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ABSTRACT

Optimal BeamFormers (BFs) that maximize the Weighted Sum Rate
(WSR) for a Multiple-Input Multiple-Output (MIMO) interference
broadcast channel (IBC) remains an important research area. Under
practical scenarios, the problem is compounded by the fact that only
partial channel state information at the transmitter (CSIT) is avail-
able. Hence, a typical choice of the optimization metric is the Ex-
pected Weighted Sum Rate (EWSR). However, the presence of the
expectation operator makes the optimization a daunting task. On the
other hand, for the particular, but significant, special case of massive
MIMO (MaMIMO), the EWSR converges to Expected Signal co-
variance Expected Interference covariance based WSR (ESEI-WSR)
and this metric is more amenable to optimization. Recently, [1] con-
sidered a multi-user Multiple-Input Single-Output (MISO) scenario
and proposed approximating the EWSR by ESEI-WSR. They then
derived a constant bound for this approximation. This paper per-
forms a refined analysis of the gap between EWSR and ESEI-WSR
criteria for finite antenna dimensions.

Index Terms— Beamforming, partial CSIT, EWSR, ESEI-
WSR, MaMIMO

1. INTRODUCTION

Interference is the main limiting factor in wireless transmission.
Base stations (BSs) with multiple antennas are able to serve multiple
Mobile Terminals (MTs) simultaneously, which is called Spatial
Division Multiple Access (SDMA) or Multi-User (MU) MIMO.
We are particularly concerned here with maximum Weighted Sum
Rate (WSR) designs accounting for finite SNR. Typical approaches
for maximizing WSR are based on a link to Weighted Sum MSE
(WSMSE) [2] or an approach based on Difference of Convex func-
tion programming [3] (which is actually better interpreted as an
instance of majorization). However, these approaches rely on per-
fect channel CSIT, which is not practical. Hence, an alternative
approach is to maximize the EWSR for the case of partial CSIT.

Partial CSIT formulations can typically be categorized as either
bounded error / worst case (relevant for quantization error in digital
feedback) or Gaussian error (relevant for analog feedback, predic-
tion error, second-order statistics information etc.). The Gaussian
CSIT formulation with mean and covariance information was first
introduced for SDMA (a Direction of Arrival (DoA) based historical
precedent of MU MIMO), in which the channel outer product was
typically replaced by the transmit side channel correlation matrix,
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and worked out in more detail for single user (SU) MIMO, e.g. [4].
The use of covariance CSIT was made in the context of Massive
MIMO [5], where a not so rich propagation environment leads to
subspaces (slow CSIT) for the channel vectors so that the fast CSIT
can be reduced to the smaller dimension of the subspace. Such CSIT
(feedback) reduction is especially crucial for Massive MIMO. Due to
the difficulty in directly optimizing the EWSR metric, optimization
of the expected WSMSE (EWSMSE), which is a lower bound for
the EWSR, was proposed in [6]. In fact, exact expressions exist for
a number of MISO [7] and MIMO cases [8]. However, those expres-
sions are very hard to interpret and to optimize with respect to BFs.
This issue has led to the development of large system analysis to try
to get simpler expressions for the expected rate [9], [10]. Recently,
though under a single user MIMO setting, the authors [11] used a
large system approximation for the optimization of the EWSR met-
ric under partial CSIT to counter the impact of Doppler created Inter
Carrier Interference (ICI). On the other hand, for the particular, but
significant, special case of MaMIMO where the number of transmit
antennas is large compared to the number of receive antennas, the
EWSR converges to ESEI-WSR and this metric is more amenable to
optimization. In another recent publication, [1] considered a multi-
user Multiple-Input Single-Output (MISO) scenario and proposed
approximating the EWSR by ESEI-WSR. They then derived a con-
stant bound for this approximation. The approximate metric was
then used for optimization of the EWSR. Inspired by this, we per-
form a refined analysis of the gap between EWSR and ESEI-WSR
criteria for finite antenna dimensions to evaluate the usefulness of
using the ESEI-WSR metric (that is more mathematically tractable)
instead of the EWSR.

The main goal of this paper is to show that the much simpler
expressions obtained in the ESEI approximation (MaMIMO limit)
in fact exhibit only a finite and even small gap to the exact expected
rate. Towards this end, we first show in section 3.1 for a general non-
zero mean correlated MIMO scenario that the gap is monotonically
increasing as a function of SNR and hence is maximum at infinite
SNR. Then, we go about deriving this gap at infinite SNR for specific
MISO (section 3.3) and MIMO(section 3.4) scenarios. The swift re-
duction in the gap with increasing number of antennas is clearly seen
for the MISO scenarios. The second order Taylor Series Expansion
of EWSR for a general MIMO setting is also derived in section 3.2
and observed to concur with the infinite SNR limits for the gap de-
rived independently. Henceforth, the term gap would refer to the gap
between ESEI-WSR and the EWSR. However, we shall also briefly
analyze the actual gap in EWSR, between optimal BFs and BFs op-
timized by ESEI-WSR. In the following text, the notation |A| refers
to the determinant of the matrix A. CN (µ,C) refers to a circularly
complex Gaussian distribution with mean µ and covariance C. In
this paper, Tx may denote transmit/transmitter/transmission and Rx
may denote receive/receiver/reception.



2. MIMO IBC SIGNAL MODEL

Consider an IBC with C cells and a total ofK users with dk streams
per user. We shall consider a system-wide numbering of the users.
User k hasNk antennas and is served by BS bk. TheNk×1 received
signal at user k in cell bk is,

yk=Hk,bk Gk xk︸ ︷︷ ︸
signal

+
∑
i6=k
bi=bk

Hk,bk Gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j Gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)where xk is the intended (white, identity covariance) signal, Hk,bk

is the Nk × Mbk channel from BS bk to user k. BS bk serves
Kbk =

∑
i:bi=bk

1 users. We consider a noise whitened signal rep-
resentation so that we get for the noise vk ∼ CN (0, INk ). The
Mbk × dk spatial Tx filter or beamformer (BF) is Gk.

The scenario of interest is that of partial CSIT available globally
with all the BSs. The Gaussian CSIT model for the partial CSIT is

Hk,bk = Hk,bk + H̃k,bk C
1/2
t (2)

where Hk,bk = EHk,bk , and C
1/2
t is the Hermitian square-roots of

the Tx side covariance matrices. The elements of H̃k,bk are i.i.d. ∼
CN (0, 1).

EHk,bk
|Hk,bk

(Hk,bk −Hk,bk )(Hk,bk −Hk,bk )H = tr{Ct}INk

EHk,bk
|Hk,bk

(Hk,bk −Hk,bk )H(Hk,bk −Hk,bk ) = NkCt

(3)Note that the expectation is done over Hk,bk , for a known Hk,bk .
This is true for all the expectation operations done in this paper.
However, as the parameter over which the expectation is done is
clear from the context, henceforth, we just mention the expectation
operator E to reduce notational overhead.
2.1. Expected WSR (EWSR)

Once the CSIT is imperfect, various optimization criteria could be
considered, such as outage capacity. Here we shall consider the
EWSR for a known channel mean H.

EWSR(G) = E
∑
k

uk ln |I+GH
k HH

k,bkR
−1
k Hk,bkGk|

= E
K∑
k=1

uk (ln |Rk| − ln |Rk|) .
(4)

Here, G represents the collection of BFs Gk, uk are rate weights.

Rk = Hk,bkQkH
H
k,bk

+ Rk , Qi = GiG
H
i ,

Rk =
∑
i 6=k

Hk,biQiH
H
k,bi + INk .

(5)

The EWSR cost function needs to be augmented with the power
constraints

∑
k:bk=j tr{Qk} ≤ Pj .

2.2. MaMIMO limit and ESEI-WSR
If the number of Tx antennas M becomes very large, we get a con-
vergence for any quadratic term of the form

HQHH M→∞−→ EHQHH = HQH
H

+ tr{QCt} I (6)

and hence we get the following MaMIMO limit matrices

R̆k = R̆k + Hk,bkQkH
H
k,bk + tr{QkCt,k,bk} INk

R̆k = INk +

K∑
i 6=k

(
Hk,biQiH

H
k,bi + tr{QiCt,k,bi} INk

) (7)

Now, typical approaches to solve the WSR (eg. the DC approach
in [3] ) can be run to obtain the max EWSR BF. We shall refer to this
approach as the ESEI-WSR approach as (channel dependent) signal
and interference covariance matrices are replaced by their expected
values. In the following sections, we analyze the gap between the
EWSR and the ESEI-WSR to suggest an approximation of the first
by the latter in the design of the BF. We would like to remark here
that the ESEI-WSR may also be interpreted as the WSR that would
be obtained if we assume that the received signal and interference
are also Gaussian.

3. EWSR TO ESEI-WSR GAP ANALYSIS
We are interested in bounding the difference between ESEI-WSR
and the EWSR. At the level of each user k, we stack the channel
estimates relevant for each user k.

Hk = [Hk,b1 · · ·Hk,bk−1 Hk,bk Hk,bk+1 · · ·Hk,bK ]

= Hk + H̃kC
1
2
t,k

(8)

where the elements of H̃k are i.i.d ∼ CN (0, 1) and Hk refers to
the mean part of Hk. Ct,k is a block diagonal matrix whose ith di-
agonal block is Ct,k,bi . Let Q be a block diagonal matrix with ith

diagonal block being
∑
l:bl=bi

Ql. Note that this summation corre-
sponds to contributions from all the intracell precoding vectors. Qk̄

is similar to Q but with the kth block diagonal set to
∑l 6=k
l:bl=bk

Ql.
Thus, in Qk̄, only the interfering precoders (intracell and intercell)
are included. Then,

Rk = I + HkQHH
k , Rk̄ = I + HkQk̄H

H
k (9)

EWSR(G) =

K∑
k=1

uk EHk (ln |Rk| − ln |Rk|)

= E
K∑
k=1

uk
(

ln |I + HkQHH
k | − ln |I + HkQk̄H

H
k |
) (10)

ESEI-WSR(G)

=

K∑
k=1

uk
(

ln |I + EHkQHH
k | − ln |I + EHkQk̄H

H
k |
)

(11)

Thus, the EWSR and ESEI-WSR have been rewritten in a convenient
format so that one can focus on the gap between the two by compar-
ing terms of the form E ln |I + HkQHH

k | and ln |I + EHkQHH
k |.

3.1. Monotonicity of gap with SNR

For an SNR ρ, define
Γk(ρ) = ln |I + ρEH′kH

′
k
H | − E ln |I + ρH′kH

′
k
H | (12)

where H′k ∼ CN (H
′
k,C), H

′
k = 1√

ρ
HkQ

1
2 , and C = 1

ρ
C

1
2
t QC

1
2
t .

Then, I + HkQHH
k = I + ρEH′kH′k

H .
Theorem 1.Γk(ρ) is monotonically increasing in ρ

Proof. By Jensen’s inequality, Γk(ρ) ≥ 0 and it can be seen easily
that the equality is attained when ρ = 0. To show the monotonicity,
we show that the derivative with respect to ρ is always non-negative.
We omit the subscripts and superscripts on H for convenience.

∂

∂ρ

(
ln |I + ρEHHH | − E ln |I + ρHHH |

)
=

tr
(
{I + ρEHHH}−1EHHH − E

(
{I + ρHHH}−1HHH

))
(13)

Noting that, {I+ρEHHH}−1EHHH can be written as 1
ρ
I− 1

ρ
{I+

ρEHHH}−1,

∂
∂ρ

(
ln |I + ρEHHH | − E ln |I + ρHHH |

)
=

1
ρ

tr E
(
{I + ρHHH}−1

)
− tr 1

ρ
{I + ρEHHH}−1 ≥ 0

(14)



where we have applied Jensen’s inequality as {I + ρHHH}−1 is a
convex function.

As a result, the largest value of Γk(ρ) will be observed at infi-
nite SNR for a general non-zero mean MIMO with channel H with
arbitrary transmit covariance matrix. Now, following the same steps
as in [1], we can obtain, for any collection of BFs G,

ESEI-WSR−
K∑
k=1

ukΓk(∞) ≤ ESEI-WSR−
K∑
k=1

ukΓk(ρ)

≤ EWSR ≤

ESEI-WSR +

K∑
k=1

ukΓk̄(ρ) ≤ ESEI-WSR +

K∑
k=1

ukΓk̄(∞)

(15)

In the above, Γk and Γk̄ are terms corresponding to the first and the
second terms of equation (10). Remains now to obtain the Γk(∞)
for different scenarios. However, we first look at the Taylor series
expansion of EWSR to get an alternative expression for the gap.

3.2. Second-Order Taylor Series Expansion of EWSR

Consider the Taylor series expansion for matrices X, Y of dimen-
sion Nk.

ln |X + Y| ≈ ln |X|+ trX−1Y − 1

2
trX−1YX−1Y (16)

Consider X+Y = I+ ρHHH , H = H+ H̃C
1
2 , H̃ ∼ CN (0, I).

For expansion around I + ρEHHH , choose X = I + ρEHHH ,
Y = ρ

(
EHHH −HHH

)
. Hence, we get,

E ln |I + ρHHH | ≈ ln |I + ρEHHH |−
ρ2

2
E tr{X−1(HHH − EHHH)X−1(HHH − EHHH)}

(17)

Using 4th order Gaussian moments [12], we get

E ln |I + ρHHH | ≈ ln |I + ρEHHH | − ρ2

2
tr
{

tr{X−1}2C2

+ 2tr{X−1}HH
X−1HC− (H

H
X−1H)2

}
.

(18)
Let us denote this second order approximation by Γ2(ρ). i.e,

Γ2(ρ) =
ρ2

2
tr
{

tr{X−1}2C2

+ 2tr{X−1}HH
X−1HC− (H

H
X−1H)2

}
.

(19)

Consider the mean zero special case, H = 0. Then, EHHH =
tr{C}I and X = INk + ρtr{C}INk . Therefore,

E ln |I + ρHHH | ≈ ln(1 + ρtr(C))− ρ2N2
k

2

tr{C2}
(1 + ρtr{C})2

.

(20)
At high SNR, as ρ→∞,

E ln |I + ρHHH | ≈ ln(1 + ρtr(C))− N2
k

2

tr{C2}
(tr{C})2

. (21)

Thus, Γ2(∞) =
N2

k
2

tr{C2}
(tr{C})2 . Continuing from Theorem 1, we now

determine the value of Γ(∞) for different scenarios.

3.3. MISO correlated channel

In the MISO correlated channel, the relevant metric is of the form
ln(1 + ||h||2), where h is a 1 × M MISO channel vector with
λi · · ·λp being the p non-zero, non-identical eigen values of the cor-
relation matrix EhhH .
Theorem 2.

0 ≤ ln(1 + ρ

p∑
i=1

λi)−E ln(1 + ρ||h||2)

≤ γ −

(
p∑
i=1

lnλi
πl 6=i(1− λl/λi)

− ln(

p∑
i=1

λi)

)
,

(22)

where ρ is the SNR, γ is Euler constant.
The proof is given in Appendix of the companion Arxiv pa-

per [13] due to lack of space.Note that for M = 1, the bound re-
duces to that in [1], namely γ. Thus, this bound is a much more
refined and tighter bound than what is provided in [1]. Though in
general, the correlation matrix would have non-equal eigen values,
it is illustrative to consider an extreme case where the eigen values
are all identical. In fact, this is identical to a MISO i.i.d channel with
just p antennas instead of M .

Theorem 3.

0 ≤ ln(1+ρM)−E ln(1+ρ||h||2) ≤ γ−

(
p∑
k=1

1

k
− ln(p)

)
+

1

p

The proof is given in Appendix of the companion Arxiv paper
[13] due to lack of space. We further explore the bound using the
properties of the harmonic series. Define Hp =

∑p
k=1

1
k

. It is
known that,

Hp = ln(p) + γ +
1

2p
− 1

12p2
+

1

120p4
· · · (23)

Using this in (3), we get

γ − (Hp − ln(p)) +
1

p
=

1

2p
+

1

12p2
− 1

120p4
· · · (24)

Thus, the second order term for the bound is 1
2p

, which is also in

agreement with equation (21), 1
2

tr{C2}
(tr{C})2 =

∑p
i=1 λ

2

2(
∑p

i=1 λ)2
= 1

2p

3.4. MIMO zero mean i.i.d channel

In a multi-user scenario, the regime of interest is M ≥ Nk. To
tackle this scenario, we first introduce the LDU (Lower Diagonal
Upper triangular factorization) of the channel Gram matrix,

HHH = LDLH = (LD
1
2 )(LD

1
2 )H (25)

where L has unit diagonal and D is a diagonal matrix with diago-
nal entries (Di) greater than zero. The second factorization corre-
sponds to a Cholesky decomposition. The Cholesky factorization of
a Wishart matrix (such as HHH ) leads to,

Di ∼
1

2
χ2

2(M−i+1), i ∈ 1 · · ·Nk Li,jD
1
2
i ∼ CN (0, 1), i > j

which is also known as Bartlett’s decomposition [14]. Note that
|HHH | = |LDLH | = |D|. Hence, ln |HHH | =

∑Nk
i=1 ln |Di|

and the MIMO case reduces to a sum of MISO scenarios, each hav-
ing a χ2 distribution with a reducing number of degrees of freedom.
Thus, reusing the results in section 3.3, we get,



Γ(∞) =

Nk∑
i=1

(
γ −

(
M−i∑
k=1

1

k
− ln(M)

))
(26)

For illustration, let us also consider M � Nk. Then using the
approximation of the Harmonic series, it can be easily shown that

Γ(∞) ≈ N2
k

2M
, which concurs with the second order Taylor series

term in (21). The general case of correlated MIMO channel with
non-zero mean is a future work to be addressed. However, we con-
jecture that in the case of a non-zero mean MIMO, the gap would
further reduce based on the rice factor (the ratio of the power in the
mean to that of the random part). However, a few comments are
in order. Whenever Γ(∞) is closely approximated by Γ2(∞) then
Γ(ρ) should be closely approximated by Γ2(ρ) also. We can also ob-
serve that whenever the gap Γ(ρ) gets small, the second-order term
Γ2(ρ) becomes good, in the sense that Γ(ρ) = Γ2(ρ) +O(Γ2

2(ρ)).

4. ACTUAL EWSR GAP
MISO Covariance CSIT only case:
Note that our real interest is in bounding the difference
|EWSR(G∗) − EWSR(G∗∗)|, where G∗ are the optimal BFs
that maximize the EWSR and G∗∗ are the BFs that result from
the optimization of the approximate ESEI-WSR metric. We now
provide some insights into this for cases where the Tx has more
antennas than the dimension of the total interference covariance
subspace. At infinite SNR, the optimal beamformers perform zero
forcing (ZF). Thus, there is no interference observed at user k and
only the signal part needs to be optimized. Then, the equivalent
scalar channel observed at the receiver for a zero mean Gaussian
channel hk may be written as hkgk, which is clearly complex
Gaussian for any choice of the BF vector gk. Thus, at infinite SNR,
G∗ optimizes

∑K
k=1 E ln( |hkgk|2) and the ESEI-WSR optimizes∑K

k=1 ln(E|hkgk|2). However, as shown in the proof of Theorem
3, ln(E|hkgk|2) = E ln( |hkgk|2)−γ, and it follows immediately
that G∗ = G∗∗.
Result 1.For a zero mean correlated MISO IBC channel allow-
ing covariance CSIT based ZF, at infinite SNR, |EWSR(G∗) −
EWSR(G∗∗)| = 0.

MISO Channel Estimate Plus Covariance CSIT case:
In this case hkgk not only has a variance σ2 but also a non-zero
mean m. The ESEI-WSR approach maximized a weighted combi-
nation over users of E|hkgk|2 = |m|2 +σ2 whereas the EWSR cost
function is also an increasing function of the σ2 and |m|2 but through
a solution dependent weighted sum instead of just the sum. A similar
phenomenon occurs in the large MIMO system limit [9], [10], [11].

MIMO case:
In the MIMO case, consider a per stream approach in which now in-
dex k will refer to stream k (users possibly getting multiple streams).
At the output of a linear Rx fk, a signal estimate appears

x̂k= fHk Hk,bk gk xk +
∑
i6=k

fHk Hk,bi gi xi+fHk vk. (27)

The per stream and per user approaches are equivalent in the perfect
CSIT case [2], though in the partial CSIT case the relation is less
clear. Nevertheless, proceeding from (27), the scalar fHk Hk,bk gk is
of similar nature as the hkgk of the MISO case. Hence the MISO re-
sults above also hold for the MIMO per stream approach. We should
not though that esp. in the multi-cell MIMO case, the (E)WSR has
typically multiple local optima which at high SNR correspond to dif-
ferent distributions of the ZF roles between Txs and Rxs. Hence the
gap analysis above should be understood to apply to corresponding
local optima, including the global optimum.

5. NUMERICAL RESULTS
Figure 1 verifies the infinite-SNR bounds for MISO correlated sce-
nario by comparing them against the true values of the gap for dif-
ferent SNRs and different values of M . The true values of the gap
are obtained from Matlab simulations by averaging across different
channel realizations and channel correlations. As expected, the gap
is zero at very low SNR. As the SNR increases, the gap monotoni-
cally increases to the infinite SNR limit, as predicted in section 3.1.
In addition, the gap reduces rapidly with increasing M . Further,
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Fig. 1. Gap between ESEI-WSR and EWSR for the MISO correlated
scenario for different values of transmit antennas.

to verify the goodness of the second order Taylor series approxima-
tion, Figure 2 compares the true gap to the gap approximated from
the Taylor series expansion for a zero mean correlated MIMO sce-
nario. This scenario is chosen as we expect gap to be maximum
here. The number of receive antennas for each user was chosen as
Nk = 4. ρ was chosen as 1000. As expected, the Taylor series ap-
proximation becomes more accurate with increasing number of Tx
antennas. Indeed, even in this MIMO correlated scenario, the gap
reduces quickly as the number of Tx antennas increases.
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Fig. 2. Gap obtained from the second order Taylor series approxi-
mation vs. the true value of the gap for a MIMO correlated scenario.
The number of antennas at each receiver, Nk, is taken as 4.

6. CONCLUSION
In this paper, we have motivated the use of the ESEI-WSR metric (or
the MaMIMO limit of the EWSR) for utility optimization involving
partial CSIT. Towards this end, we presented a refined bound for the
gap between EWSR and the ESEI-WSR. We first showed that the
gap is maximum at infinite SNR. The results clearly show that the
gap reduces with increasing number of transmit antennas, thereby
concurring with the well-known result for the MaMIMO limit. We
also derived an alternative simple approximate expression for the
gap using the second order Taylor series approximation.The general
case of correlated MIMO channel with non-zero mean and the actual
EWSR gap are subjects of future work.
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