
A Framework for Interactive Geospatial Map Cleaning using
GPS Trajectories

Nikhil Vementala
Arizona State University

Tempe, Arizona
nvementa@asu.edu

Paolo Papotti
Eurecom

Biot, France
papotti@eurecom.fr

Mohamed Sarwat
Arizona State University

Tempe, Arizona
msarwat@asu.edu

ABSTRACT
A volunteered geographic information system, e.g., OpenStreetMap
(OSM), collects data from volunteers to generate geospatial maps.
To keep the map consistent, volunteers are expected to perform the
tedious task of updating the underlying geospatial data at regular
intervals. Such map curation step takes time and considerable hu-
man effort. In this paper, we propose a framework that improves the
process of updating geospatial maps by automatically identifying
road changes from user generated GPS traces. Since GPS traces can
be sparse and noisy, the proposed framework validates the map
changes with the users before propagating them to a publishable
version of the map. The proposed framework achieves up to four
times faster map matching performance than the state-of-the-art
algorithms with only 0.1-0.3% accuracy loss.

CCS CONCEPTS
• Database Applications, Spatial Databases and GIS;

KEYWORDS
Map Cleaning, Map Matching Algorithm

ACM Reference format:
Nikhil Vementala, Paolo Papotti, and Mohamed Sarwat. 2017. A Framework
for Interactive Geospatial Map Cleaning using GPS Trajectories. In Proceed-
ings of IWCTS’17:10th ACM SIGSPATIAL Workshop on Computational Trans-
portation Science , Redondo Beach, CA, USA, November 7–10, 2017 (IWCTS’17),
5 pages.
https://doi.org/10.1145/3151547.3151551

1 INTRODUCTION
In the past decade, digital maps have gained popularity. However, a
map is useful only if it is accurate and includes the latest informa-
tion. Different techniques such as Satellite Imagery and manually
curated maps are employed to keep the maps updated. This process
involves a lot of computing power accompanied with skilled human
supervision. Due to commercial demand, coverage of places like
cities on the map is higher compared to remote places.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWCTS’17, November 7–10, 2017, Redondo Beach, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5491-2/17/11. . . $15.00
https://doi.org/10.1145/3151547.3151551

Avolunteered geographic information system, e.g., OpenStreetMap
(OSM)[16], collects data from volunteers to generate geospatial
maps. Information is collected using various techniques including
the use of satellite/aerial imagery and the user produced GPS traces.
To keep the map consistent, volunteers are expected to update the
underlying geospatial data at regular intervals. Such map curation
step takes time and considerable human effort. There are few third-
party services that attempt to clean the OSM data in an interactive
fashion. For instance, MapRoulette [14] and Kort Game1 gamify
the process of OSM bug fixing. MapCraft [10] divides the map into
small pieces and enables real-time collaboration to edit maps. Ad-
dressHunter [1] improves the address coverage of the places on
the map. KeepRight [13] detects errors like non-closed areas, layer
conflicts, and missing name tags.

Despite these efforts, the problem of automatic detection of new
roads is still to be addressed and has not received much attention.
To tackle this problem, we exploit the user uploaded GPS traces
and automate the process of detecting changes to the road net-
work. As the GPS traces are sparse and possibly with imprecise
measurements, the system asks the user to validate the changes
before applying them to the map.

The main contributions of the paper are as follows: (i) a frame-
work to automate the process of adding roads to the map, (ii) a
new map matching algorithm to identify unmapped parts of the
road network, and (iii) a module that brings the user in the loop
to validate the proposed changes. The rest of the paper is orga-
nized as follows. In Section 2, we discuss the existing methods for
map matching, trace aggregation, and data cleaning. In Section
3, we discuss the proposed framework, followed by experimental
results on real-data in Section 4 and a discussion of the framework’s
limitations in Section 5.

2 RELATEDWORK
Map Matching and Generation: Map Matching algorithms are
used to map a given location data to a spatial road network. They
are classified into four groups based on the techniques used to
match a given GPS trace to the road [12]: geometric, topological,
probabilistic and other advanced algorithms. Geometric algorithms
are based only on the match of the closest road segment for a given
point. However, GPS data can be noisy because of a weak GPS
signal or low-grade equipment. Since data is prone to noise, a geo-
metric method may lead to erroneous results, as it does not consider
the continuity of the road network [12]. Topological algorithms
consider the underlying structure and continuity of the road net-
work [12]. “Probabilistic algorithms use an ‘error region’, which

1http://www.kort.ch/

https://doi.org/10.1145/3151547.3151551
https://doi.org/10.1145/3151547.3151551

is usually an ellipse or a rectangle, to match a given point” [12].
Also in this case, noise in the GPS data makes it difficult for the
algorithms to match the point to the correct nearest road on the
network.

Map matching algorithms based on Hidden Markov Models
(HMMs) [9, 11] have set a benchmark for high accuracy and are
more robust to noisy data compared to other methods. The problem
of map matching also suits the HMM model well. The GPS points
of the trajectory are the observations in the model and the probable
roads are the states. Emission probability gives us the probability of
the road to be matched to the given point. Transition probability is
higher for the roads that are continuous rather than the one which
are away from each other. One of the drawbacks of the HMMmodel
is that calculating transition probability between roads requires
computing the shortest path between the two roads, which is a
resource intensive task. Techniques using multi-core CPUs [15],
pre-calculating the transition probabilities, and considering the
node distance instead of actual distance [9] can be used to speed up
the process but they still need to preprocess the data to implement
the solution.

The problem of autonomous map generation from scratch is
addressed by [5, 7]. In this kind of work, a map is constructed from
the GPS data obtained from vehicles. The data is filtered using
different techniques and maps are generated after this analysis. The
generated maps may not be accurate, because of inherent noise
present in the data. There is need of bringing in an expert or an
oracle who has knowledge of roads who can edit, or adjust proposed
roads to represent the actual roads.

Trace Aggregation: Traces are the individual paths or geomet-
rical lines on a plane. Trace aggregation is the process of replacing
similar traces on the place with one representational line. Previ-
ous work proposed a solution of trace aggregation in two different
ways. One approach [8] considers the LineStrings as lines and ag-
gregates them in a 2D geometrical place. Properties like deflection
of a line and the distance between adjacent lines are considered
while aggregating. Algorithm in [4] is based on an image process-
ing approach, i.e., it first converts the outliers of a cluster into an
image, then applies image processing algorithms (e.g., dilation and
erosion) to find the skeleton of the image and converts them back
to the geometrical plane.

Data Cleaning:Work on data cleaning has focused on relational
data by exploiting approaches spanning from learning to logic-
based methods [2]. Popular systems rely on user-defined rules, that
model patterns and constraints that must apply on the data [6]. If
a set of values violate a rule, it determines that there must be an
error in the data, and repair algorithms try to automatically identify
it and fix it. However, such rule-based approaches do not directly
apply to spatial data, This is especially true for the problem tackled
in this paper, since new roads cannot be inferred from existing ones,
and road closures cannot be determined by an existing topology.

3 PROPOSED FRAMEWORK
In this section, we discuss the workflow and key components of
this framework. Figure 1 shows its three major components. First,
the map matching algorithm which takes the GPS trajectory as an
input and returns the mapped and unmapped parts of the trajectory.

Figure 1: Architecture of proposed framework

Second, the trace analyzer which analyzes the unmapped traces
of different trajectories returned by Map Matching algorithm and
clusters them based on their similarities. When the count of un-
mapped LineStrings in a cluster reaches a significant number, it
creates a representational line which is an average of all the paths in
that cluster. This representational line formed is the new road that
the framework proposes to a user. The correctness and accuracy
of the newly formed road completely depends on the trajectory
data. Third, the Decision Maker which identifies the new represen-
tational lines created and queries a volunteer about their validity.
Based on the responses obtained from the users, the module decides
to add this new path to the existing road network or it discards the
proposed road.

3.1 Map Matching algorithm
We introduce a new topological map matching algorithm. The
algorithm takes a GPS trajectory ‘G’ as input. A GPS Trajectory can
be defined as a set of GPS coordinates obtained from a GPS device
of a moving vehicle. The value |G| represents the number of points
present in the trajectory. The path traveled by the GPS trajectory
on the road network is known as the resultant path. The algorithm
initially starts by finding the nearest roads on the respective map
which are within the radius ε of the first point in the trajectory.
The closest one will be considered as the resultant path. Then it
checks if the next point in the trajectory is within the distance ε of
the current resultant path. It will continue until next ‘k’ points i.e.,
point Pi+k (i+k < |G|) which does not match to the current road. It
will again find out nearest paths for point Pi+k (i+k < |G|). The road
among the nearest one which is adjacent, i.e., it sharing an edge
with the previous resultant path, will be considered as a match.

In some cases, where the density of points in the trajectory is
low, or when roads are connected by many smaller line-strings in
between, we might not find roads which are adjacent to each other.
In such cases, we can find if the roads are separated by one or two
links. If this is true, we may include those paths or else we can
consider Pi+k (i+k < |G|) and its previous point as outliers and those
passed to the next step to verify if the same pattern is repeated in
the coming trajectories.

If GPS data is noisy and of low sampling rate then this method
may not return accurate resultant path. This is because, when the
GPS data is farther than the said distance ε then the algorithm
classifies them as outliers instead of matching them to the road

network. This will affect the accuracy of the representational lines
formed from the clusters in the next step.

3.2 Trace Analyzer
TraceAnalyzer is responsible for clustering different outlier LineStrings
returned by map matching module and forming a representative
line. Similar unmapped LineStrings are compared with each other
to check if any pattern or enough evidence is available using which
we can infer a new road. To detect a new path, we need to find
if a particular GPS segment, which is not part of the actual road
network, appears frequently from many GPS trajectories. When
the trace analyzer receives unmapped road as input, we build a
cluster with a Minimum Bound Region (MBR) of width 20 meters
on each side of the outlier LineString. The new outlier LineString is
matched with existing clusters and, upon matching, is added to that
cluster or else a new cluster is initialized. The presence of many
outlier LineStrings in a cluster serves as evidence for a new road.
So, to decide if a cluster should be considered to build a representa-
tional line, we need a parameter ‘min cluster size’. If the number of
unmapped trajectories in the cluster reaches ‘min cluster size’, then
the representative line of that cluster is considered to be a potential
new road which is marked as ‘future roads’ by the framework. If
the newly formed road is within the distance of 10 meters on the
existing road network, then those roads will be forwarded to the
‘Decision Maker’ module, to get user opinion on it. When the newly
formed road is not within such range, the framework will wait for
more evidence to completely join the road to the road network.

The value of ‘min cluster size’ should vary w.r.t the quality (i.e.,
noise) and frequency of the data submitted to the framework. A
higher value of ‘min cluster size’ will delay the detection of new
roads as it waits for more evidence before proposing a new road.
Lower values of ‘min cluster size’ when the data is noisy results in
faster updates with erroneous suggestions.

In this paper, we have implemented the trajectory clustering
algorithm ‘TRACLUS’ [8]. All the parameters used in ‘TRACLUS’,
are set to their optimal values as suggested in the original paper.
We have compared its performance with an alternative approach
based on image processing [4].

3.3 Decision Maker
The decision maker gets a representative line from the Trace An-
alyzer and queries a user to validate the new road. It will add it
to the existing road network based on the response provided by
the user. Decision can be taken based on user group’s opinion, in a
crowdsourcing setting, so that we can be more robust w.r.t. errors
made by single users. The end-user can be the general crowd who
have knowledge of that locality/city or, in ideal situations, the users
who have uploaded the trace. A user may accept or reject the new
road. If the users accept a new road, we can also ask them to provide
additional information like road width, number of lanes, road name,
and road type, etc. If the user rejects a proposed road, it is stored to
avoid future errors.

4 EXPERIMENTS
We performed an experimental comparison of different modules
discussed in this paper. To test the accuracy of the proposed map

Figure 2: Comparison of Runtime for Seattle Dataset [11]

matching algorithm, it is compared with the HMM map matching
algorithm discussed in [11]. To test the accuracy of the framework,
existing roads from the maps are deleted and the GPS traces are fed
as input to the framework. The similarity between the proposed
roads and the previous, original roads is calculated.

4.1 Comparison of Map Matching Algorithms
We have compared the proposed algorithm with the state-of-the-art
HiddenMarkovModel (HMM)mapmatching algorithm proposed in
[11]. In the implementation of HMM map matching algorithm, the
shortest distance between different points of a trajectory is required
to calculate the transition probabilities. It is a resource and time
intensive task. To speed up the process, shortest distance between
nodes is pre-calculated and is used in the algorithm to calculate
transition probability. Time to pre-calculate the shortest path is
not included in the below statistics. The actual path taken by the
GPS trace is known as ‘Ground Truth’ of the data and is calculated
by visually analyzing the path. Results for both algorithms are
compared with the ‘Ground Truth’.

For the following experiments, we have considered 4000 points
from the Seattle data set [11] and classified them into four categories
of different minimum distances between the points in the dataset. In
figure 2, we can observe that the runtime of the proposed algorithm
is faster than HMM algorithm when the distance between the GPS
points is small. This is because, when the average distance between
points is small, there are many states and HMM needs to calculate
their transition probability. Figure 3 and 4 show the comparison of
precision and recall of both algorithms on Seattle Dataset respec-
tively. Another quantitative metric used by [11] to compare map
matching algorithms is Reported Error. Reported error is the ratio
of length of road erroneously added and subtracted to the resultant
path to length of the correct route. Figure 5 compares the reported
error of both algorithms. Our proposal is shown to be much faster
with very little loss in the quality metric.

The run time of the proposed algorithm is more than the HMM
algorithm when the average distance between the points is 40
meters. This is because, when the points are distant from each other,
the proposed algorithm has to verify if they are connected by any
intermediate roads to ensure the continuity. This is an expensive
operation and is computed on the fly. The preprocessing step for
HMM algorithm took around 4 hours to completely calculate the
shortest distances between the given GPS points.

Figure 3: Comparison of Precision for Seattle Dataset [11]

Figure 4: Comparison of Recall for Seattle Dataset [11]

4.2 Analysis of ‘min cluster size’ parameter
In Section 3.2, we have discussed that the ‘min cluster size’ of each
cluster is the threshold which will decide if a representational line
can be formed. In order to understand the effect of this parameter,
we have run the entire framework for different values of ‘min cluster
size’.

To run this experiment, we have considered the map of Chicago
and GPS trajectories2 of 3 days and divided each day into shifts of 3
hours. For every shift, we have calculated the length of correct and
incorrect roads proposed by the framework. Fig 6 and 7 show the
length of the road correctly and incorrectly fetched respectively for
different values of ‘min cluster size’. The dotted line is the sum of
the length of the roads that are deleted from the road network.

In Figure 6, we can observe that the lower values of ‘min cluster
size’ were able to retrieve all the roads quickly but the length of
incorrectly fetched roads is higher than for the later values. The
lower value of ‘min cluster size’ implies that even with minimum
evidence, we can consider the outliers as the potential new roads.
For the noisy data, we might end up suggesting false positives as
the new roads.

4.3 End-to-end Framework
In order to demonstrate the end-to-end quality of the framework,
we have considered the map of Chicago and deleted two roads (in
blue) from the existing road network, as shown in Figure 8. The
framework is supplied with the GPS traces of 3 consecutive days
2https://www.cs.uic.edu/bin/view/Bits/Software

Figure 5: Reported error for both algorithms

Figure 6: Length of Correct roads fetched

Figure 7: Length of Incorrect roads fetched

as input (Figure 9). At the end of the first step, the map matching
algorithm returns the outliers from the traces which it has accepted
as input. Then the outliers are clustered based on the similarity and
distance between them. The value ‘min cluster size’ is set to 8 and
We could successfully retrieve both the roads with high accuracy,
as shown in Figure 11. The quality of the newly created roads
can be assessed by visual verification or more precisely by using
quantitative methods like Hausdorff distance and Frechet distance
[3], as reported in Table 1. These figures are low and indicate that
the proposed and deleted roads are very similar.

Figure 8: Roads (in blue) deleted from the road network

Figure 9: GPS traces for 3 days

Figure 10: Outliers returned by theMapMatchingAlgorithm

Figure 11: Suggested potential new roads (in Pink)

Road ID Frechet Distance Hausdorff Distance
2443 0.00245 0.00004
2625 0.00024 0.00024

Table 1: Similarity measurement of the missing roads

5 CONCLUSION
In this paper, we presented a framework that automatically detects
new roads on a road network with high accuracy. The proposed
framework is apt for the OSM use case, where a huge number
of volunteers map the world and upload their GPS traces. The
workload of updating maps can be delegated into an interactive
process, which leads to minimum human intervention and provides
an efficient way to maintain maps. In the future, we plan to extend
the framework to detect lanes on a road. A preliminary solution
can obtain road lane information from the end user who asserts the
newly proposed road. Furthermore, we will extend the framework
to detect roundabouts. In addition, we will extend the system to
support data collected with a very low sampling rate. That can
enhance the accuracy of the roads detected since this kind of data
exists in practice.

REFERENCES
[1] 2017. (Jul 2017). http://wiki.openstreetmap.org/wiki/AddressHunter
[2] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting Data Errors: Where are we and what needs to be done? PVLDB 9, 12
(2016), 993–1004.

[3] Philippe C Besse, Brendan Guillouet, Jean-Michel Loubes, and François Royer.
2016. Review and Perspective for Distance-Based Clustering of Vehicle Tra-
jectories. IEEE Transactions on Intelligent Transportation Systems 17, 11 (2016),
3306–3317.

[4] James Biagioni and Jakob Eriksson. 2012. Map inference in the face of noise and
disparity. In Proceedings of the 20th International Conference on Advances in GIS.
ACM, 79–88.

[5] Rene Bruntrup, Stefan Edelkamp, Shahid Jabbar, and Bjorn Scholz. 2005. Incre-
mental map generation with GPS traces. In Intelligent Transportation Systems,
2005. Proceedings. 2005 IEEE. IEEE, 574–579.

[6] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE.

[7] Stefan Edelkamp, Damian Sulewski, Francisco C Pereira, and Hugo Costa. 2008.
Collaborative Map Generation–Survey and Architecture Proposal. Urbanism on
track: application of tracking technologies in urbanism (2008), 161–182.

[8] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory Clustering:
A Partition-and-group Framework. In Proceedings of the 2007 ACM SIGMOD
(SIGMOD ’07). ACM, New York, NY, USA, 593–604.

[9] Biwei Liang, Tengjiao Wang, Shun Li, Wei Chen, Hongyan Li, and Kai Lei. 2016.
Online Learning for Accurate Real-Time Map Matching. In Proceedings, Part II, of
the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining - Volume 9652 (PAKDD 2016). Springer-Verlag NY, Inc., NY, USA, 67–78.

[10] MapCraft. 2017. (Jul 2017). http://wiki.openstreetmap.org/wiki/MapCraft
[11] Paul Newson and John Krumm. 2009. Hidden Markov Map Matching Through

Noise and Sparseness. 336–343.
[12] Francisco Câmara Pereira, Hugo Costa, and Nuno Martinho Pereira. 2009. An off-

line map-matching algorithm for incomplete map databases. European Transport
Research Review 1, 3 (01 Oct 2009), 107–124.

[13] Keep Right. 2017. (Jul 2017). http://wiki.openstreetmap.org/wiki/Keep_Right
[14] Map Roulette. 2017. (Jul 2017). http://wiki.openstreetmap.org/wiki/MapRoulette
[15] Renchu Song, Wei Lu, Weiwei Sun, Yan Huang, and Chunan Chen. 2012. Quick

Map Matching Using Multi-core CPUs. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL ’12).
ACM, New York, NY, USA, 605–608.

[16] OpenStreetMap Wiki. 2014. Main Page — OpenStreetMap Wiki. (2014). http:
//wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762

http://wiki.openstreetmap.org/wiki/AddressHunter
http://wiki.openstreetmap.org/wiki/MapCraft
http://wiki.openstreetmap.org/wiki/Keep_Right
http://wiki.openstreetmap.org/wiki/MapRoulette
http://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762
http://wiki.openstreetmap.org/w/index.php?title=Main_Page&oldid=1060762

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Map Matching algorithm
	3.2 Trace Analyzer
	3.3 Decision Maker

	4 Experiments
	4.1 Comparison of Map Matching Algorithms
	4.2 Analysis of `min cluster size' parameter
	4.3 End-to-end Framework

	5 Conclusion
	References

