g i d
4 Pos i x : g e t g r g i d
5 Open F i l e : {/tmp/bc . p l } , mode :w, d i r : {/ va r /www/ s h 3 l l Z /

u p l o a d s h e l l }
6 Write F i l e : {/tmp/bc . p l } , d i r : {/ va r /www/ s h 3 l l Z / u p l o a d s h e l l }
7 C lo s e F i l e : {/tmp/bc . p l } , d i r : {/ va r /www/ s h 3 l l Z / u p l o a d s h e l l }
8 Exec Command : p e r l /tmp/bc . p l 1 9 2 . 1 6 8 . 1 . 1 31337 1>/dev/ n u l l

2>&1 &

Listing 5.2: Example of lines added to the log file after a POST request made to a
web shell

or other less common ways to interact with the external environment. The pur-
pose of our instrumentation is simply to collect information about the behavior
of the running application. For example, we patched PHP’s shell_exec to log
the external commands that are executed. However, commands are not blocked
and can be executed correctly also in our modified interpreter, to preserve the
results and side-effects which can then be used as input for following actions.

Patching a method is usually a straightforward process. An example is depicted
in Snippet 5.1, where we edit the mysql_select_db function of the MySQL
component by simply adding few extra lines to log which database has been
selected. This change will not affect the outcome of the program, but will help
us to understand attackers’ purpose. There are also some specific cases where
we need to take some extra actions. For instance, if the attacker tries to create
a file in a directory that does not exist, our instrumentation creates the required

Using Web Honeypots to Study the Attackers Behavior

82 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

directory tree (in fact, it is possible that a path exists on the target system but
not in our sandbox). We list the patched PHP components in Table 5.1.

Standard Components – Zend provides the engine that interprets PHP. We
patched one function zend_make_compiled_string_description that al-
lows us to monitor when an eval function is called and where it is called in the
source code. We also patched move_uploaded_file to log file uploads, as well
as other traditional File related functionalities such as read, write, and delete
(file_get_contents, fwrite, unlink). The Dir category covers methods for
navigating directories such as open, read, or scan. Exec is one of the key com-
ponents and patching it allows us to log all executed system commands. Fsock
and Streamfuncs contains methods for opening and handling socket connections.
Head is responsible for HTTP headers, where we instrumented the setcookie
method. In Link we patched two functions dedicated to the creation and access
of symlinks. Last but not least, we instrumented the PHP mail component,
since it is widely used by mailers, to retrieve and log the contents of outgoing
messages.

Extension Components – We already mentioned stream sockets as part of the
standard components (Streamfuncs & Fsock), but it is also possible to create
raw socket connection by using the Sockets API. Additionally, we instrumented
MySQL and MySQLi which enables us to log any database query done by using
their methods. It is not an uncommon behavior for an attacker to check if he has
necessary permissions in a system that he/she infiltrated. Thus, we instrumented
the Posix APIs, which provides various functionalities to query key information
such as IDs (user, group, effective etc.), checking accessibility of a file and so on.
Finally, we patched FTP API to log FTP connections and the Curl extension to
keep track of attempted HTTP requests.

Listing 5.2 shows a snippet of the log generated by our instrumented PHP in-
terpreter during a real interaction between an attacker and his web shell. In
this example, we see the lines added after a POST request is made to the file
xwso.php. By looking at the logged information, we understand that the code
first retrieves the identity information. Then, a Perl script, bc.pl, is created
and after written under the /tmp folder. Finally, the attacker tries to execute
this newly created script.

5.2.2 Attack Replay

As mentioned earlier, our purpose is to create a virtual machine running an
instrumented version of the PHP interpreter, and then to replay attacks by
automatically sending the requests extracted from a ModSecurity log. Since
ModSecurity stores not only the request payload, but also all the HTTP headers,
our system can faithfully replay the exact same requests as they were received

Ph.D. Thesis — Onur Catakoglu

5.2. APPROACH 83

path m Additional paths: m1,m2, ,mi

Modsecurity Logs

Suspicious File M

inotify

(*)Instrumented

PHP
(*)

Manager Virtual Machine

Requests to m1

Requests to mi

Requests to m

...Tool

Upload New Files: M1,M2, ,Mi

Compiled
Report

Figure 5.1: Overview of the Sandbox Infrastructure

on the target machine. Note that it is also possible to use our sandbox on
a live system (e.g., installed directly in a honeypot), and in this case the log
analysis and request replay components are not necessary. However, we chose
to concentrate on an offline approach as this is a more common use case and
makes our experiment reproducible.

As we consider that the system whose logs we use is previously unknown to us, at
least a ‘suspicious file’ and a path/stem of URL corresponding to the file have to
be provided as inputs to the tool. As we example in Section 5.3, this may require
the analyst to first discover attack signatures or anomalies in the logs and identify
the uploaded/modified attack-related files as well as the corresponding URL
paths. However, techniques for web anomaly detection [SS02,HYH+04,JKK06a]
already exist and they are outside the scope of this study.

Hence, the execution of our system involves five different steps:

1. Parse ModSecurity logs of the web application.

2. Copy the suspicious file to analyze to our sandbox VM.

3. Replay all the attack-related HTTP requests to the uploaded file and any
other file subsequently uploaded by the attacker.

4. Compile a report that summarizes the collected information and the actions
performed during the attack.

5. Revert the VM back to its clean state.

As mentioned in step three, it is important to be able to identify requests that are
made to different paths, but belong to the same attack. For instance, it is very
common for an attacker to upload a file by exploiting a vulnerability in the target
web application. Then, this file is used to upload other components, which are
then activated and controlled by subsequent HTTP requests. To properly handle
this common scenario, our tool updates the list of target URL paths for every

Using Web Honeypots to Study the Attackers Behavior

84 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

newly uploaded files. This is achieved by installing into the sandbox a real-time
file system event monitoring framework, inotify. Once inotify detects a new
file, it immediately notifies our replay component that adds its path to the list
of those that need to be extracted from the log file and replayed to the sandbox.

The overview of the sandbox is depicted in Figure 5.1. When the tool is executed
to analyze a file M (with corresponding URL path m), our system immediately
starts searching for HTTP requests made to m inside the ModSecurity logs.
Then, it will replay them one by one to the VM. As new files M1,M2, ...,Mi

are uploaded by the attacker, their corresponding URL paths m1,m2, ...,mi,
retrieved through inotify, will also be added to the list of URL paths. The ex-
ecution will continue until no more requests can be found inside the ModSecurity
logs for the target URLs.

5.3 Experiments

In this section we present the experiments we conducted to evaluate our tool
using the Modsecurity audit logs of two web application honeypots that we
operated over a period of two years (between 2014 and 2016): One of the
honeypots runs an intentionally misconfigured web server that allows directory
listing and contains a number of sub-directories with different web shells to
mimic a previously compromised machine. The other honeypot runs instead
an old and vulnerable version of a popular e-marketing web application called
OSCommerce. The vulnerability allowed attackers to upload arbitrary files. In
the course of running these honeypots, we collected the ModSecurity log data
daily, and reverted the honeypots to their original clean state every midnight.
Moreover, we blocked all outgoing connections from the honeypots with a firewall
to prevent the attackers from abusing our honeypots as a medium to launch
further attacks.

Our experiments consist of two main phases: attack identification and attack
analysis. In the first phase, we extract from the HTTP requests sent to the two
honeypots the entry points required for the sandbox analysis. In particular, since
we want to study with our system the behavior of malicious files uploaded by the
attacker, and not the dynamic behavior of our Web Shells or of the OSCommerce
application, we first need to identify those uploaded files. In the second phase,
we run the extracted files in our sandbox, while replaying all requests targeting
their URLs.

5.3.1 First Phase: Extracting the Malicious Files

As we chose to evaluate our tool offline (Section 5.2.2), we first set up two virtual
machines that perfectly replicated the content of the honeypots. The overview

Ph.D. Thesis — Onur Catakoglu

5.3. EXPERIMENTS 85

Modsecurity Logs
inotify

(*) e.g. OSCommerce

Manager

Virtual Machine

POST Requests from date1

POST Requests from datei

...

Storage

APP
(*)

Attack Related Files

POST Requests from date2

Snapshot

Revert

URL path list
for datei

Figure 5.2: Overview of the Replaying Traffic

of the first phase of our experiments is shown in Figure 5.2. The manager
machine at the center of the picture stores the ModSecurity logs, as well as the
output data of both the first and the second phases. Since we are interested
in uploaded files, in this phase we only replayed POST requests. The virtual
machines are equipped with a inotify script to automatically acquire files and
URL paths that are affiliated with an attack. The newly uploaded/modified files
are then automatically retrieved by the manager.

Note that sometimes attackers upload files with the same name, which may
overwrite a previously uploaded file. Therefore, our system keeps track of the
timestamp when each file was uploaded, and later use this information in the
second phase to replay only the correct part of the log to each file.

The output of the first experiment phase consists of a set of malicious files that
include various data for each day. In particular, an intermediary file contains
multiple rows with the following: the location of the attack related files in the
manager machine (will be referred as the ‘local file path’), attack related URLs
(target URLs), and timestamp.

5.3.2 Second Phase: Attack Analysis

For the second phase we again used two virtual machines that mimic the content
of the honeypots, this time with our installed sandbox and the instrumented PHP
interpreter. Then, for each malicious file identified in the first phase, we uploaded
the file to the virtual machine (preserving its original path where it was installed
by the attacker) and we then replay all HTTP requests from the ModSecurity
logs in the appropriate time-frame.

As mentioned in Section 5.2.2, our system replay all requests sent to the file
under analysis, as well as any other uploaded files in a recursive way.

Once all requests to a particular file and all its “children” have been success-
fully replayed, the manager retrieves the PHP logs, computes an aggregated
behavioral report, and store it to be later examined by an analyst.

Using Web Honeypots to Study the Attackers Behavior

86 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

Table 5.2: Number of attacks according to the information gathered

Look Around Investigate Network

OSCommerce 1286 16 12
Web Shells 1646 88 (187) 5

5.3.3 Information Gathering

Gathering information about the target system is usually one of the first steps
of a manual attack. We now look at three types of information collected by the
attackers.

System Exploration – One of the most common behaviors of an attacker is to
collect basic information about the system, or simply to ‘look around’.

An easy way to do that is by fetching the contents of the current directory, re-
trieving the user id, or by printing the system information. Thus, acquiring such
information via system commands such as id, whoami, uname, hostname,
ps aux, pwd, and ls falls under this category. However, identifying and la-
beling other system exploration actions are not straightforward. For instance,
listing the contents of the working directory is an ordinary and common process,
which is also automatically performed by certain web shells. However, the same
operation can also be done manually to locate important application or config-
uration files. Therefore, to be conservative, we only counted generic filesystem
tasks as system exploration if they were executed as shell commands and not if
they were performed by PHP routines. As can be seen from the Table 5.2, this
behaviour is observed in a considerable number of attacks for both honeypots.

Files Investigation – In this second category we put more fine-grained infor-
mation gathering actions, in which the attacker specifically targeted application
configurations or the content of other system files. For instance, a common
example in this category is accessing the /etc/passwd file to list the registered
users. Another example is locating the .htpasswd files that are used to store
username-password pairs for basic authentication of HTTP users and also to
configure Apache to run scripts via HTTP. We consider the system commands
find, cat, ls, awk, ln and locate to belong to this category. Here, the
ls and cat command are only counted if provided with particular parameters to
look into configuration directories or the /proc filesystem. For instance, in one
attack, the attacker manually navigated to the /sys/ folder and ended up listing
the contents of the /sys/block where information regarding block devices is
being held.

We found this file investigation behavior in only 16 (0.5%) and 275 (5.7%)
attacks for the OSCommerce and Web Shell honeypots respectively.

Ph.D. Thesis — Onur Catakoglu

5.3. EXPERIMENTS 87

Table 5.3: Number of attacks by using disguised or obfuscated files

Obfuscated Disguised

OSCommerce 611 1377
Web Shells 1649 40

Local Network – Last but not least, we observed that attackers tried to retrieve
some information about the local network setup in a small number of attacks.
In order to do so, they used various system commands, including netstat and
ifconfig.

5.3.4 Disguised & Obfuscated Files

We find that 29% of the attacks included at least one obfuscated file (see
Table 5.3). The majority of them relied on a simple procedure that first de-
codes a long encoded string (usually base64), then decompresses it by calling
gzinflate, and finally passes the result to the eval function to be interpreted as
PHP code. Some attacks adopted more complex obfuscation, using for instance
“variable variables”, naming variables in Unicode, or even implementing a custom
decryption/deobfuscation algorithm. For instance, the popular online deobfus-
cation tool UnPHP1, which was also used by a previous work [SDA+16a] to
statically analyze malicious files, was unable to deobfuscate 16% of the packed
files in our dataset. We believe this further emphasizes the importance of using
the dynamic analysis approach we adopted in this work.

Attackers also uploaded scripts (mainly PHP and Perl) with false header infor-
mation to disguise them as image files. This is a common behavior, adopted to
evade simple control mechanisms and file upload checks. For instance, attackers
abused some OSCommerce features (such as those to set a banner image or add
a new thumbnail for a product) to upload disguised malicious files. Thanks to the
our instrumented PHP, we were able to detect the execution of files which are
given a different extension rather than their original type. To be more specific,
we found that such files downloaded and executed via system commands in 31
attacks. Because the web applications may use blacklists for the files with the
certain dangerous extensions (e.g. Perl), files disguised in this way can penetrate
through the blacklist.

1https://www.unphp.net

Using Web Honeypots to Study the Attackers Behavior

88 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

15 610 1120 2140 4160 6180 81100 101200201500 >500
Number of requests

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 a

tta
ck

s

Figure 5.3: Number of requests by number of attacks for OSCommerce

5.4 Results

We used our tool to analyze all successful, non-empty attacks received by the
two honeypot systems. We considered an attack successful if the attacker up-
loaded at least one additional file (either by exploiting the vulnerability in the
OSCommerce application or by taking advantage of one of the pre-installed web
shells) and non-empty if such file received at least one HTTP request from the
attacker. These simple heuristics rule out simple defacement attacks, which are
still relevant but do not require a dynamic analysis system to understand their
behavior, as well as automated attacks that upload files that are never used af-
terwards. It is important to note that since our honeypot machines were rolled
back every 24h, this second category boils down to successful exploitation in
which the attacker did not interact with the system before midnight.

After this filtering stage, we were left with over 8K attack sessions: 3248 recorded
against the OSCommerce application and 4818 against the server hosting Web
Shells. As it can be seen from Figure 5.3 and Figure 5.4, a large proportion of
the attacks consisted of just few requests, performed right after the malicious
file was uploaded. These were most likely fully automated attacks in which a
script exploited the vulnerability, uploaded a malicious file, and then visited the
corresponding URL to trigger its behavior. This is also confirmed by the fact that
the triggering request was often received multiple times in a row in a rapid burst,
probably to be certain that the uploaded file was executed – and by the fact that
most of these attacks were recorded on the OSCommerce system. In this case,
the report generated by our system corresponded to the behavior observed from
a single execution of the malicious PHP file.

The remaining 34% of the attacks contained instead multiple different requests,
with a pattern that suggested the presence of a human attacker interacting with
the system. In 28% of these cases the attackers uploaded multiple files. In this

Ph.D. Thesis — Onur Catakoglu

5.4. RESULTS 89

15 610 1120 2140 4160 6180 81100 101200201500 >500
Number of requests

0

500

1000

1500

2000

2500

3000
N

um
be

r
of

 a
tta

ck
s

Figure 5.4: Number of requests by number of attacks for Web Shells

case, the report generated by our system covered the behavior of multiple PHP
files, each possibly executed multiple times with different parameters.

It is also interesting to see how different types of vulnerable machines may result
in a completely different nature and distribution of attacks they collect. The
OSCommerce vulnerability was most likely identified using Google Dorks [Joh17]
and targeted by automated scripts. On the other hand, the second honeypot
mimicked an already compromised machine where previous attackers left a web
shell installed on the system. In this case, automated crawlers or Google Dorks
might have been used to discover the presence of the shell, but to take advantage
of it required a manual interaction from the attacker. Our data also shows that
miscreants tend to be more careful when they manually infiltrate an already
compromised system.

This also resulted in different attack behaviors, as summarized by Figure 5.5.
Again, we see that different classes of actions appear with largely different per-
centages in the two honeypots. For example, it was not unusual for the attackers
on the web shell honeypot to delete their files after they completed their actions.
However, this behavior was almost never observed in the attacks against the
vulnerable web application. Even more extreme is the case of emails. Over 60%
of the attacks against OSCommerce resulted in at least one email being sent –
either as a way to notify back the attackers of a successful exploitation or as part
of a spam campaign sent by an uploaded mailer. Another possible explanation
could be that a CMS like OSCommerce usually have a mail server set up and
since the automated scripts are configured to target a specific CMS, attackers
expected to use this mechanism freely in such servers. Attacks originating on
the web shell honeypot instead never attempted to send emails, confirming the
mostly manual nature of these attacks.

It is no surprise instead that a large number of attacks on both platforms involve

Using Web Honeypots to Study the Attackers Behavior

90 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

 0 20 40 60 80 100
Attack percentage [%]

 received at each honeypot

cURL ext.

Read ownership

Set cookie

Send mail

Symlink

List directory

Socket connection

Read file

Upload file

Write file

Delete file

Execute command

Eval

P
H

P
 o

pe
ra

tio
ns

Web Shells
OSCommerce

Figure 5.5: Number of attacks containing specific operation

the execution of system commands. The most frequently invoked commands
include tools to gather information such as whoami, uname, ls, which, id,
and pwd. Some of them were invoked by the attacker, while others were executed
automatically at every access from certain uploaded scripts or web shells (as it
is the case, for instance, of ‘id’).

There is not much difference also when it comes to reading the contents of files,
browsing directories, or fetching user privilege information such as user and group
ids.

The use of obfuscation, and in particular of the eval statement, is again largely
different among the two machines – but this time being more prevalent on the
attacks against OSCommerce. The use of the ‘write’ API also shows a clear
unbalance. In this case, a closer look shows that it was used almost exclusively
by mailers, which are tools dedicated to send large volumes of spam or phishing
e-mails. Among other uses, miscreants created/modified ‘.htaccess’ files in

Ph.D. Thesis — Onur Catakoglu

5.5. CASE STUDIES 91

226 attacks to restrict access to the directory they store their files. Also in 75
attacks, an index file was created to prevent visitors to list the content of the
directory.

The cURL extension was used for different purposes, including to launch a, in-
tentional or not, DOS attack against localhost’s telnet, ftp, and cPanel (2082)
ports. For example, in one attack the malicious file attempted to connect
to (http://localhost:2082) over 314K times. Attackers also attempted to
launch DOS attacks by using PHP sockets. For example, one attack attempted
to send respectively 150K, 251K, and 9.4M UDP packets against three separate
IP addresses.

Additionally, attackers tried to open connections to some IRC domains as part of
12 attacks against OSCommerce. A quick search for some of them (e.g. irc.
byroe.org) revealed that they are indeed related to botnets. Finally, contrary to
expectations, database APIs received very little attention and did not yield any
interesting results for both honeypots. This may suggest that attacks against
OSCommerce were not interested in stealing users’ information but were mostly
looking for a compromised machine to run their tools.

5.5 Case Studies

In this section, we present two case studies to better demonstrate how our
methodology helps in understanding the behavior of a malicious file and the
actions performed during a web attack.

5.5.1 Case I

In this first example, the attacker exploited the OSCommerce vulnerability and
used it to upload a simple web shell. We extract the URL of the shell from
the Apache logs and run it in our sandbox. The behavioral report shows that
the attacker first used the web shell to create a .htaccess file that configured
the Apache server to run Perl CGI scripts from the current directory. He then
uploaded a Perl script named cwo.pl. According to its content, the purpose of
this tool appears to be gathering sensitive information from the server, including
the hosted domains and the list of users. Still interacting with his web shell,
the attacker gives the execute permission (using the system command ‘chmod
755 cwo.pl’ to the script, and run it by sending a simple GET request to its
URL. At this point the attacker might have noticed something suspicious, as the
information collected from our honeypot may not have looked as realistic as in
an active CMS. Possibly for this reason, the attacker started exploring the users
of the honeypot by performing the following steps:

• Check if any user is logged on using the who command

Using Web Honeypots to Study the Attackers Behavior

http://localhost:2082
irc.byroe.org
irc.byroe.org

92 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

• Upload a second web shell

• Scan the content of the ..OSCommerce/catalog/

• Attempt to retrieve the content of the /etc/group and /etc/passwd files

• List the content of /var/www/

• Check what logged in users are doing using the w command

• Finally, delete everything in the current working directory recursively (rm
-r *), and leave.

This attack shows three important things. First, that the attack left no signs in
the system after the attacker left. Second, that simply looking at the uploaded
files, as it was done by Canali et al. [CB13a], would only allow to identify two
web shells. Even a careful static analysis of these shells would reveal nothing
interesting about the attack. Likewise, executing the shells would be pointless
as their behavior is only dictated by the input provided by the user. Finally,
reconstructing the attack steps by simply looking at the web server log files
would be difficult, as to interpret some of the actions it would be necessary to
first understand the code of the web shell and the format of its commands.

Our sandbox instead can automatically replay the entire attack session while
monitoring the attacker’s steps. The report generated by our system shows
how carefully the attacker investigates the server before deciding to leave the
machine.

5.5.2 Case II

The second example is taken from the Web Shell honeypot. Also in this case,
the attacker used one of the pre-installed web shells to install another shell
of her choice – which is the entry point for our analysis. Using her shell, the
attacker retrieved the users’ information from /etc/passwd and the block device
attributes cache from /etc/blkid.tab.

She then created a .htaccess file similar to the one encountered in our previous
example, and eventually uploaded a Perl script called slowloris.pl. A quick
research reveals that this file is a DDoS attack software and works by opening
multiple connections to the target machine. Immediately after installing her
tool, the attacker executed it by passing it as parameter an IP address located
in North Africa. Since our honeypot prevented any outgoing connections, what
happened after that is particularly interesting. As the attacker probably noticed
that the attack had failed, she returned few minutes after and used her web
shell to upload another file, this time a PHP code. This file was also triggered
by an HTTP request and its behavior, captured by our sandbox, was again to

Ph.D. Thesis — Onur Catakoglu

5.6. DISCUSSIONS & LIMITATIONS 93

start another DOS attack by opening multiple socket connections to the same
IP address. This second file was obfuscated with a complex encryption schema,
and current state-of-the-art PHP deobfuscators failed to retrieve its content.

5.6 Discussions & Limitations

Both our honeypot systems and our analysis sandbox were configured to block
any outgoing connection attempt. This makes the result of our analysis consis-
tent with what was collected and performed in the honeypot machine. However,
if the web server logs were acquired from a machine with Internet access, and
then replayed on a firewalled sandbox, it is possible that the final behavior would
diverge if the attacker downloaded (instead of uploading) his components. In
fact, in this case the download operations would not be logged by ModSecurity
and would fail in the sandbox execution. A similar result could be obtained by
replaying an attack in a sandbox long after the attack was performed (when
externally downloaded components may not be available anymore). This is a
common problem in malware analysis, where C&C servers are often offline at
the time a sample is executed in the analysis environment. However, this phe-
nomenon did not verify in our experiments, since even the machine where the
logs were collected did not allow outgoing connections, thus forcing the attackers
to upload, instead of downloading, their files.

In our experiments, we consider an attack anything that happened following
an uploaded file on one of the two honeypots. However, it is possible that
an attacker exploited the same vulnerability two times in a row to upload two
separate components – which therefore belonged to the same attack. In this
case, the two files would serve as separate entry points for our analysis, thus
being counted as two separate attacks. However, this is not a limitation of our
sandbox, but just a way we process the logs acquired with the web application
honeypots. If this was a real attack, an analyst would simply pass both URLs
as part of the same analysis, therefore allowing our system to generate a single
behavioral report for the entire attack session.

5.7 Conclusions

The goal of this Chapter is to facilitate the analysis of server-side web attacks,
by introducing the first dynamic analysis framework specifically designed for this
purpose. Previous static analysis approaches focused more on the malicious code
itself, which may fail to capture subtle attack details and the overall attacker be-
havior. Therefore, inspired by modern malware sandboxes, our aim is to perform
a fine-grained analysis of web attacks by following a dynamic approach.

Using Web Honeypots to Study the Attackers Behavior

94 5. AUTOMATIC ANALYSIS OF WEB ATTACKS USING A PHP SANDBOX

Our work starts with the instrumentation of the PHP interpreter, which we then
install in a virtual environment and feed with real attack traces to to monitor
the behavior and evolution of web attacks. We evaluate our approach using
the two previously deployed honeypots described in Chapters 3 and 4. Overall,
we successfully replayed more than 8000 attacks to our system, and generated
detailed attack reports for each of them. The analysis of these reports show that
different types of web applications receive attacks of different nature. Moreover,
even though the adversaries may rely on the same set of tools, their goal may
be quite different – ranging from system exploration and file investigation to
performing DDoS attacks and page defacements.

Ph.D. Thesis — Onur Catakoglu

Chapter 6

Conclusion and Future
Perspectives

In this thesis, we argued that the analysis of web attacks and especially of
the attackers behavior is essential to better understand current threats against
web applications. In fact, the analysis of these attacks enables us not only to
determine the real impact of an attack but also to automatically identify similar
cases and potential victims. Motivated by this observation, we relied on high-
interaction virtualized bait systems, normally called honeypots, to conduct our
experiments.

To support our argument, we demonstrated in the first part of the thesis how
the automated nature of web attacks can be used as a leverage to discover other
compromised web applications. We showed that the external resources of an
exploit kit, which may be completely benign per se, can be successfully used as
Indicators of Compromise for web applications. We conducted live exper-
iments on several honeypots to automatically extract these external resources
from real attacks and proposed a set of features to distinguish the ones that
qualify as valid IOCs.

Second, we looked into the attack landscape in a private part of the Internet
called Tor network, by deploying high-interaction honeypots as Tor hidden ser-
vices. We showed that attacks in Dark Web do indeed have a lot in common
to those we observe on the normal Web, because of the fact that proxy services
can channel automated exploitation scripts from the surface to the Dark Web.
Additionally, our work revealed certain attack vectors specific to the Tor network
and different post-explanation behaviors once the traffic from the Surface Web
is filtered out.

In the final part of the thesis, we explain why the analysis regarding the at-
tacker behavior against web applications is challenging and we emphasize the
importance of a dynamic approach in that area. We present a sandbox with an

95

96 6. CONCLUSION AND FUTURE PERSPECTIVES

instrumented PHP interpreter in which we replay the traffic of more than 8,000
attacks acquired from two honeypots. The results of our experiments showed
that different kinds of vulnerabilities in web applications attract different type
of attacks. Our tool provides a much more complete overview on the actual
behavior of the attackers compared to other state-of-the-art methodologies.

6.1 Future Work

In this dissertation, we studied how to collect, analyze, and use information
related to the behavior of attackers on the Web. However, many aspects of Web
attacks still remain unexplored and many of their details are left to discover for
future experiments.

6.1.1 Public external resources

As mentioned in Chapter 3, attackers often maintain part of their toolkits on
public code repositories. We have discovered this phenomenon during the collec-
tion of URLs extracted from the components uploaded by attackers. We believe
that many of such public external resources may be used to build Web indica-
tors of compromise. In this direction, an interesting future direction can focus
on the analysis how this data can be an asset for detecting compromised web
applications.

Some of the popular libraries for changing the visual appearance of web ap-
plications are tailored and used by large companies like Yahoo or Paypal. We
discovered that miscreants may use the very same resources - even sometimes
the same URL - to imitate the visual aspects of their web sites. As this allows
a perfect setup for phishing attacks, analyzing such external components can
provide a valuable source of information for the automatic detection of phishing
pages.

6.1.2 Unexplored aspects of the Dark Web

The work we presented in Chapter 4 was the initial attempt to understand the
attacker behavior in the Dark Web. For our experiments we only considered the
Tor network because it is the most popular one. However, there are also other
instances of Dark Web, such as the Invisible Internet Project (I2P) where the
attack landscape is still unknown.

Our study also reveals attack vectors specific to the Tor network. Though we
explained our findings, the vulnerabilities peculiar to Tor were never truly ex-
ploited. Thus, questions like how prevalent these attacks and what attackers do

Ph.D. Thesis — Onur Catakoglu

6.2. CONCLUDING THOUGHTS 97

once they exploit these vulnerabilities were left unanswered. Additionally, our
work adopts a server-side approach for the analysis of the attacks in the Tor net-
work. Recently, researchers (see Section 2.3) started to look into the suspicious
behavior of hidden services, but still more experiments adopting a client-side
approach may help to identify potential risks related to the Tor network.

6.1.3 Improvements on Server-Side Analysis of Web Attacks

The honeypot infrastructure have certain limitations just because they are sys-
tems designed to attract adversaries on the Web. One of them is that the
popularity (i.e., the ranking on a search engine) of honeypots is often much
lower than the of other existing web pages. While this could be an advantage
for normal users since the rate of access to a compromised web application will
decrease, low search index will also attract much fewer real and manual attack-
ers. It would be possible to perform a more refined study if such experiments
were conducted together with some of the vendors on the Internet.

Our work proposed in Chapter 5 is also designed to address the above men-
tioned concerns. However, our instrumented PHP interpreter and/or sandbox
for web attacks cannot solve such issues by itself. While PHP is the most com-
mon server-side language for developing web applications, there are also other
various scripting languages commonly used for web development. A possible
improvement in that sense would be to include more instrumented scripts for
web applications to further use in a sandbox.

In addition, our work initially relies on a component, such as an Intrusion Detec-
tion System or manual inspection, to detect the initial step of the attack. How-
ever, it is possible to create a much more sophisticated and fully automatized
web attack sandbox by also including a static approach for detecting/capturing
the initial step of the attack.

6.2 Concluding thoughts

Even though the Internet users are today more aware of the possible threats,
security of web applications is likely to remain an important issue for the future.
In order to adopt a proactive approach, understanding the nature of the attacks
and the mindset of the adversaries is crucial. We believe our work will help to
create more awareness and encourage more academic research on this interesting
topic.

Using Web Honeypots to Study the Attackers Behavior

Appendix A

Résumé en français

Le Web ressemble aujourd’hui à un grand centre commercial avec un public mon-
dial pour ses produits et services. Dans ce média, les entreprises interagissent
avec leurs clients via des applications Web, qui permettent la présentation et /
ou la vente de divers produits et services. Cependant, l’adoption de ce canal de
communication apporte de nouveaux défis, dont la sécurité de telles applications
Web. Bien que les grandes entreprises aient tendance à prendre cette question au
sérieux, les petites et moyennes entreprises manquent souvent de compétences,
de temps et de ressources pour bien sécuriser leurs systèmes. En raison du fait
que les développeurs ne sont souvent pas conscients des différentes menaces et
de leurs conséquences possibles, même les mesures de sécurité les plus élémen-
taires sont négligées. Une croyance commune parmi de nombreux propriétaires

de commerce électronique est que l’Internet est énorme et, par conséquent, leur
site Web ne sera pas remarqué par les mécréants. Cependant, les pirates utilisent
généralement des scanners automatisés et des robots d’indexation des moteurs
de recherche pour trouver des vulnérabilités. Alors que les attaques ciblées (telles
que la violation de données affectant LinkedIn en 2016) nécessitent un proces-
sus rigoureux et fastidieux (notamment une reconnaissance méticuleuse et une
stratégie et une exécution bien planifiées), l’automatisation offre une exposition
massive et des chances de succès plus grandes. cibles beaucoup plus vite. En
outre, les outils automatisés peuvent également être utilisés avec succès par des
attaquants inexpérimentés - résultant en un arrière-plan constant d’attaques pas
très sophistiquées, mais toujours très efficaces, qui peuvent facilement atteindre
chaque site Web vulnérable sur le Web. Malgré les efforts considérables de la

communauté de la sécurité, le pourcentage de sites Web vulnérables n’a mon-
tré aucun signe de récession au cours des dernières années. En effet, 76% des
sites Web analysés par des chercheurs en sécurité en 2016 contenaient des vul-
nérabilités [Sym17,Aka17]. Les adversaires sont régulièrement à la recherche de
serveurs vulnérables sur le Web afin d’exploiter et de tirer parti de ces systèmes

99

100 A. RÉSUMÉ EN FRANÇAIS

exposés. Une fois compromis, les applications Web sont utilisées abusivement à
diverses fins, notamment pour déployer des botnets, servir des kits d’exploitation,
installer des kits d’hameçonnage ou simplement servir de tremplin pour lancer
d’autres attaques Bien que les cybercriminels puissent également compter sur

des serveurs Web dédiés dans leur infrastructure malveillante, il est généralement
plus avantageux de compromettre les serveurs Web légitimes, car ils sont souvent
perçus comme fiables par d’autres utilisateurs et n’attirent pas l’attention de la
communauté de sécurité. De plus, un serveur Web compromis peut autoriser
un accès supplémentaire à un réseau privé qui serait normalement protégé par
un pare-feu. Tous ces facteurs suggèrent que la sécurité des applications Web
reste un aspect crucial de l’écosystème de sécurité dans son ensemble, car les
sites compromis mettent toujours en danger les clients, les autres entreprises et
même les sites publics et gouvernementaux.

Ph.D. Thesis — Onur Catakoglu

101

Figure A.1: Utilisation de dorks pour trouver des cibles

Web Attack - Un aperçu

Avant d’entrer dans les détails des attaques web, il est essentiel de comprendre
le processus derrière ce phénomène. En raison de la nature vaste et complexe
d’Internet, le terme attaque Web a également une signification très large. Cepen-
dant, comme cette thèse se concentre sur la sécurité des applications web, nous
affinons notre modèle d’attaque à ce domaine particulier. La phase initiale d’une

attaque consiste généralement en l’identification des cibles possibles. À cette fin,
les pirates commencent souvent par tirer parti des moteurs de recherche popu-
laires, en s’appuyant sur des robots automatisés pour rechercher un ensemble de
mots-clés (généralement appelés Google dorks [TACB16]) conçus pour identifier
les sites Web mal configurés ou non. probablement affecté par une vulnérabilité
connue. Par exemple, les sites Web qui exposent les fichiers d’historique MySQL
peuvent être récupérés à l’aide de la requête Google "? Intitle: index.of?"
.mysql_history "En utilisant la même technique, il est également possible de
trouver des versions spécifiques d’applications vulnérables, par exemple Pour les
bannières connues comme "Powered by OsCommerce", le scénario typique de la
phase d’identification est illustré dans la Figure A.1.

Une fois que l’attaquant a trouvé ses cibles, elle peut procéder à la phase
d’exploitation, encore une fois généralement effectuée par des scripts automa-
tisés. Dans cette thèse, nous sommes particulièrement intéressés par ce qui se
passe après que l’attaquant ait réussi à compromettre l’application cible - dans ce
que Canali et al. [CB13a] a appelé la phase post-exploitation. Dans cette phase,
présentée dans la Figure A.2, les attaquants essaient d’atteindre leur objectif
final, qui consiste normalement soit à télécharger de nouveaux fichiers sur la ma-
chine compromise, soit à altérer le contenu du code existant et des pages HTML.
En particulier, un outil très commun qui est souvent installé après qu’une applica-

Using Web Honeypots to Study the Attackers Behavior

102 A. RÉSUMÉ EN FRANÇAIS

Figure A.2: Un modèle d’attaque Web général pour les applications Web

tion a été exploitée s’appelle un "web shell". L’objectif de ces scripts est de per-
mettre aux pirates de contrôler facilement la machine compromise et d’exécuter
des commandes arbitraires en utilisant une interface web intuitive. Les web shell
peuvent être utilisés à différentes fins, par exemple en exploitant d’autres tech-
niques d’exploitation pour augmenter les privilèges, collecter des informations
sur le système, analyser le réseau interne de la machine hôte ou extraire des doc-
uments et des données d’application. Un autre exemple d’outil populaire installé

après un compromis est un "kit d’hameçonnage". L’hameçonnage est un type
d’escroquerie pour attirer les victimes à fournir des données sensibles telles que
les détails de carte de crédit, les mots de passe ou les informations personnelles
utilisées pour le vol d’identité. Un kit d’hameçonnage est une boîte à outils qui
imite l’apparence des sites Web existants (par exemple, Bank of America ou Pay-
pal), permettant ainsi aux personnes ayant peu d’expérience technique de lancer
une campagne d’hameçonnage. Les particuliers peuvent utiliser cette boîte à
outils pour envoyer des spams ou pour transformer la machine d’hébergement en
un site frauduleux pour escroquer des gens. Les attaquants peuvent également

"défacement" la page d’accueil du serveur web compromis en introduisant un
message de personnalisation. Les motivations derrière les suppressions de sites
Web défacement différer. Par exemple, les attaquants qui sont contre un mou-
vement particulier ou un gouvernement (hacktivistes) peuvent choisir de laisser
un message politique, d’autres peuvent simplement railler les administrateurs du
site ou se faire de la publicité pour gagner de la célébrité. Mis à part les exemples

mentionnés ci-dessus, il existe d’innombrables types de fichiers malveillants et

Ph.D. Thesis — Onur Catakoglu

103

de scripts téléchargés sur des applications Web compromises, chacun servant un
objectif différent et spécifique, comme joindre un botnet, envoyer de gros vol-
umes de spams ou scanner le réseau. autres victimes possibles. Tout au long de
cette dissertation, nous présenterons de nombreux types d’instruments d’attaque
de ce type et nous discuterons plus en détail de leur impact.

Comprendre la nature des attaques Web

L’analyse de la nature, de la motivation et des détails techniques de la con-
duite des attaques Web peut fournir une information précieuse à la communauté
de la sécurité. Puisque les mécréants laissent généralement des traces après
avoir compromis un système, l’étude de leurs actions et des modèles qu’ils suiv-
ent pendant et après une attaque peut être d’une grande valeur. Comprendre
comment les méchants infiltrent le système peut aider à le sécuriser et à cor-
riger d’éventuelles vulnérabilités. De plus, des schémas spécifiques, un fichier
unique ou parfois même simplement un mot-clé pourraient aider à identifier des
cas similaires d’infections. Un exemple simple serait un attaquant qui utilise la
même image unique pour défigurer la page d’accueil de ses sites Web ciblés.
Compte tenu de l’utilisation courante des outils automatisés, de telles informa-
tions peuvent permettre une détection à grande échelle de la même attaque.
Bien qu’aucun système ne soit totalement à l’abri des attaques Web, les pro-

priétaires de sites peuvent prendre des précautions supplémentaires s’ils savent
comment les criminels découvrent leurs cibles. De telles précautions sont partic-
ulièrement importantes dans l’existence d’exploits de 0 jour, c’est-à-dire lorsque
l’application souffre de vulnérabilités précédemment inconnues pour lesquelles un
correctif n’est pas encore disponible. Par exemple, une vulnérabilité de 0 jour
affectant une certaine version d’un système de gestion de contenu Web (CMS)
encouragerait les mécréants à identifier automatiquement ces sites Web. En
connaissant les stratégies utilisées par les attaquants pour localiser leurs cibles,
il peut être possible d’échapper aux attaques même si le site est toujours vul-
nérable [TACB16]. De plus, révéler la motivation d’un attaquant peut aider à

récupérer rapidement après un compromis. Si des données d’utilisateur sont di-
vulguées, les clients doivent être avertis de changer leurs mots de passe; ou si les
mécréants placent une porte dérobée, les agents de sécurité doivent la réparer
dès que possible. Comprendre comment les mécréants développent leur vecteur
d’attaque et comment ils délivrent un contenu malveillant est crucial pour une
telle enquête. Par exemple, un certain type de comportement observé dans une
attaque similaire peut aider à identifier le but de l’attaque, et par conséquent
de telles informations peuvent être utilisées pour trouver les parties impactées
du système. Pour résumer, nous croyons que la lutte contre les attaques web

Using Web Honeypots to Study the Attackers Behavior

104 A. RÉSUMÉ EN FRANÇAIS

ne peut être réalisée uniquement en construisant des mécanismes de défense.
Tout aussi important est la capacité de comprendre la nature des attaques et la
motivation derrière elles.

Honeypots

Dans la section précédente, nous avons souligné la nécessité d’avoir un système
permettant l’observation des attaques web pour améliorer la sécurité des appli-
cations web. Afin d’étudier la nature des attaques à grande échelle, l’une des
approches les plus communes consiste à mettre en place des systèmes d’appâts
à l’aspect vulnérable - qui sont généralement appelés pots de miel. Les pots de
miel peuvent être construits pour presque n’importe quel protocole de commu-
nication, à la fois au niveau du réseau et de la couche applicative (par exemple
HTTP, SSH, Telnet et SMTP). Cependant, puisque cette dissertation se con-
centre sur les attaques web ciblant les applications web, nous ne couvrirons que
les pots de miel d’applications web pour le reste de la thèse. Nous séparons prin-

cipalement les honeypots Web en deux catégories: les pots de miel côté client et
les pots de miel côté serveur. Les honeypots côté client (également connus sous

le nom de honey-clients) sont des logiciels se comportant comme des navigateurs
Web traditionnels qui interagissent avec des serveurs Web distants. L’objectif
de ces systèmes est de rechercher, rechercher et analyser de manière proac-
tive des applications Web malveillantes ou compromises. Une façon courante
de mettre en œuvre un tel système consiste à instrumenter un navigateur Web
existant [NWS+16]. Ces applications instrumentées tentent généralement de
détecter des signes d’anomalies lors de la visite d’un site Web, par exemple
en effectuant un suivi de certains événements lors de l’exécution de son code
JavaScript [CKV10]. Une autre utilisation courante de miel-clients consiste à
collecter automatiquement des échantillons de logiciels malveillants sur le Web,
en explorant des sites Web malveillants [CGZ+11]. D’autre part, les honeypots

côté serveur visent à attirer les attaquants en exposant des services apparem-
ment vulnérables. Les honeypots côté serveur sont divisés en deux classes: les
pots de miel à faible interaction et les pots de miel à haute interaction. Les pots
de miel à faible interaction sont des systèmes simulés qui ne contiennent pas
nécessairement de véritables services. Bien qu’ils soient très pratiques pour la
collecte d’informations et la surveillance des attaques entrantes, leur capacité à
capturer les détails de l’attaque est assez limitée. Par exemple, ils ne fournissent
aucune fonctionnalité de backend ou de système d’exploitation car ils ne sont
pas destinés à être réellement exploités. Par conséquent, les données collectées
par les honeypots à faible interaction peuvent couvrir les phases de reconnais-
sance et d’exploitation, mais ne reflètent pas fidèlement le comportement des

Ph.D. Thesis — Onur Catakoglu

105

attaquants et leurs véritables intentions. Les pots de miel à haute interaction

sont utilisés à la place pour démêler les objectifs réels des adversaires. Ce sont de
véritables systèmes dans lesquels les attaquants peuvent réellement exploiter une
véritable application web et interagir avec le système d’exploitation sous-jacent
par la suite. Le cas d’utilisation le plus courant du déploiement d’un tel système
consiste à effectuer une surveillance à long terme des étapes de l’attaquant et
à inspecter et analyser son comportement. Malgré leurs avantages par rapport

aux systèmes simulés, les pots de miel à forte interaction présentent également
des défis importants, comme mentionné dans les travaux précédents [CB13a].
En particulier, puisqu’il s’agit de systèmes réels sous le contrôle d’un attaquant,
ils peuvent constituer un risque pour d’autres services. La virtualisation en elle-
même ne peut pas contenir tous les scénarios possibles, car un serveur Web
malveillant ne constitue pas seulement une menace pour lui-même mais aussi
pour d’autres parties sur Internet. Puisque cette thèse se concentre sur le suivi

des agresseurs et sur l’analyse de leur comportement, les pots de miel à forte
interaction sont les mécanismes d’observation naturels adoptés pour cette thèse.
Plus tard, nous discuterons plus loin de la façon dont nous surmonterons les défis
posés par la gestion des pots de miel pendant de longues périodes et comment
nous les adaptons en fonction de nos besoins.

Using Web Honeypots to Study the Attackers Behavior

106 A. RÉSUMÉ EN FRANÇAIS

A.0.1 Déclaration de problème

Cette thèse est centrée sur le problème de la collecte et l’analyse du comporte-
ment de l’attaquant en utilisant des pots de miel web. Plus spécifiquement,
cette dissertation aborde trois problèmes principaux, résumés comme suit:

• Les méthodologies de détection existantes sont incapables de suivre le ry-
thme actuel auquel les sites Web sont compromis. En fait, nous montrerons
comment les artefacts clés utilisés par les attaquants peuvent rester non
détectés pendant quatre ans. Ainsi, de nouvelles techniques sont néces-
saires pour distinguer les sites Web potentiellement dangereux des sites
Web bénins, de manière simple et automatisée.

• Grâce aux efforts des chercheurs précédents, il est désormais de notoriété
publique que les sites Web sont exploités sur le Web. Cependant, la partie
isolée du Web (aussi connue sous le nom de Dark Web) n’a pas reçu
beaucoup d’attention de la part de la communauté de la sécurité en termes
d’analyse de son paysage d’attaques. Comme les cybercriminels ont adopté
le Dark Web comme plate-forme pour mener leurs activités illégales, y
compris l’hébergement de logiciels malveillants [O’N] et l’exploitation de
réseaux de robots [Bro10], it is still unclear how, il est difficile de savoir
comment les adversaires mènent des attaques contre les services cachés
hébergés sur ces réseaux privés.

• À ce jour, les chercheurs ont principalement concentré leur attention sur
les techniques d’étude du code malveillant côté client, et n’ont examiné
que récemment le code côté serveur du point de vue de l’analyse statique.
Pendant ce temps, les équipes de réponse aux incidents doivent analyser
les journaux du serveur Web et désobstruer manuellement les scripts pour
tenter de comprendre les actions qui ont été effectuées dans le cadre d’une
attaque réussie. Un tel processus d’analyse prend beaucoup de temps et
est sujet aux erreurs - et il pourrait bénéficier de techniques automatisées
similaires à celles que nous utilisons aujourd’hui pour analyser des échan-
tillons binaires malveillants.

Ph.D. Thesis — Onur Catakoglu

107

A.0.2 Contributions

Pour aborder les problèmes présentés dans la section 1.1, les contributions suiv-
antes sont présentées dans cette thèse.

• Au chapitre 3, nous proposons pour la première fois une technique automa-
tisée pour extraire et valider les Indicateurs de Compromis (IOC), qui sont
des artefacts médico-légaux utilisés comme des signes qu’un système a été
compromis par une attaque ou qu’il a été infecté. un logiciel malveillant
particulier, pour des applications Web. Nous y parvenons en analysant les
informations recueillies par un honeypot à forte interaction. Nos expéri-
ences montrent que notre système est capable de générer automatiquement
des indicateurs de compromis web qui ont été utilisés par des attaquants
pendant plusieurs mois (et parfois des années) dans la nature sans être dé-
tectés. Jusqu’à présent, ces scripts apparemment inoffensifs ont pu rester
sous le radar des méthodologies de détection existantes - bien qu’ils aient
été hébergés pendant longtemps sur des sites Web publics.

• Nous essayons de comprendre si la nature et le volume des attaques web
ont un parallèle dans le Dark Web par rapport au Web traditionnel du
chapitre 4. En particulier, en déployant un honeypot à forte interaction
dans le réseau Tor pendant une période de sept mois, nous avons mené une
étude de mesure du type d’attaques et du comportement des attaquants
qui affectent ce coin encore relativement inconnu du Web. Nos résultats
montrent que les applications Web sur Dark Web peuvent recevoir des
attaques automatisées à partir du Web Surface avec l’aide de passerelles
Tor qui agissent comme un service proxy. De plus, nous avons constaté
que le comportement de l’attaquant implique plus d’activité manuelle au
lieu de tirer parti des bots automatisés.

• Enfin, nous présentons le premier sandbox d’analyse de code PHP au
Chapitre 5. Notre système se compose d’un interpréteur PHP instrumenté
et d’un composant de relecture qui extrait automatiquement les requêtes
HTTP requises du serveur Web cible et les utilise pour stimuler le code
côté serveur imitant exactement l’action de l’attaquant. Cette combinai-
son permet une vue sans précédent sur toutes les étapes effectuées lors
d’une attaque Web, qui sont capturées par notre sandbox et résumées
dans un rapport clair. Nous avons validé notre système en utilisant un
grand ensemble de données de plus de 8.000 sessions d’attaque réelles,
et nous discutons de nos résultats et distillons quelques idées clés sur le
comportement des attaques Web.

Using Web Honeypots to Study the Attackers Behavior

108 A. RÉSUMÉ EN FRANÇAIS

A.0.3 Organisation de ce manuscrit

Dans cette thèse, nous collectons et analysons le comportement des pirates et
son impact sur les applications web et les serveurs web en utilisant des honeypots
web côté serveur à forte interaction. Nous menons également des expériences
pour évaluer la nature, le volume et le résultat des attaques Web. Le reste de la
dissertation est organisé comme suit:

Chapitre 2 - Travaux connexes

Le chapitre 2 donne un aperçu de l’état de l’art dans ce domaine. Le texte
fournit des informations sur les approches côté client, qui sont principalement
pertinentes pour les chapitres 3 et 5, car elles couvrent la détection automatique
des applications Web malveillantes et l’analyse des codes malveillants dans la
nature. D’un autre côté, si les travaux précédents sur les pots de miel à haute
interaction servent de toile de fond pour tous les chapitres suivants, ils sont par-
ticulièrement pertinents pour le chapitre 5, en raison de la technique dynamique
d’analyse côté serveur pour étudier les attaques web. Enfin, le travail connexe
se termine par un aperçu des études antérieures axées sur la mesure des carac-
téristiques du Dark Web, ce qui motive nos expériences présentées au chapitre
4.

Chapitre 3 - Indicateurs Web de compromis

Dans ce chapitre, nous présentons l’utilisation de WIOC (Web Indicators of Com-
promise) et une technique automatisée pour les extraire automatiquement des
machines compromises. Le chapitre commence à partir de l’observation, dérivée
de plusieurs années de fonctionnement d’un honeypot d’application Web, que
des composants à l’apparence innocente peuvent être utilisés comme un levier
pour localiser les pages compromises. Nous expliquons ensuite comment ces
éléments peuvent être utilisés comme WIOC et intro- duire des cas d’utilisation
possibles. Nous décrivons ensuite les caractéristiques que nous avons identifiées
pour distinguer les indicateurs valides des indicateurs non valides et présentons
l’évaluation réalisée sur un certain nombre d’expériences en direct. Le travail
basé sur ce chapitre a été publié dans la 25ème conférence internationale de
World Wide Web (WWW) en 2016 [CBB16].

Ph.D. Thesis — Onur Catakoglu

109

Chapitre 4 - Attaque le paysage dans le sombre Web

Ce chapitre décrit la conception et le déploiement d’un honeypot à forte inter-
action dans le réseau Tor pendant une période de sept mois. Notre objectif était
de comprendre si les menaces auxquelles les applications Web traditionnelles
sont exposées ont un parallèle dans le Dark Web. En particulier, le chapitre
discute des principales différences, en termes d’avantages et de désavantages,
entre le déploiement et la maintenance d’un pot de miel sur le Web traditionnel
et l’utilisation d’une infrastructure similaire à celle d’un service caché de Tor.
Nous détaillons les différentes stratégies publicitaires et leur impact sur la col-
lecte des données et discutons enfin des résultats de nos expériences. Le travail
présenté dans ce chapitre a été publié dans le 32ème symposium ACM SIGAPP
sur l’informatique appliquée (SAC) en 2017 et a remporté le prix du meilleur
article pour la piste du logiciel système et de la sécurité [CBB17].

Chapitre 5 - Analyse automatique des attaques Web à l’aide d’un sandbox
PHP

Dans ce chapitre, nous présentons une nouvelle approche dynamique pour anal-
yser les applications Web côté serveur malveillantes. Nous expliquons d’abord
les défis de la compréhension des attaques contre les applications Web et com-
ment les techniques d’analyse statiques et manuelles actuelles peuvent prendre
beaucoup de temps et provoquer des erreurs. Cela sert de motivation pour le re-
cours à l’analyse dynamique et la conception d’un sandbox dédié pour l’analyse
des attaques web côté serveur. Le chapitre se termine par l’élaboration des
résultats obtenus en rejouant plus de 8 000 attaques, ce qui nous a aidé à dé-
montrer comment le comportement des attaquants peut différer en fonction de
l’environnement cible.

Chapitre 6 - Conclusions

Enfin, nous terminons la thèse en résumant les chapitres précédents, en passant
en revue leurs principales contributions, en esquissant les futurs travaux possibles
dans la région.

Using Web Honeypots to Study the Attackers Behavior

List of Publications

Conference and Journal Publications

1. O. Catakoglu, M. Balduzzi, D. Balzarotti Automatic Extraction of Indi-
cators of Compromise for Web Applications. In 25th International World
Wide Web Conference (WWW 2016)

2. O. Catakoglu, M. Balduzzi, D. Balzarotti Attacks Landscape in the Dark
Side of the Web. In ACM Symposium On Applied Computing (SAC 2017)

3. G. Pellegrino, O. Catakoglu, D. Balzarotti, C. Rossow Uses and Abuses
of Server-Side Requests. In Research in Attacks, Intrusions and Defenses
(RAID 2016)

111

Bibliography

[201] Black Hat USA 2014, You Don’t Have to be the NSA to Break
Tor: Deanonymizing Users on a Budget . 28

[acu] Acunetix Ltd, Web Vulnerability Scanner , http://www.
acunetix.com/vulnerability-scanner/, Accessed: 2016-09-
26. 70

[ahm] Ahmia, https://ahmia.fi/, Accessed: 2016-09-26. 61

[Aka17] Akamai, akamai’s [state of the internet] / security, q1 2017 re-
port , 2017. 11, 99

[AKM13] Luca Allodi, Vadim Kotov, and Fabio Massacci, Malwarelab: Ex-
perimentation with cybercrime attack tools., CSET, 2013. 26

[AYY+17] Mitsuaki Akiyama, Takeshi Yagi, Takeshi Yada, Tatsuya Mori,
and Youki Kadobayashi, Analyzing the ecosystem of malicious
url redirection through longitudinal observation from honeypots,
Computers & Security 69 (2017), no. Supplement C, 155 – 173,
Security Data Science and Cyber Threat Management. 23

[BDM10] Alberto Bartoli, Giorgio Davanzo, and Eric Medvet, A framework
for large-scale detection of web site defacements, ACM Transac-
tions on Internet Technology (TOIT) 10 (2010), no. 3, 10. 23

[BKV13] Kevin Borgolte, Christopher Kruegel, and Giovanni Vigna, Delta:
Automatic identification of unknown web-based infection cam-
paigns, Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (New York, NY, USA),
CCS ’13, ACM, 2013, pp. 109–120. 23

[BKV15] ,Meerkat: Detecting website defacements through image-
based object recognition, Proceedings of the 24th USENIX Con-
ference on Security Symposium (Berkeley, CA, USA), SEC’15,
USENIX Association, 2015, pp. 595–610. 24

113

http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
https://ahmia.fi/

114 BIBLIOGRAPHY

[Bro10] Dennis Brown, Resilient botnet command and control with tor .
16, 55, 106

[car] Tor Project. Did the FBI Pay a University to At-
tack Tor Users? , https://blog.torproject.org/blog/
did-fbi-pay-university-attack-tor-users. 28

[CB13a] Davide Canali and Davide Balzarotti, Behind the scenes of online
attacks: an analysis of exploitation behaviors on the web, 20th
Annual Network & Distributed System Security Symposium (NDSS
2013), 2013, pp. n–a. 13, 15, 26, 56, 57, 58, 61, 64, 67, 75, 77,
78, 92, 101, 105

[CB13b] Davide Canali and Davide Balzarotti, Behind the scenes of on-
line attacks: an analysis of exploitation behaviors on the web,
Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS), NDSS 13, January 2013. 35, 37, 40,
46

[CBB16] Onur Catakoglu, Marco Balduzzi, and Davide Balzarotti, Auto-
matic extraction of indicators of compromise for web applica-
tions, Proceedings of the 25th International Conference on World
Wide Web, WWW ’16, 2016. 18, 35, 56, 108

[CBB17] Onur Catakoglu, Marco Balduzzi, and Davide Balzarotti, Attacks
landscape in the dark side of the web, Proceedings of the 32nd
Annual ACM Symposium on Applied Computing (SAC), SAC 17,
ACM, April 2017. 19, 55, 109

[CBC+17] Igino Corona, Battista Biggio, Matteo Contini, Luca Piras, Roberto
Corda, Mauro Mereu, Guido Mureddu, Davide Ariu, and Fabio
Roli, Deltaphish: Detecting phishing webpages in compromised
websites, pp. 370–388, Springer International Publishing, Cham,
2017. 23

[CBMR] Vincenzo Ciancaglini, Marco Balduzzi, Robert McAr-
dle, and Martin Rösler, Below the Surface: Explor-
ing the Deep Web [Technical Report] , http://www.
deepweb-sites.com/wp-content/uploads/2015/11/
Below-the-Surface-Exploring-the-Deep-Web.pdf. 28,
55

[CCVK11] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher
Kruegel, Prophiler: a fast filter for the large-scale detection of
malicious web pages, Proceedings of the 20th international con-
ference on World wide web, ACM, 2011, pp. 197–206. 35

Ph.D. Thesis — Onur Catakoglu

https://blog.torproject.org/blog/did-fbi-pay-university-attack-tor-users
https://blog.torproject.org/blog/did-fbi-pay-university-attack-tor-users
http://www.deepweb-sites.com/wp-content/uploads/2015/11/Below-the-Surface-Exploring-the-Deep-Web.pdf
http://www.deepweb-sites.com/wp-content/uploads/2015/11/Below-the-Surface-Exploring-the-Deep-Web.pdf
http://www.deepweb-sites.com/wp-content/uploads/2015/11/Below-the-Surface-Exploring-the-Deep-Web.pdf

BIBLIOGRAPHY 115

[CGZ+11] Kevin Zhijie Chen, Guofei Gu, Jianwei Zhuge, Jose Nazario, and
Xinhui Han, Webpatrol: Automated collection and replay of web-
based malware scenarios, Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ACM,
2011, pp. 186–195. 15, 27, 104

[CKV10] Marco Cova, Christopher Kruegel, and Giovanni Vigna, Detec-
tion and analysis of drive-by-download attacks and malicious
javascript code, Proceedings of the 19th International Conference
on World Wide Web (New York, NY, USA), WWW ’10, ACM,
2010, pp. 281–290. 15, 24, 25, 104

[CWS17] CWSandbox, Understanding The Sandbox Concept of Malware
Identification, 2017. 77

[DMKS+14] Giancarlo De Maio, Alexandros Kapravelos, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna, Pexy: The other side
of exploit kits, International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, Springer, 2014,
pp. 132–151. 26

[EAM+15] Birhanu Eshete, Abeer Alhuzali, Maliheh Monshizadeh, Phillip A
Porras, Venkat N Venkatakrishnan, and Vinod Yegneswaran,
Ekhunter: A counter-offensive toolkit for exploit kit infiltration.,
2015. 26

[EV14] Birhanu Eshete and V. N. Venkatakrishnan, Webwinnow: Lever-
aging exploit kit workflows to detect malicious urls, Proceed-
ings of the 4th ACM Conference on Data and Application Security
and Privacy (New York, NY, USA), CODASPY ’14, ACM, 2014,
pp. 305–312. 24

[EVW11] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam,
Malicious website detection: Effectiveness and efficiency issues,
SysSec Workshop (SysSec), 2011 First, IEEE, 2011, pp. 123–126.
75

[FB] Thomas Fox-Brewster, Tor Hidden Services And Drug
Markets Are Under Attack, But Help Is On The Way ,
http://www.forbes.com/sites/thomasbrewster/2015/04/
01/tor-hidden-services-under-dos-attack/. 29

[FCKV09] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vi-
gna, Analyzing and detecting malicious flash advertisements,
Proceedings of the 2009 Annual Computer Security Applications
Conference (Washington, DC, USA), ACSAC ’09, IEEE Computer
Society, 2009, pp. 363–372. 24

Using Web Honeypots to Study the Attackers Behavior

http://www.forbes.com/sites/thomasbrewster/2015/04/01/tor-hidden-services-under-dos-attack/
http://www.forbes.com/sites/thomasbrewster/2015/04/01/tor-hidden-services-under-dos-attack/

116 BIBLIOGRAPHY

[GL09] Salvatore Guarnieri and V Benjamin Livshits, Gatekeeper: Mostly
static enforcement of security and reliability policies for
javascript code., USENIX Security Symposium, vol. 10, 2009,
pp. 78–85. 75

[Goo15a] Google Inc., Safe Browsing API , https://developers.google.
com/safe%2Dbrowsing/, 2015. 35, 42

[Goo15b] , VirusTotal , https://www.virustotal.com, 2015. 42

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, and Ian H. Witten, The weka data mining soft-
ware: An update, SIGKDD Explor. Newsl. 11 (2009), no. 1, 10–
18. 46

[HKB16] Xiao Han, Nizar Kheir, and Davide Balzarotti, Phisheye: Live
monitoring of sandboxed phishing kits, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Se-
curity, ACM, 2016, pp. 1402–1413. 27

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo, Securing web application code by static
analysis and runtime protection, Proceedings of the 13th Inter-
national Conference on World Wide Web (New York, NY, USA),
WWW ’04, ACM, 2004, pp. 40–52. 83

[HYL13] Adam Kliarsky Hun-Ya Lock, Using IOC (Indicators of Compro-
mise) in Malware Forensics, Tech. report, SANS, 2013. 35

[IBC+12] Luca Invernizzi, Stefano Benvenuti, Marco Cova, Paolo Milani
Comparetti, Christopher Kruegel, and Giovanni Vigna, Evilseed: A
guided approach to finding malicious web pages, Proceedings of
the 2012 IEEE Symposium on Security and Privacy (Washington,
DC, USA), SP ’12, IEEE Computer Society, 2012, pp. 428–442.
21, 35

[IHF08] Ali Ikinci, Thorsten Holz, and Felix C Freiling, Monkey-spider:
Detecting malicious websites with low-interaction honeyclients.,
Sicherheit, vol. 8, 2008, pp. 407–421. 35

[JKK06a] N. Jovanovic, C. Kruegel, and E. Kirda, Pixy: a static analy-
sis tool for detecting web application vulnerabilities, 2006 IEEE
Symposium on Security and Privacy (S P’06), May 2006, pp. 6
pp.–263. 83

[JKK06b] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda, Pixy: A
static analysis tool for detecting web application vulnerabilities,

Ph.D. Thesis — Onur Catakoglu

https://developers.google.com/safe%2Dbrowsing/
https://developers.google.com/safe%2Dbrowsing/
https://www.virustotal.com

BIBLIOGRAPHY 117

Security and Privacy, 2006 IEEE Symposium on, IEEE, 2006, pp. 6–
pp. 26

[Joh17] Johnny Long, Hackers For Charity , 2017. 89

[JSU] JSUNPACK, A Generic JavaScript Unpacker . 77

[JYX+11] John P John, Fang Yu, Yinglian Xie, Arvind Krishnamurthy, and
Martín Abadi, Heat-seeking honeypots: design and experience,
Proceedings of the 20th international conference on World wide
web, ACM, 2011, pp. 207–216. 37, 58, 67

[KAL+15] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier,
and Srinivas Devadas, Circuit fingerprinting attacks: Passive
deanonymization of tor hidden services, 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 287–302. 28

[KKK+17] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon,
Yunhui Zheng, Xiangyu Zhang, and Dongyan Xu, J-force: Forced
execution on javascript , Proceedings of the 26th International
Conference on World Wide Web (Republic and Canton of Geneva,
Switzerland), WWW ’17, International World Wide Web Confer-
ences Steering Committee, 2017, pp. 897–906. 25

[KLZS12] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, Rozzle: De-
cloaking internet malware, 2012 IEEE Symposium on Security
and Privacy, May 2012, pp. 443–457. 24, 25

[KM] Vadim Kotov and Fabio Massacci, Anatomy of exploit kits, Engi-
neering Secure Software and Systems 7781, 181–196. 26

[Kor06] Jesse Kornblum, Identifying almost identical files using context
triggered piecewise hashing , Digital Investigation 3, Supplement
(2006), no. 0, 91 – 97. 42

[KSC+13] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christo-
pher Kruegel, and Giovanni Vigna, Revolver: An automated ap-
proach to the detection of evasive web-based malware, Presented
as part of the 22nd USENIX Security Symposium (USENIX Se-
curity 13) (Washington, D.C.), USENIX, 2013, pp. 637–652. 24,
25

[Lew] Sarah Jamie Lewis, OnionScan Report June 2016 - Snap-
shots of the Dark Web, https://mascherari.press/
onionscan-report-june-2016/. 28

[Man15] Mandiant, OpenIOC – An Open Framework for Sharing Threat
Intelligence, http://www.openioc.org, 2015. 35

Using Web Honeypots to Study the Attackers Behavior

https://mascherari.press/onionscan-report-june-2016/
https://mascherari.press/onionscan-report-june-2016/
http://www.openioc.org

118 BIBLIOGRAPHY

[MAS16] Sally M Mohamed, Nashwa Abdelbaki, and Ahmed F Shosha, Digi-
tal forensic analysis of web-browser based attacks, Proceedings of
the International Conference on Security and Management (SAM),
The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (World-
Comp), 2016, p. 237. 27

[MC09] Tyler Moore and Richard Clayton, Evil searching: Compromise
and recompromise of internet hosts for phishing , Financial Cryp-
tography and Data Security, Springer, 2009, pp. 256–272. 23

[Mea15] Meanpath, Meanpath Web Search API , https://meanpath.
com/, 2015. 41

[MKC15] Srdjan Matic, Platon Kotzias, and Juan Caballero, Caronte: De-
tecting location leaks for deanonymizing tor hidden services,
Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, ACM, 2015. 28

[mod] ModSecurity: Open Source Web Application Firewall , https:
//www.modsecurity.org/, Accessed: 2016-09-26. 60

[MSSV09a] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M.
Voelker, Beyond blacklists: Learning to detect malicious web
sites from suspicious urls, Proceedingsof theSIGKDD Conference.
Paris,France, 2009. 22

[MSSV09b] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M
Voelker, Beyond blacklists: learning to detect malicious web sites
from suspicious urls, Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining,
ACM, 2009, pp. 1245–1254. 75

[MSSV11] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M.
Voelker, Learning to detect malicious urls, ACM Trans. Intell.
Syst. Technol. 2 (2011), no. 3, 30:1–30:24. 22

[mWBJ+06] Yi min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad
Verbowski, Shuo Chen, and Sam King, Automated web patrol with
strider honeymonkeys: Finding web sites that exploit browser
vulnerabilities, In NDSS, 2006. 24

[Naz09] Jose Nazario, Phoneyc: A virtual client honeypot., LEET 9
(2009), 911–919. 75

[NIK+12] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven
Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens,

Ph.D. Thesis — Onur Catakoglu

https://meanpath.com/
https://meanpath.com/
https://www.modsecurity.org/
https://www.modsecurity.org/

BIBLIOGRAPHY 119

and Giovanni Vigna, You are what you include: large-scale eval-
uation of remote javascript inclusions, Proceedings of the 2012
ACM conference on Computer and communications security, ACM,
2012, pp. 736–747. 22

[NPAA15] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mus-
taque Ahamad, Webwitness: Investigating, categorizing, and
mitigating malware download paths., USENIX Security Sympo-
sium, 2015, pp. 1025–1040. 27

[NPLN14] Christopher Neasbitt, Roberto Perdisci, Kang Li, and Terry Nelms,
Clickminer: Towards forensic reconstruction of user-browser in-
teractions from network traces, Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security,
ACM, 2014, pp. 1244–1255. 27

[NWS+16] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Chris-
tian Keil, and Jochen Schönfelder, A survey on honeypot software
and data analysis, arXiv preprint arXiv:1608.06249 (2016). 15,
104

[O’N] Patrick Howell O’Neill, Bank thieves are using Tor to
hide their malware [News] , http://www.dailydot.com/crime/
bank-malware-tor2web/, Accessed: 2016-09-26. 16, 55, 106

[Phi15] PhishTank, PhishTank Website, http://www.phishtank.com/,
2015. 35

[PLZ+16] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze,
Jan Pennekamp, Klaus Wehrle, and Thomas Engel, Website fin-
gerprinting at internet scale, Proceedings of NDSS 2016, 2016.
28

[PMM+07] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang,
Nagendra Modadugu, et al., The ghost in the browser analysis of
web-based malware, Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, 2007, pp. 4–4.
22

[RLZ09] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn,
Nozzle: A defense against heap-spraying code injection attacks,
Proceedings of the 18th Conference on USENIX Security Sympo-
sium (Berkeley, CA, USA), SSYM’09, USENIX Association, 2009,
pp. 169–186. 24, 25

[SASC10] Jack W. Stokes, Reid Andersen, Christian Seifert, and Kumar Chel-
lapilla, Webcop: Locating neighborhoods of malware on the web,

Using Web Honeypots to Study the Attackers Behavior

http://www.dailydot.com/crime/bank-malware-tor2web/
http://www.dailydot.com/crime/bank-malware-tor2web/
http://www.phishtank.com/

120 BIBLIOGRAPHY

Proceedings of the 3rd USENIX Conference on Large-scale Ex-
ploits and Emergent Threats: Botnets, Spyware, Worms, and More
(Berkeley, CA, USA), LEET’10, USENIX Association, 2010, pp. 5–
5. 22

[SC14] Kyle Soska and Nicolas Christin, Automatically detecting vulner-
able websites before they turn malicious, Proc. USENIX Security,
2014. 22

[SDA+16a] Oleksii Starov, Johannes Dahse, Syed Sharique Ahmad, Thorsten
Holz, and Nick Nikiforakis, No honor among thieves: A large-
scale analysis of malicious web shells, Proceedings of the 25th
International Conference on World Wide Web, International World
Wide Web Conferences Steering Committee, 2016, pp. 1021–1032.
26, 87

[SDA+16b] , No honor among thieves: A large-scale analysis of mali-
cious web shells, Proceedings of the 25th International Conference
on World Wide Web, WWW ’16, 2016. 56

[SKV13] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna,
Shady paths: Leveraging surfing crowds to detect malicious web
pages, Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, ACM, 2013, pp. 133–144. 35

[SLZ16] B. Stock, B. Livshits, and B. Zorn, Kizzle: A signature compiler
for detecting exploit kits, 2016 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 455–466. 24, 25

[SN] Amirali Sanatinia and Guevara Noubir, Honions: To-
wards detection and identification of misbehaving tor
hsdirs, https://www.securityweek2016.tu-darmstadt.
de/fileadmin/user_upload/Group_securityweek2016/
pets2016/10_honions-sanatinia.pdf. 28

[SRBS17] Iskander Sanchez-Rola, Davide Balzarotti, and Igor Santos, The
onions have eyes: A comprehensive structure and privacy anal-
ysis of tor hidden services, Proceedings of the 26th International
Conference on World Wide Web, International World Wide Web
Conferences Steering Committee, 2017, pp. 1251–1260. 29

[SS02] David Scott and Richard Sharp, Abstracting application-level web
security , Proceedings of the 11th International Conference on
World Wide Web (New York, NY, USA), WWW ’02, ACM, 2002,
pp. 396–407. 83

Ph.D. Thesis — Onur Catakoglu

https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/10_honions-sanatinia.pdf
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/10_honions-sanatinia.pdf
https://www.securityweek2016.tu-darmstadt.de/fileadmin/user_upload/Group_securityweek2016/pets2016/10_honions-sanatinia.pdf

BIBLIOGRAPHY 121

[Ste10] Stefan Esser , Evalhook - Decoding a User Space Encoded PHP
Script , 2010. 77

[Sym17] Symantec, Internet security threat report , apr 2017. 11, 99

[TACB16] Flavio Toffalini, Maurizio Abba, Damiano Carra, and Davide
Balzarotti, Google Dorks: Analysis, Creation, and new Defenses.
12, 14, 64, 101, 103

[TSOM16] Teryl Taylor, Kevin Z Snow, Nathan Otterness, and Fabian Mon-
rose, Cache, trigger, impersonate: Enabling context-sensitive
honeyclient analysis on-the-wire., NDSS, 2016. 25

[Vis] VisAdd, Advertisement Solution, http://visadd.com. 50

[W3T17] W3Techs, Usage statistics and market share of php for websites,
aug 2017. 76

[WBJ+06] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad
Verbowski, Shuo Chen, and Sam King, Automated web patrol with
strider honeymonkeys, Proceedings of the 2006 Network and Dis-
tributed System Security Symposium, 2006, pp. 35–49. 24, 35

[WKM+14] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Hu-
ber, Sebastian Schrittwieser, Stefan Lindskog, and Edgar Weippl,
Spoiled onions: Exposing malicious tor exit relays, Interna-
tional Symposium on Privacy Enhancing Technologies Symposium,
Springer, 2014. 28

[ZH13] Peilin Zhao and Steven C.H. Hoi, Cost-sensitive online active
learning with application to malicious url detection, Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA), KDD ’13, ACM,
2013, pp. 919–927. 22

[ZNG14] Jialong Zhang, Jayant Notani, and Guofei Gu, Characterizing
google hacking: A first large-scale quantitative study , Interna-
tional Conference on Security and Privacy in Communication Sys-
tems, Springer, 2014. 58

Using Web Honeypots to Study the Attackers Behavior

http://visadd.com

	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Contributions
	1.3 Organization of this Manuscript

	2 Related work
	2.1 Detection of Compromised Websites and URLs
	2.2 Analysis of Malicious Code on the Web
	2.2.1 Client Side Approaches
	2.2.2 Server-Side Approaches
	2.2.3 Replaying the Web Attacks

	2.3 Previous Studies on the Dark Web

	I Analysis of Web Attacks Based on Live Honeypot Data
	3 Web Indicators of Compromise
	3.1 How Web Applications gets Compromised
	3.2 Approach
	3.2.1 Data Collection
	3.2.2 Extraction of Candidate Indicators
	3.2.3 Searching the Web for Indicators
	3.2.4 Features Extraction
	3.2.5 Clustering
	3.2.6 Impact on End Users

	3.3 Experiments
	3.3.1 Dataset
	3.3.2 Model Training
	3.3.3 Results
	3.3.4 Antivirus Telemetry

	3.4 Case Studies
	3.5 Limitations
	3.6 Conclusions

	4 Attack Landscape in Dark Web
	4.1 Honeypot in the Dark web
	4.2 Honeypot Setup and Deployment
	4.3 Data Collection and Analysis
	4.3.1 Impact of Advertisement Strategies
	4.3.2 Role of Tor Proxies
	4.3.3 Honeypot Templates

	4.4 Attack Examples
	4.4.1 Scattered attacks
	4.4.2 Automated Attacks through Tor
	4.4.3 Manual attacks

	4.5 Conclusions

	II Dynamic Analysis of Server-Side Malicious Code
	5 Automatic Analysis of Web Attacks using a PHP Sandbox
	5.1 The Role of Dynamic Analysis
	5.1.1 Use Cases

	5.2 Approach
	5.2.1 PHP Instrumentation
	5.2.2 Attack Replay

	5.3 Experiments
	5.3.1 First Phase: Extracting the Malicious Files
	5.3.2 Second Phase: Attack Analysis
	5.3.3 Information Gathering
	5.3.4 Disguised & Obfuscated Files

	5.4 Results
	5.5 Case Studies
	5.5.1 Case I
	5.5.2 Case II

	5.6 Discussions & Limitations
	5.7 Conclusions

	6 Conclusion and Future Perspectives
	6.1 Future Work
	6.1.1 Public external resources
	6.1.2 Unexplored aspects of the Dark Web
	6.1.3 Improvements on Server-Side Analysis of Web Attacks

	6.2 Concluding thoughts

	A Résumé en français
	A.0.1 Déclaration de problème
	A.0.2 Contributions
	A.0.3 Organisation de ce manuscrit

	List of Publications
	Bibliography

