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Abstract. Cloud storage services have become accessible and used by everyone. Neverthe-
less, stored data are dependable on the behavior of the cloud servers, and losses and damages
often occur. One solution is to regularly audit the cloud servers in order to check the integrity
of the stored data. The Dynamic Provable Data Possession scheme with Public Verifiability
and Data Privacy presented in ACISP’15 is a straightforward design of such solution. However,
this scheme is threatened by several attacks. In this paper, we carefully recall the definition
of this scheme as well as explain how its security is dramatically menaced. Moreover, we
proposed two new constructions for Dynamic Provable Data Possession scheme with Public
Verifiability and Data Privacy based on the scheme presented in ACISP’15, one using Index
Hash Tables and one based on Merkle Hash Trees. We show that the two schemes are secure
and privacy-preserving in the random oracle model.

Keywords: Provable Data Possession, Dynamicity, Public Verifiability, Data Privacy, In-
dex Hash Tables, Merkle Hash Trees

1 Introduction

Storage systems allow everyone to upload his/her data on cloud servers, and thus avoid
keeping them on his/her own devices that have often limited storage capacity and power.
Nevertheless, storage services are susceptible to attacks or failures, and lead to possible
non-retrievable losses of the stored data. Indeed, storage systems are vulnerable to internal
and external attacks that harm the data integrity even being more powerful and reliable
than the data owner’s personal computing devices. A solution is to construct a system that
offers an efficient, frequent and secure data integrity check process to the data owner such
that the frequency of data integrity verification and the percentage of audited data should
not be limited by computational and communication costs on both cloud server’s and data
owner’s sides.

A Provable Data Possession (PDP) enables a data owner, called the client, to verify the
integrity of his/her data stored on an untrusted cloud server, without having to retrieve
them. Informally, the client first divides his/her data into blocks, generates tags on each
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block, and then forwards all these elements to the server. In order to check whether the
data are correctly stored by the server, the client sends a challenge such that the server
replies back by creating a proof of data possession. If the proof is correct, then this means
that the storage of the data is correctly done by the server; otherwise, this means that
the server is actually cheating somehow. Natural extension features of PDP include: 1)
Dynamicity (D) that enables the client to update his/her data stored on the server via
three operations (insertion, deletion and modification); 2) Public verifiability (PV) that
allows a client to indirectly check that the server correctly stores his/her data by enabling
a Third Party Auditor (TPA) or everyone else to do the audit; 3) Data privacy (DP)
preservation that ensures that the contents of the stored data are not leaked to neither the
TPA nor anyone else. We require that a Dynamic PDP (DPDP) with PV and DP system
is secure at untrusted server, which means that the server cannot successfully generate a
proof of data possession that is correct without actually storing all the data. In addition, a
DPDP with PV and DP system should be data privacy-preserving, which means that the
TPA should not learn anything about the client’s data even by having access to the public
information.

Gritti et al. [9] recently constructed an efficient and practical DPDP system with PV
and DP. However, we have found three attacks threatening this construction: 1) The replace
attack enables the server to store only one block of a file m and still pass the data integrity
verification on any number of blocks; 2) The replay attack permits the server to keep the old
version of a block mi and the corresponding tag Tmi , after the client asked to modify them
by sending the new version of these elements, and still pass the data integrity verification;
3) The attack against data privacy allows the TPA to distinguish files when proceeding
the data integrity check without accessing their contents. We then propose two solutions
to overcome the adversarial issues threatening the DPDP scheme with PV and DP in [9].
We give a first new publicly verifiable DPDP construction based on Index Hash Tables
(IHT) in the random oracle model. We prove that such scheme is secure against replace
and replay attacks as well as is data privacy-preserving according to a model differing from
the one proposed in [9]. We present a second new publicly verifiable DPDP construction
based on Merkle Hash Trees (MHT) in the random oracle model. We demonstrate that
such scheme is not vulnerable against the three attacks mentioned above. In particular, we
use the existing model given in [9] to prove that the MHT-based scheme is data privacy-
preserving.

1.1 Related Work

Ateniese et al. [1] introduced the notion of Provable Data Possession (PDP) which allows
a client to verify the integrity of his/her data stored at an untrusted server without re-
trieving the entire file. Their scheme is designed for static data and used homomorphic
authenticators as tags based on public key encryption for auditing the data file. Subse-
quently, Ateniese et al. [2] improved the efficiency of the aforementioned PDP scheme by
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using symmetric keys. The resulting scheme gets lower overhead and partially supports
partial dynamic data operations. Thereafter, various PDP constructions were proposed in
the literature [20, 23, 10, 24]. Moreover, PDP schemes with the property of full dynamicity
were suggested in [4, 26, 25, 19, 18]. An extension of DPDP includes version control [6, 3]
where all data changes are recorded into a repository and any version of the data can be
retrieved at any time. DPDP protocols with multi-update capability were suggested in [5].
More recently, data privacy-preserving and publicly verifiable PDP schemes were presented
in [15, 14, 17, 7, 16, 9].

2 Preliminaries

Let G1, G2 and GT be three multiplicative cyclic groups of prime order p ∈Θ(2λ) (where
λ is the security parameter). Let gk be a generator of Gk for k ∈ {1,2}, that we denote
< gk >= Gk.

Bilinear Maps: Let e : G1×G2→ GT be a bilinear map with the following properties: 1)
Bilinearity: ∀u ∈G1,∀v ∈G2,∀a,b ∈ Zp,e(ua,vb) = e(u,v)ab. 2) Non-degeneracy: e(g1,g2) 6=
1GT . G1 and G2 are said to be bilinear groups if the group operation in G1×G2 and the
bilinear map e are both efficiently computable. Let GroupGen denote an algorithm that on
input the security parameter λ, outputs the parameters (p,G1,G2,GT ,e,g1,g2).

Discrete Logarithm (DL) Assumption: Let a ∈R Zp. If A is given an instance (g1,g
a
1), it

remains hard to extract a ∈ Zp. The DL assumption holds if no polynomial-time adversary
A has non-negligible advantage in solving the DL problem.

Computational Diffie-Hellman (CDH) Assumption: Let a,b ∈R Zp. If A is given an in-
stance (g1,g

a
1 ,g

b
1), it remains hard to compute gab1 ∈G1. The CDH assumption holds if no

polynomial-time adversary A has non-negligible advantage in solving the CDH problem.

Decisional Diffie-Hellman Exponent (DDHE) Assumption: Let β ∈R Zp. If A is given an
instance (g1,g

β
1 , · · · ,g

βs+1

1 ,g2,g
β
2 ,Z), it remains hard to decide if either Z = gβ

s+2

1 or Z
is a random element in G1. The (s+ 1)-DDHE assumption holds if no polynomial-time
adversary A has non-negligible advantage in solving the (s+ 1)-DDHE problem.

2.1 Definition of the DPDP Scheme with PV and DP

Let m be a data file to be stored that is divided into n blocks mi, and then each block mi

is divided into s sectors mi,j ∈ Zp, where p is a large prime. A DPDP scheme with PV and
DP is made of the following algorithms:
• KeyGen(λ)→ (pk,sk). On input the security parameter λ, output a pair of public and
secret keys (pk,sk).
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• TagGen(pk,sk,mi)→ Tmi . TagGen is independently run for each block. Therefore, to
generate the tag Tm for a file m, TagGen is run n times. On inputs the public key pk, the
secret key sk and a file m = (m1, · · · ,mn), output a tag Tm = (Tm1 , · · · ,Tmn) where each
block mi has its own tag Tmi . The client sets all the blocks mi in an ordered collection F
and all the corresponding tags Tmi in an ordered collection E. He/she sends F and E to
the server and removes them from his/her local storage.
• PerfOp(pk,F,E, info= (operation, l,ml,Tml))→ (F′,E′,ν ′). On inputs the public key pk,
the previous collection F of all the blocks, the previous collection E of all the corresponding
tags, the type of the data operation to be performed, the rank l where the data operation is
performed in F, the block ml to be updated and the corresponding tag Tml to be updated,
output the updated block collection F′, the updated tag collection E′ and an updating
proof ν ′. For the operation: 1) Insertion: ml =m i1+i2

2
is inserted between the consecutive

blocks mi1 and mi2 and Tml = Tm i1+i2
2

is inserted between the consecutive tags Tmi1 and
Tmi2 . We assume that m i1+i2

2
and Tm i1+i2

2
were provided by the client to the server, such

that Tm i1+i2
2

was correctly computed by running TagGen. 2) Deletion: ml =mi is deleted,
meaning that mi1 is followed by mi2 and Tml = Tmi is deleted, meaning that Tmi1 is followed
by Tmi2 , such that i1, i, i2 were three consecutive ranks. 3) Modification: ml =m′i replaces
mi and Tml = Tm′i replaces Tmi . We assume that m′i and Tm′i were provided by the client
to the server, such that Tm′i was correctly computed by running TagGen. After operations,
the set of ranks becomes (0,n+ 1)∩Q.
• CheckOp(pk,ν ′)→ 0/1. On inputs the public key pk and the updating proof ν ′ sent by
the server, output 1 if ν ′ is a correct updating proof; output 0 otherwise.
• GenProof(pk,F,chal,Σ)→ ν. On inputs the public key pk, an ordered collection F ⊂ F of
blocks, a challenge chal and an ordered collection Σ⊂E which are the tags corresponding to
the blocks in F , output a proof of data possession ν for the blocks in F that are determined
by chal.
• CheckProof(pk,chal,ν)→ 0/1. On inputs the public key pk, the challenge chal and the
proof of data possession ν, output 1 if ν is a correct proof of data possession for the blocks
determined by chal; output 0 otherwise.

Correctness. We require that a DPDP with PV and DP is correct if for (pk,sk) ←
KeyGen(λ), Tm←TagGen(pk,sk,m), (F′,E′,ν ′)←PerfOp(pk,F,E, info), ν←GenProof(pk,F,
chal,Σ), then 1← CheckOp(pk,ν ′) and 1← CheckProof(pk,chal,ν).

2.2 Security and Privacy Models

Security Model against the Server. The model follows the ones in [9, 1, 4]. We consider
a DPDP with PV and DP as defined above. Let a data possession game between a challenger
B and an adversary A (acting as the server) be as follows:
� Setup. B runs (pk,sk)← KeyGen(λ) such that pk is given to A while sk is kept secret.
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� Adaptive Queries. First,A is given access to a tag generation oracleOTG.A chooses blocks
mi and gives them to B, for i ∈ [1,n]. B runs TagGen(pk,sk,mi)→ Tmi and gives them to
A. Then, A creates two ordered collections F = {mi}i∈[1,n] of blocks and E = {Tmi}i∈[1,n]
of the corresponding tags. Then, A is given access to a data operation performance oracle
ODOP . For i ∈ [1,n], A gives to B a block mi and infoi about the operation that A wants
to perform. A also submits two new ordered collections F′ of blocks and E′ of tags, and
the updating proof ν ′. B runs CheckOp(pk,ν ′) and replies the answer to A. If the answer
is 0, then B aborts; otherwise, it proceeds. The above interaction between A and B can be
repeated. Note that the set of ranks has changed after calls to the oracle ODOP .
� Challenge. A chooses blocks m∗i and info∗i , for i ∈ I ⊆ (0,n+ 1)∩Q. Adaptive queries
can be again made by A, such that the first info∗i specifies a full re-write update (this
corresponds to the first time that the client sends a file to the server). B still checks the
data operations. For i ∈ I, the final version of mi is considered such that these blocks
were created regarding the operations requested by A, and verified and accepted by B
beforehand. B sets F= {mi}i∈I of these blocks and E= {Tmi}i∈I of the corresponding tags.
It then sets two ordered collections F = {mij}ij∈I,j∈[1,k] ⊂ F and Σ = {Tmij }ij∈I,j∈[1,k] ⊂E.
It computes a resulting challenge chal for F and Σ and sends it to A.
� Forgery.A computes a proof of data possession ν∗ on chal. Then, B runs CheckProof(pk,chal,
ν∗) and replies the answer to A. If the answer is 1 then A wins.

The advantage of A in winning the data possession game is defined as AdvA(λ) =
Pr[A wins]. The DPDP with PV and DP is secure against the server if there is no
PPT (probabilistic polynomial-time) adversary A who can win the above game with non-
negligible advantage AdvA(λ).

Data Privacy Model against the TPA. In a DPDP protocol, we aim to ensure that
data privacy is preserved at the verification step, meaning that data are accessible to all
but protected only via a non-cryptographic access control, and the verification process does
not leak any information on the data blocks.

First Data Privacy Model. The model is found in [20, 17]. We consider a DPDP with PV
and DP as defined above. Let the first data privacy game between a challenger B and an
adversary A (acting as the TPA) be as follows:
� Setup. B runs KeyGen(λ) to generate (pk,sk) and gives pk to A, while sk is kept secret.
� Queries. A is allowed to make queries as follows. A sends a file m = (m1, · · · ,mn) to
B. B computes Tm = (Tm1 , · · · ,Tmn) and gives it back to A. Then, two ordered collections
F = {mi}i∈[1,n] of blocks and E = {Tmi}i∈[1,n] of tags are created.
� Challenge. A submits a challenge chal containing k≤ n ranks, the k corresponding blocks
in F and their k tags in Σ.
�Generation of the Proof. B computes a proof of data possession ν∗←GenProof(pk,F,chal,Σ)
such that the blocks in F are determined by chal and Σ contains the corresponding tags.
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A succeeds in the first data privacy game if F *F andΣ*E, and CheckProof(pk,chal,ν∗)→
1. The advantage of A in winning the first data privacy game is defined as AdvA(λ) =
Pr[A succeeds]. The DPDP with PV and DP is data privacy-preserving if there is no PPT
adversary A who can win the above game with non-negligible advantage AdvA(λ). This im-
plies that there is no A who can recover the file from a given tag tuple with non-negligible
probability.

Second Data Privacy Model. The model follows the ones in [9, 7, 24]. We consider a DPDP
with PV and DP as defined above. Let a second data privacy game between a challenger
B and an adversary A (acting as the TPA) be as follows:
� Setup. B runs KeyGen(λ) to generate (pk,sk) and gives pk to A, while sk is kept secret.
� Queries. A is allowed to make queries as follows. A sends a file m to B. B computes the
corresponding Tm and gives it to A.
� Challenge. A submits two different files m0 and m1 of equal length, such that they have
not be chosen in the phase Queries, and sends them to B. B generates Tm0 and Tm1 by
running TagGen, randomly chooses a bit b ∈R {0,1} and forwards Tmb to A. Then, A sets
a challenge chal and sends it to B. B generates a proof of data possession ν∗ based on mb,
Tmb and chal, and replies to A by giving ν∗.
� Guess. Finally, A chooses a bit b′ ∈ {0,1} and wins the game if b′ = b.

The advantage of A in winning the second data privacy game is defined as AdvA(λ) =
|Pr[b′ = b]− 1

2 |. The DPDP with PV and DP is data privacy-preserving if there is no PPT
adversary A who can win the above game with non-negligible advantage AdvA(λ).

3 The Three Attacks

3.1 DPDP construction with PV and DP in [9]

The DPDP scheme with PV and DP construction presented in [9] is as follows:
• KeyGen(λ)→ (pk,sk). The client runs GroupGen(λ)→ (p,G1,G2,GT ,e,g1,g2) such that
on input the security parameter λ, GroupGen generates the cyclic groups G1, G2 and GT

of prime order p = p(λ) with the bilinear map e : G1×G2 → GT . Let < g1 >= G1 and
< g2 >= G2. Then, h1, · · · ,hs ∈R G1 and a ∈R Zp are randomly chosen. Finally, he/she sets
the public key pk = (p,G1,G2,GT ,e,g1,g2,h1, · · · ,hs,ga2) and the secret key sk = a.
• TagGen(pk,sk,mi)→ Tmi . A file m is split into n blocks mi, for i ∈ [1,n]. Each block mi

is then split into s sectors mi,j ∈ Zp, for j ∈ [1,s]. Therefore, the file m can be seen as a
n× s matrix with elements denoted as mi,j . The client computes Tmi = (

∏s
j=1h

mi,j
j )−sk =∏s

j=1h
−a·mi,j
j . Yet, he/she sets Tm = (Tm1 , · · · ,Tmn) ∈Gn

1 .
• PerfOp(pk,F,E, info= (operation, l,ml,Tml))→ (F′,E′,ν ′). The server first selects at ran-
dom uj ∈R Zp, for j ∈ [1,s], and computes Uj = h

uj
j . It also chooses at random wl ∈R Zp and

sets cj =ml,j ·wl+uj , Cj =h
cj
j , and d=Twlml . Finally, it returns ν ′= (U1, · · · ,Us,C1, · · · ,Cs,d,

wl)∈G2s+1
1 to the TPA. For the operation: 1) Insertion: (l,ml,Tml) = ( i1+i2

2 ,m i1+i2
2
,Tm i1+i2

2
);
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2) Deletion: (l,ml,Tml) = (i, , ), meaning that ml and Tml are not required (the server
uses mi and Tmi that are kept on its storage to generate ν ′); 3) Modification: (l,ml,Tml) =
(i,m′i,Tm′i).
• CheckOp(pk,ν ′)→ 0/1. The TPA has to check whether the following equation holds:

e(d,ga2) ·e(
s∏
j=1

Uj ,g2) ?= e(
s∏
j=1

Cj ,g2) (1)

If Eq. 1 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.
• GenProof(pk,F,chal,Σ)→ ν. The TPA first chooses I ⊆ (0,n+1)∩Q, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I . After receiving chal, the server sets
F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi}i∈I ⊂ E which are the tags corresponding to the
blocks in F . It then selects at random rj ∈R Zp, for j ∈ [1, j], and computes Rj = h

rj
j . It

also sets bj =
∑

(i,vi)∈chalmi,j ·vi+rj , Bj = h
bj
j for j ∈ [1,s], and c=

∏
(i,vi)∈chalT

vi
mi . Finally,

it returns ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈G2s+1
1 to the TPA.

• CheckProof(pk,chal,ν)→ 0/1. The TPA has to check whether the following equation
holds:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) ?= e(
s∏
j=1

Bj ,g2) (2)

If Eq. 2 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.

Correctness. Given the proof of data possession ν and the updating proof ν ′, we have:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) = e(
∏

(i,vi)
∈chal

T vimi ,g
a
2) ·e(

s∏
j=1

h
rj
j ,g2) = e(

s∏
j=1

h
bj
j ,g2) = e(

s∏
j=1

Bj ,g2)

e(d,ga2) ·e(
s∏
j=1

Uj ,g2) = e(Twimi ,g
a
2) ·e(

s∏
j=1

h
uj
j ,g2) = e(

s∏
j=1

h
cj
j ,g2) = e(

s∏
j=1

Cj ,g2)

N.B. In the construction in [9], the definition of the tag Tmi corresponding to the block
mi and enabling to remotely verify the data integrity is independent of the rank i; thus,
this begs for being used for an attack. Note that if mi = 0, then Tmi = 1 and thus, one can
trivially cheat since the tag is independent of the file.

3.2 Replace Attack

Let the server store only one block (e.g. m1) instead of n blocks as the client believes. The
TPA audits the server by sending it a challenge chal for blocks with ranks in I ⊆ [1,n] such
that |I| ≤ n. The server generates a proof of data possession on the |I| blocks m1 (instead
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of the blocks defined by chal) by using |I| times the block m1 to obtain the proof of data
possession. The attack is successful if the server manages to pass the verification process
and has its proof of data possession being accepted by the TPA.

The client computes Tm = (Tm1 , · · · ,Tmn) ∈Gn
1 for a file m= (m1, · · · ,mn) where Tmi =

(
∏s
j=1h

mi,j
j )−sk = (

∏s
j=1h

mi,j
j )−a for s public elements hj ∈G1 and the secret key sk = a ∈

Zp. Then, the client stores all the blocks mi in F and the tags Tmi in E, forwards these col-
lections to the server and deletes them from his/her local storage. Yet, the server is asked to
generate a proof of data possession ν. We assume that it only stores m1 while it has deleted
m2, · · · ,mn and we show that it can still pass the verification process. The TPA prepares
a challenge chal by choosing a set I ⊆ [1,n] (without loss of generality, we assume that
the client has not requested the server for data operations yet). The TPA then randomly
chooses |I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I . Second, after receiving chal, the
server sets F = {m1}i∈I ⊂ F of blocks (instead of F = {mi}i∈I) and Σ = {Tm1}i∈I ⊂ E (in-
stead of Σ = {Tmi}i∈I). The server finally forwards ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈ G2s+1

1

to the TPA, where Rj = h
rj
1 for rj ∈R Zp and Bj = h

∑
(i,vi)∈chal

m1,j ·vi+rj
j (instead of Bj =

h

∑
(i,vi)∈chal

mi,j ·vi+rj
j ) for j ∈ [1,s], and c=

∏
(i,vi)∈chalT

vi
m1 (instead of c=

∏
(i,vi)∈chalT

vi
mi).

The TPA has to check whether the following equation holds:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) ?= e(
s∏
j=1

Bj ,g2) (3)

If Eq. 3 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.

Correctness. Given the proof of data possession ν, we have:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) = e(
∏

(i,vi)∈chal
T vim1 ,g

a
2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
∏

(i,vi)∈chal

s∏
j=1

h
m1,j ·(−a)·vi
j ,ga2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
s∏
j=1

h
bj
j ,g2) = e(

s∏
j=1

Bj ,g2)

Therefore, Eq. 3 holds, although the server is actually storing one block only.

3.3 Replay Attack

The client asks the server to replace mi with m′i. However, the server does not proceed and
keeps mi on its storage. Then, the TPA has to check that the operation has been correctly
done and asks the server for an updating proof ν ′. The server generates it, but using mi
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instead of m′i. The attack is successful if the server manages to pass the verification process
and has ν ′ being accepted by the TPA.

A client asks the server to modify the block mi by sending m′i and Tm′i . However, the
server does not follow the client’s request and decides to keep mi and Tmi , and deletes m′i
and Tm′i . The server receives i, m′i and Tm′i from the client but deletes them, and generates
the updating proof ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d) ∈ G2s+1

1 by using mi and Tmi such that
Uj = h

uj
1 where uj ∈R Zp and Cj = h

mi,j ·wi+uj
j (instead of Cj = h

m′i,j ·wi+uj
j ) for j ∈ [1,s],

and d= Twimi (instead of d= Twim′i
). It gives ν ′ to the TPA. The TPA has to check whether

the following equation holds:

e(d,ga2) ·e(
s∏
j=1

Uj ,g2) ?= e(
s∏
j=1

Cj ,g2) (4)

If Eq. 4 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.

Correctness. Given the updating proof ν ′, we have:

e(d,ga2) ·e(
s∏
j=1

Uj ,g2) = e(Twimi ,g
a
2) ·e(

s∏
j=1

h
uj
j ,g2) = e(

s∏
j=1

h
mi,j ·(−a)·wi
j ,ga2) ·e(

s∏
j=1

h
uj
j ,g2)

= e(
s∏
j=1

h
cj
j ,g2) = e(

s∏
j=1

Cj ,g2)

Therefore, Eq. 4 holds, although the server has not updated the block m′i and the corre-
sponding tag Tm′i .

3.4 Attack against Data Privacy

The adversarial TPA and the server play the second data privacy game. The TPA gives
two equal-length blocks m0 and m1 to the server and the latter replies by sending Tmb of
mb where b ∈R {0,1} is a random bit. Then, the TPA selects a bit b′ ∈ {0,1}. The attack
is successful if using mb′ , the TPA can discover which block mb ∈ {m0,m1} was chosen by
the server.

Let m0 = (m0,1, · · · ,m0,n) and m1 = (m1,1, · · · ,m1,n). The server computes Tmb,i =
(
∏s
j=1h

mb,i,j
j )−sk = (

∏s
j=1h

mb,i,j
j )−a, for b ∈R {0,1} and i ∈ [1,n], and gives them to the

TPA. Note that e(Tmb,i ,g2) = e((
∏s
j=1h

mb,i,j
j )−a,g2) = e(

∏s
j=1h

mb,i,j
j ,(ga2)−1). The compu-

tation of e(
∏s
j=1h

mb,i,j
j ,(ga2)−1) requires only public elements. Therefore, for b′ ∈ {0,1}, the

TPA is able to generate the pairing e(
∏s
j=1h

mb′,i,j
j ,(ga2)−1) given pk and the block that

it gave to the server, and e(Tmb,i ,g2) given the tag sent by the server. Finally, the TPA
compares them. If these two pairings are equal, then b′ = b; otherwise b′ 6= b.
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N.B. This attack is due to the public verifiability property of the scheme in [9] based on
the definition of the second data privacy game. Moreover, in the proof for data privacy in
[9], the analysis is wrong: the affirmation “The probability Pr[b′ = b] must be equal to 1

2
since the tags Tmb,i , for i∈ [1,n], and the proof ν∗ are independent of the bit b.” is incorrect
since Tmb,i and ν∗ actually depend on b.

4 IHT-based DPDP scheme with PV and DP

A solution to avoid the replace attack is to embed the rank i of mi into Tmi . When the
TPA on behalf of the client checks ν generated by the server, it requires to use all the
ranks of the challenged blocks to process the verification. Such idea was proposed for the
publicly verifiable scheme in [13]. A solution to avoid the replay attack is to embed the
version number vnbi of mi into Tmi . The first time that the client sends mi to the server,
vnbi = 1 (meaning that the first version of the block is uploaded) and is appended to i.
When the client wants to modify mi with m′i, he/she specifies vnbi = 2 (meaning that the
second version of the block is uploaded) and generates Tm′i accordingly. When the TPA on
behalf of the client checks that the block was correctly updated by the server, it has to use
both i and vnbi of mi. Moreover, we stress that the rank i of the block mi is unique. More
precisely, when a block is inserted, a new rank is created that has not been used and when
a block is modified, the rank does not change. However, when a block is deleted, its rank
does not disappear to ensure that it won’t be used for another block and thus, to let the
scheme remain secure.

4.1 IHT-based Construction

The IHT-based DPDP scheme with PV and DP construction is as follows:
• KeyGen(λ)→ (pk,sk). The client runs Group- Gen(λ)→ (p,G1,G2,GT ,e,g1,g2) such that
on input the security parameter λ, GroupGen generates the cyclic groups G1, G2 and
GT of prime order p = p(λ) with the bilinear map e : G1×G2 → GT . Let < g1 >= G1
and < g2 >= G2. Let the hash function H : Q×N → G1 be a random oracle. Then,
h1, · · · ,hs ∈R G1 and a ∈R Zp are randomly chosen. Finally, he/she sets the public key
pk = (p,G1,G2,GT ,e,g1,g2,h1, · · · ,hs,ga2 ,H) and the secret key sk = a.
• TagGen(pk,sk,mi)→ Tmi . A file m is split into n blocks mi, for i ∈ [1,n]. Each block
mi is then split into s sectors mi,j ∈ Zp, for j ∈ [1,s]. Therefore, the file m can be seen
as a n× s matrix with elements denoted as mi,j . The client computes Tmi = (H(i,vnbi) ·∏s
j=1h

mi,j
j )−sk =H(i,vnbi)−a ·

∏s
j=1h

−a·mi,j
j . Yet, he/she sets Tm = (Tm1 , · · · ,Tmn) ∈Gn

1 .
• PerfOp(pk,F,E, info= (operation, l,ml,Tml))
→ (F′,E′,ν ′). The server first selects at random uj ∈R Zp, for j ∈ [1,s], and computes
Uj =h

uj
j . It also chooses at random wl ∈R Zp and sets cj =ml,j ·wl+uj , Cj =h

cj
j for j ∈ [1,s],

and d= Twlml . Finally, it returns ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d,wl) ∈G2s+1
1 to the TPA. For
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the operation: 1) Insertion: (l,ml,Tml) = ( i1+i2
2 ,m i1+i2

2
,Tm i1+i2

2
) and vnbl = vnb i1+i2

2
= 1;

2) Deletion: (l,ml,Tml) = (i, , ) and vnbl = vnbi = , meaning that ml, Tml and vnbl are
not required (the server uses mi, Tmi and vnbi that are kept on its storage to generate ν ′);
3) Modification: (l,ml,Tml) = (i,m′i,Tm′i) and vnbl = vnb′i = vnbi+ 1.
• CheckOp(pk,ν ′)→ 0/1. The TPA has to check whether the following equation holds:

e(d,ga2) ·e(
s∏
j=1

Uj ,g2) ?= e(H(l,vnbl)wl ,g2) ·e(
s∏
j=1

Cj ,g2) (5)

If Eq. 5 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.
• GenProof(pk,F,chal,Σ)→ ν. The TPA first chooses I ⊆ (0,n+1)∩Q, randomly chooses
|I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I . After receiving chal, the server sets
F = {mi}i∈I ⊂ F of blocks and Σ = {Tmi}i∈I ⊂ E which are the tags corresponding to the
blocks in F . It then selects at random rj ∈R Zp, for j ∈ [1,s], and computes Rj = h

rj
j . It

also sets bj =
∑

(i,vi)∈chalmi,j ·vi+rj , Bj = h
bj
j for j ∈ [1,s], and c=

∏
(i,vi)∈chalT

vi
mi . Finally,

it returns ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) ∈G2s+1
1 to the TPA.

• CheckProof(pk,chal,ν)→ 0/1. The TPA has to check whether the following equation
holds:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) ?= e(
∏

(i,vi)
∈chal

H(i,vnbi)vi ,g2) ·e(
s∏
j=1

Bj ,g2) (6)

If Eq. 6 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.

Correctness. Given the proof of data possession ν and the updating proof ν ′, we have:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) = e(
∏

(i,vi)∈chal
T vimi ,g

a
2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
∏

(i,vi)∈chal
(H(i,vnbi) ·

s∏
j=1

h
mi,j
j )−a·vi ,ga2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
∏

(i,vi)∈chal
H(i,vnbi)vi ,g2) ·e(

s∏
j=1

Bj ,g2)
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e(d,ga2) ·e(
s∏
j=1

Uj ,g2) = e(Twlml ,g
a
2) ·e(

s∏
j=1

h
uj
j ,g2)

= e(H(l,vnbl) ·
s∏
j=1

h
ml,j
j ,ga2)−a·wl ·e(

s∏
j=1

h
uj
j ,g2)

= e(H(l,vnbl)wl ,g2) ·e(
s∏
j=1

Cj ,g2)

N.B. The client or TPA must store the values vnb locally. However, this does not incur
more burden if we consider the values vnb as bit strings.

4.2 Security and Privacy Proofs

Security Proof against the Server

Theorem 1. Let A be a PPT adversary that has advantage ε against the IHT-based DPDP
scheme with PV and DP. Suppose that A makes a total of qH > 0 queries to H. Then,
there is a challenger B that solves the Computational Diffie-Hellman (CDH) and Discrete
Logarithm (DL) problems with advantage ε′ =O(ε).

We give the security proof in the Appendix A.

First Data Privacy Proof against the TPA

Theorem 2. Let A be a PPT adversary that has advantage ε against the IHT-based DPDP
scheme with PV and DP. Suppose that A makes a total of qH > 0 queries to H. Then, there
is a challenger B that solves the CDH problem with advantage ε′ =O(ε).

We give the first data privacy proof in the full version of this paper [8].

4.3 Performance

We compare the IHT-based scheme with the original scheme proposed in [9]. First, the client
and TPA obviously have to store more information by keeping the IHT. Nevertheless, we
stress that in any case, the client and TPA should maintain a rank list. Indeed, they need
some information about the stored data in order to select some data blocks to be challenged.
We recall that the challenge consists of pairs of the form “(rank, random element)”. By
appending an integer and sometimes an auxiliary comment (only in case of deletions) to
each rank, the extra burden is not excessive. Therefore, such table does slightly affect the
client’s as well as TPA’s local storages. The communication between the client and TPA
rather increases since the client should send more elements to the TPA in order to keep the
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table updated. Second, the client has to perform extra computation when generating the
verification metadata: for each file block mi, he/she has to compute H(i,vnbi). However,
the communication between the client and server overhead does not increase. Third, the
TPA needs to compute an extra pairing e(H(i,vnbi),g2)wi in order to check that the server
correctly performed a data operation requested by the client. The TPA also has to compute
|I| multiplications in G1 and one extra pairing when checking the proof of data possession:
for each challenge chal= {(i,vi)}i∈I , it calculates

∏
(i,vi)∈chalH(i,vnbi) as well as the pairing

e(
∏

(i,vi)∈chalH(i,vnbi)vi ,g2). This gives a constant total of four pairings in order to verify
the data integrity instead of three, that is not a big loss in term of efficiency and practicality.
Finally, apart the storage of a light table and computation of an extra pairing by the
TPA for the verification of both the updating proof and proof of data possession, the
new construction for the DPDP scheme with PV and DP is still practical by adopting
asymmetric pairings to gain efficiency and by still reducing the group exponentiation and
pairing operations. In addition, this scheme still allows the TPA on behalf of the client to
request the server for a proof of data possession on as many data blocks as possible at no
extra cost, as in the scheme given in [9].

5 MHT-based DPDP scheme with PV and DP

A second solution to avoid the three attacks is to implement a MHT [12] for each file. In a
MHT, each internal node has always two children. For a leaf node ndi based on the block mi,
the assigned value is H ′(mi), where the hash function H ′ : {0,1}∗→G1 is seen as a random
oracle. Note that the hash values are affected to the leaf nodes in the increasing order of
the blocks: ndi and ndi+1 correspond to the hash of the blocks mi and mi+1 respectively.
A parent node of ndi and ndi+1 has a value computed as H ′(H ′(mi)||H ′(mi+1)), where ||
is the concatenation sign (for an odd rank i). The Auxiliary Authentication Information
(AAI) Ωi of a leaf node ndi for mi is a set of hash values chosen from its upper levels, so
that the root rt can be computed using (mi,Ωi).

5.1 MHT-based Construction

Let DPDP be a DPDP construction with PV and DP such as defined in Sec. 3.1 and [9]. Let
SS = (Gen,Sign,Verify) be a strongly unforgeable digital signature scheme. The MHT-based
DPDP scheme with PV and DP construction is as follows:
• MHT.KeyGen(λ) → (pk,sk). Let GroupGen(λ) → (p,G1,G2,GT ,e,g1,g2) be run as fol-
lows. On input the security parameter λ, GroupGen generates the cyclic groups G1, G2
and GT of prime order p = p(λ) with the bilinear map e : G1×G2 → GT . Let < g1 >=
G1 and < g2 >= G2. The client runs Gen(λ)→ (pkSS,skSS) and KeyGen(λ)→ (pk,sk) =
((p,G1,G2,GT ,e,g1,g2,h1, · · · ,hs,ga2),a), where h1, · · · ,hs ∈R G1 and a ∈R Zp are randomly
chosen. The client sets his/her public key pk = (pk,pkSS) and his/her secret key sk =
(sk,skSS).
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• MHT.TagGen(pk,sk,mi) → Tmi . The client runs n times TagGen(pk,sk,mi) → T ′mi =
(
∏s
j=1h

mi,j
j )−sk = (

∏s
j=1h

mi,j
j )−a for i∈ [1,n] and obtains T ′m = (T ′m1 , · · · ,T

′
mn)∈Gn

1 . He/she
also chooses a hash function H ′ : {0,1}∗→G1 seen as a random oracle. Then, he/she cre-
ates the MHT regarding the file m= (m1, · · · ,mn) as follows. He/she computes H ′(mi) and
assigns it to the i-th leaf for i∈ [1,n]. He/she starts to construct the resulting MHT, and ob-
tains the root rt. Finally, the client runs Sign(skSS, rt)→ σrt. Using the hash values, he/she
computes the tags as Tmi =H ′(mi)−sk ·T ′mi =H ′(mi)−a ·

∏s
j=1h

−a·mi,j
j for i ∈ [1,n]. Then,

the client stores all the blocks mi in an ordered collection F and the corresponding tags Tmi
in an ordered collection E. He/she forwards these two collections and (H ′,σrt) to the server.
Once the server receives (F,E,H ′), it generates the MHT. It sends the resulting root rtserver
to the client. Upon getting the root rtserver, the client runs Verify(pkSS,σrt, rtserver)→ 0/1.
If 0, then the client aborts. Otherwise, he/she proceeds, deletes (F,E,σrt) from his/her
local storage and keeps H ′ for further data operations.
• MHT.PerfOp(pk,F,E,R = (operation, i), info = (mi,Tmi ,σrt′))→ (F′,E′, rt′server). First,
the client sends a request R= (operation, i) to the server, that contains the type and rank
of the operation. Upon receiving R, the server selects the AAI Ωi that the client needs in
order to generate the root rt′ of the updated MHT, and sends it to the client. Once the
client receives Ωi, he/she first constructs the updated MHT. He/she calculates the new
root rt′ and runs Sign(skSS, rt

′)→ σrt′ . Then, the client sends info = (mi,Tmi ,σrt′) (note
that mi and Tmi are not needed for a deletion). After receiving info from the client, the
server first updates the MHT, calculates the new root rt′server and sends it to the client.
Upon getting the root rt′server, the client runs Verify(pkSS,σrt′ , rt

′
server)→ 0/1 . If 0, then

the client aborts. Otherwise, he/she proceeds and deletes (mi,Tmi ,σrt′) from his/her local
storage. For the operation: 1) Insertion: mi0 is added before mi by placing mi0 at the i-th
leaf node, and all the blocks from mi are shifted to leaf nodes by 1 to the right; 2) Deletion:
mi is removed from the i-th leaf node and all the blocks from mi+1 are shifted to leaf nodes
by 1 to the left; 3) Modification: m′i simply replaces mi at the i-th leaf node.
• MHT.GenProof(pk,F,chal,Σ)→ (ν,rtserver,{H ′(mi),Ωi}i∈I). The TPA chooses a subset
I ⊆ [1,nmax] (nmax is the maximum number of blocks after operations), randomly chooses
|I| elements vi ∈R Zp and sets the challenge chal = {(i,vi)}i∈I . Then, after receiving chal
and given F = {mi}i∈I ⊂F andΣ= {Tmi}i∈I ⊂E, the server runs GenProof(pk,F,chal,Σ)→
ν such that ν = (R1, · · · ,Rs,B1, · · · ,Bs, c)∈G2s+1

1 , where rj ∈R Zp, Rj =h
rj
1 , bj =

∑
(i,vi)∈chal

mi,j · vi + rj ∈ Zp and Bj = h
bj
j for j ∈ [1,s], and c =

∏
(i,vi)∈chalT

vi
mi . Moreover, the server

prepares the latest version of the stored root’s signature σrt provided by the client, the
root rtserver of the current MHT, the H ′(mi) and AAI Ωi for the challenged blocks,
such that the current MHT has been constructed using {H ′(mi),Ωi}i∈I . Finally, it returns
(ν,σrt, rtserver,{H ′(mi),Ωi}i∈I) to the TPA.
•MHT.CheckProof(pk, chal,ν,σrt, rtserver,{H ′(mi),Ωi}i∈I)→ 0/1. After receiving {H ′(mi),
Ωi}i∈I from the server, the TPA first constructs the MHT and calculates the root rtTPA. It
then checks that rtserver = rtTPA. If not, then it aborts; otherwise, it runs Verify(pkSS,σrt,



15

rtserver)→ 0/1. If 0, then the TPA aborts. Otherwise, it proceeds and checks whether the
following equation holds:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) ?= e(
∏

(i,vi)∈chal
H ′(mi)vi ,g2) ·e(

s∏
j=1

Bj ,g2) (7)

If Eq. 7 holds, then the TPA returns 1 to the client; otherwise, it returns 0 to the client.

Correctness. We suppose that the correctness holds for DPDP and SS protocols. Given the
proof of data possession ν, we have:

e(c,ga2) ·e(
s∏
j=1

Rj ,g2) = e(
∏

(i,vi)∈chal
T vimi ,g

a
2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
∏

(i,vi)∈chal
(H ′(mi) ·

s∏
j=1

h
mi,j
j )−a·vi ,ga2) ·e(

s∏
j=1

h
rj
j ,g2)

= e(
∏

(i,vi)∈chal
H ′(mi)vi ,g2) ·e(

s∏
j=1

Bj ,g2)

N.B. In MHT.GenProof, since I is a subset of ranks, the server has to be given the appro-
priate {Ωi}i∈I along with {H ′(mi)}i∈I to obtain the current MHT and thus complete the
proof generation. Otherwise, the TPA won’t get the proper MHT.

5.2 Security and Privacy Proofs

We give the proofs in the full version of this paper [8].

Security Proof against the Server

Theorem 3. Let A be a PPT adversary that has advantage ε against the MHT-based
DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0 queries to
H ′. Then, there is a challenger B that solves the CDH and DL problems with advantage
ε′ =O(ε).

Second Data Privacy Proof against the TPA

Theorem 4. Let A be a PPT adversary that has advantage ε against the MHT-based
DPDP scheme with PV and DP. Suppose that A makes a total of qH′ > 0 queries to
H ′. Then, there is a challenger B that solves the (s+ 1)-DDHE problem with advantage
ε′ =O(ε).
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5.3 Performance and Discussion with other existing works

We first compare the MHT-based scheme with the original one presented in [9]. The MHT-
based construction seems less practical and efficient than the construction in [9]. Commu-
nication and computation burdens appear in order to obtain the desired security standards
against the server and TPA. The communication overheads increase between the client and
server. The computation overheads for the client raise also, although the client is limited in
resources. The storage space of the server should be bigger, since it has to create and possi-
bly stores MHTs for each client. The TPA has to provide more computational resources for
each client in order to ensure valid data integrity checks. Nevertheless, experiments might
show that the time gap between the algorithms in the scheme proposed in [9] and the ones
in the MHT-based scheme is acceptable.

The MHT is an Authenticated Data Structure (ADS) that allows the client and TPA to
check that the server correctly stores and updates the data blocks. Erway et al. [4] proposed
the first DPDP scheme. The verification of the data updates is based on a modified ADS,
called Rank-based Authentication Skip List (RASL). This provides authentication of the
data block ranks, which ensures security in regards to data block dynamicity. However,
public verifiability is not reached. Note that such ADS with bottom-up leveling limits the
insertion operations. For instance, if the leaf nodes are at level 0, any data insertion that
creates a new level below the level 0 will bring necessary updates of all the level hash values
and the client might not be able to verify. Wang et al. [21] first presented a DPDP with
PV using MHT. However, security proofs and technical details lacked. The authors revised
the aforementioned paper [21] and proposed a more complete paper [22] that focuses on
dynamic and publicly verifiable PDP systems based on BLS signatures. To achieve the
dynamicity property, they employed MHT. Nevertheless, because the check of the block
ranks is not done, the server can delude the client by corrupting a challenged block as
follows: it is able to compute a valid proof with other non-corrupted blocks. Thereafter, in
a subsequent work [20], Wang et al. suggested to add randomization to the above system
[22], in order to guarantee that the server cannot deduce the contents of the data files from
the proofs of data possession. Liu et al. [11] constructed a PDP protocol based on MHT
with top-down leveling. Such protocol satisfies dynamicity and public verifiability. They
opted for such design to let leaf nodes be on different levels. Thus, the client and TPA have
both to remember the total number of data blocks and check the block ranks from two
directions (leftmost to rightmost and vice versa) to ensure that the server does not delude
the client with another node on behalf of a file block during the data integrity checking
process. In this paper, the DPDP scheme with PV and DP is based on MHT with bottom-
up leveling, such that data block ranks are authenticated. Such tree-based construction
guarantees secure dynamicity and public verifiability processes as well as preservation of
data privacy, and remains practical in real environments.
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6 Conclusion

We provided two solutions to solve the adversarial issues encountered in the DPDP scheme
with PV and DP proposed in [9]. These solutions manage to overcome replay attacks,
replace attacks and attacks against data privacy by embedding IHT or MHT into the
construction in [9]. We proved that the two new schemes are both secure against the server
and data privacy-preserving against the TPA in the random oracle.
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A Security Proof against the Server for the IHT-based Scheme

For any PPT adversary A who wins the game, there is a challenger B that wants to break
the CDH and DL problems by interacting with A as follows:
� KeyGen. B runs GroupGen(λ)→ (p,G,GT ,e,g). Then, it is given the CDH instance tu-
ple (g,ga,gb) where < g >= G, chooses two exponents x,y ∈ Zp and computes g1 = gx

and g2 = gy. It also sets G1 =< g1 > and G2 =< g2 >. Note that (ga)x = ga1 , (gb)x = gb1,
(ga)y = ga2 and (gb)y = gb2. B chooses βj ,γj ∈R Zp and sets hj = g

βj
1 · (gb1)γj for j ∈ [1,s].

Let a hash function H : Q×N → G1 be controlled by B as follows. Upon receiving a
query (il′ ,vnbil′ ) to H for some l′ ∈ [1, qH ], if ((il′ ,vnbil′ ),θl′ ,Wl′) exists in LH , return
Wl′ ; otherwise, choose βj ,γj ∈R Zp and set hj = g

βj
1 · (gb1)γj for j ∈ [1,s]. For each il′ ,

choose θl′ ∈R Zp at random and set Wl′ = g
θl′
1

g

∑s

j=1 βjmil′ ,j
1 (gb1)

∑s

j=1 γjmil′ ,j
for a given block

mil′ = (mil′ ,1, · · · ,mil′ ,s). Put ((il′ ,vnbil′ ),θl′ ,Wl′) in LH and return Wl′ . B sets the public
key pk = (p,G1,G2,GT ,e,g1,g2,h1, · · · ,hs,ga2 ,H) and forwards it to A. B keeps ga1 , gb1 and
gb2 secret.
� Adaptive Queries. A has first access to OTG as follows. It first adaptively selects blocks
mi = (mi,1, · · · ,mi,s), for i ∈ [1,n]. Then, B computes Tmi = (W ·

∏s
j=1h

mi,j
j )−sk = (W ·∏s

j=1h
mi,j
j )−a, such that if ((i,vnbi),θ,W ) exists in LH , then W is used to compute Tmi .

Otherwise, θ∈R Zp is chosen at random,W = gθ1

g

∑s

j=1 βjmi,j
1 (gb1)

∑s

j=1 γjmi,j
is computed for hj =

g
βj
1 · (gb1)γj , ((i,vnbi),θ,W ) is put in LH and W is used to compute Tmi . Note that we have



19

∏s
j=1h

mi,j
j ·H(i,vnbi) = (

∏s
j=1h

mi,j
j ) · gθ1

g

∑s

j=1 βjmi,j
1 ·(gb1)

∑s

j=1 γjmi,j
= g

∑s

j=1 βjmi,j
1 (gb1)

∑s

j=1 γjmi,j ·gθ1

g

∑s

j=1 βjmi,j
1 ·(gb1)

∑s

j=1 γjmi,j
=

gθ1 and so, Tmi = (H(i,vnbi) ·
∏s
j=1h

mi,j
j )−sk = (H(i,vnbi) ·

∏s
j=1h

mi,j
j )−a = (ga1)−θ. B gives

the blocks and tags to A. The latter sets an ordered collection F = {mi}i∈[1,n] of blocks and
an ordered collection E = {Tmi}i∈[1,n] which are the tags corresponding to the blocks in F.
A has also access to ODOP as follows. Repeatedly, A selects a block ml and the corre-

sponding infol and forwards them to B. Here, l denotes the rank where A wants the data
operation to be performed: l is equal to i1+i2

2 for an insertion and to i for a deletion or a
modification. We recall that only the rank is needed for a deletion and the version number
vnbl increases by 1 for a modification. Then, A outputs two new ordered collections F′
and E′, and a corresponding updating proof ν ′ = (U1, · · · ,Us,C1, · · · ,Cs,d,wl), such that
wl ∈R Zp, d= Twlml , and for j ∈ [1,s], uj ∈R Zp, Uj = h

uj
j , cj =ml,j ·wl+uj and Cj = h

cj
j . B

runs CheckOp on ν ′ and sends the answer to A. If the answer is 0, then B aborts; otherwise,
it proceeds.
� Challenge. A selects m∗i and info∗i , for i ∈ I ⊆ (0,n+ 1)∩Q, and forwards them to B
who checks the data operations. In particular, the first info∗i indicates a full re-write. B
chooses a subset I ⊆ I, randomly selects |I| elements vi ∈R Zp and sets chal = {(i,vi)}i∈I .
It forwards chal as a challenge to A.
� Forgery. Upon receiving chal, the resulting proof of data possession on the correct stored
file m should be ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) and pass the Eq. 6. However, A generates a
proof of data possession on an incorrect stored file m̃ as ν̃ = (R̃1, · · · , R̃s, B̃1, · · · , B̃s, c̃), such
that r̃j ∈R Zp, R̃j = h

r̃j
j , b̃j =

∑
(i,vi)∈chal m̃i,j ·vi+ r̃j and B̃j = h

b̃j
j , for j ∈ [1,s]. It also sets

c̃ =
∏

(i,vi)∈chalT
vi
m̃i

. Finally, it returns ν̃ to B. If ν̃ still pass the verification, then A wins.
Otherwise, it fails.

Analysis. We define ∆rj = r̃j − rj , ∆bj = b̃j − bj =
∑

(i,vi)∈chal(m̃i,j −mi,j)vi +∆rj and
∆µj =

∑
(i,vi)∈chal(m̃i,j −mi,j)vi, for j ∈ [1,s]. Note that rj and bj are the elements of a

honest proof of data possession ν such that rj ∈R Zp and bj =
∑

(i,vi)∈chalmi,j ·vi+rj where
mi,j are the actual sectors (not the ones that A claims to have).

We prove that if A can win the game, then solutions to the CDH and DL problems
are found, which contradicts the assumption that the CDH and DL problems are hard in
G and G1 respectively. Let assume that A wins the game. We recall that if A wins then
B can extract the actual blocks {mi}(i,vi)∈chal in polynomially-many interactions with A.
Wlog, suppose that chal = {(i,vi)}, meaning the challenge contains only one block.

◦ First case (c̃ 6= c): According to Eq. 6, we have e( c̃c ,g2) = e
(
Tm̃i
Tmi

,g2
)vi = e(

∏s
j=1h

∆µj
j ,g−a2 ) =

e(
∏s
j=1(gβj1 ·(gb1)γj )∆µj ,g−a2 ) and so, we get that e( c̃c ·(g

a
1)
∑s

j=1 βj∆µj ,g2) = e(gb1,g−a2 )
∑s

j=1 γj∆µj

meaning that we have found the solution to the CDH problem, that is (gb1)a = (gx)ab =

( c̃c · (g
a
1)
∑s

j=1 βj∆µj )
−1∑s

j=1 γj∆µj unless evaluating the exponent causes a divide-by-zero. Nev-
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ertheless, we notice that not all of the ∆µj can be zero (indeed, if µj =mi,jvi = µ̃j = m̃i,jvi
for j ∈ [1,s], then c= c̃ which contradicts the hypothesis), and the γj are information the-
oretically hidden from A (Pedersen commitments), so the denominator is zero only with
probability 1/p, which is negligible. Finally, since B knows the exponent x such that g1 = gx,

it can directly compute (( c̃c · (g
a
1)
∑s

j=1 βj∆µj )
−1∑s

j=1 γj∆µj )
1
x and obtains gab. Thus, if A wins

the game, then a solution to the CDH problem can be found with probability equal to
1−1/p.
◦ Second Case (c̃= c): According to Eq. 6, we have e(c̃, ga2) = e(H(i,vnbi)vi ,g2) ·e(

∏s
j=1 B̃j ,g2)·

e(
∏s
j=1 R̃j ,g2)−1. Since the proof ν = (R1, · · · ,Rs,B1, · · · ,Bs, c) is a correct one, we also have

e(c,ga2) = e(H(i,vnbi)vi ,g2) ·e(
∏s
j=1Bj ,g2) ·e(

∏s
j=1Rj ,g2)−1. We recall that chal= {(i,vi)}.

From the previous analysis step, we know that c̃ = c. Therefore, we get that
∏s
j=1 B̃j ·

(
∏s
j=1 R̃j)−1 =

∏s
j=1Bj ·(

∏s
j=1Rj)−1. We can re-write as

∏s
j=1h

b̃j−r̃j
j =

∏s
j=1h

bj−rj
j or even

as
∏s
j=1h

∆bj−∆rj
j =

∏s
j=1h

∆µj
j = 1. For g1,h ∈ G1, there exists ξ ∈ Zp such that h = gξ1

since G1 is a cyclic group. Wlog, given g1,h ∈ G1, each hj could randomly and correctly
be generated by computing hj = g

yj
1 ·hzj ∈ G1 such that yj and zj are random values in

Zp. Then, we have 1 =
∏s
j=1h

∆µj
j =

∏s
j=1(gyj1 ·hzj )∆µj = g

∑s

j=1 yj ·∆µj
1 ·h

∑s

j=1 zj ·∆µj . Clearly,
we can find a solution to the DL problem. More specifically, given g1,h= gξ1 ∈G1, we can

compute h= g

∑s

j=1 yj ·∆µj∑s

j=1 zj ·∆µj
1 = gξ1 unless the denominator is zero. However, not all of the ∆µj

can be zero and the zj are information theoretically hidden from A, so the denominator
is only zero with probability 1/p, which is negligible. Thus, if A wins the game, then a
solution to the DL problem can be found with probability equal to 1−1/p. Therefore, for
A, it is computationally infeasible to win the game and generate an incorrect proof of data
possession which can pass the verification.

The simulation of OTG is perfect. The simulation of ODOP is almost perfect unless B
aborts. This happens when the data operation was not correctly performed. As previously,
we can prove that if A can pass the updating proof, then solutions to the CDH and DL
problems are found. Following the above analysis and according to Eq. 5, if A generates an
incorrect updating proof which can pass the verification, then solutions to the CDH and
DL problems can be found with probability equal to 1− 1

p respectively. Therefore, for A,
it is computationally infeasible to generate an incorrect updating proof which can pass the
verification. The proof is completed.


