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Abstract. Speaker change detection can be of benefit to a number of
different speech processing tasks such as speaker diarization, recognition
and detection. Current solutions rely either on highly localized data or
on training with large quantities of background data. While efficient, the
former tend to over-segment. While more stable, the latter are less efficient
and need adaptation to mis-matching data. Building on previous work
in speaker recognition and diarization, this paper reports a new binary
key (BK) modelling approach to speaker change detection which aims to
strike a balance between efficiency and segmentation accuracy. The BK
approach benefits from training using a controllable degree of contextual
data, rather than relying on external background data, and is efficient
in terms of computation and speaker discrimination. Experiments on a
subset of the standard ETAPE database show that the new approach
outperforms the current state-of-the-art methods for speaker change
detection and gives an average relative improvement in segment coverage
and purity of 18.71% and 4.51% respectively.

Keywords: speaker change detection, binary keys, speaker diarization,
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1 Introduction and related work

Speaker change detection (SCD), also known as speaker turn detection and more
simply speaker segmentation, aims to segment an audio stream into speaker-
homogeneous segments. SCD is often a critical pre-processing step or enabling
technology before other tasks such as speaker recognition, detection or diarization.

The literature shows two general approaches. On the one hand, metric-based
approaches aim to determine speaker-change points by computing distances
between two adjacent, sliding windows. Peaks in the resulting distance curve are
thresholded in order to identify speaker changes. Bayesian information criterion
(BIC) [8] and Gaussian divergence (GD) [4] are the most popular metric-based
approaches. On the other hand, model-based approaches generally use off-line
training using potentially large quantities of external data. Example model-based
approaches utilise Gaussian mixture models (GMMs) [20], universal background
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models (UBMs) [24], or more recent techniques such as those based on the i-vector
paradigm [25, 21] or deep learning [17, 6, 23, 18].

Despite significant research effort, SCD remains challenging, with high error
rates being common, particularly for short speaker turns. Since they use only
small quantities of data within the local context, metric-based approaches are
more efficient and domain-independent, though they tend to produce a substantial
number of false alarms. This over-segmentation stems from the intra-speaker
variability in short speech segments. Model-based approaches, while more stable
than purely metric-based approaches, depend on external training data and hence
may not generalise well in the face of out-of-domain data.

The work reported in this paper has sought to combine the merits of metric-
and model-based approaches. The use of external data is avoided in order to
promote domain-independence. Instead, the approach to SCD reported here uses
variable quantities of contextual information for modelling, i.e. intervals of the
audio recording itself. These intervals range from the whole recording to shorter
intervals surrounding a hypothesized speaker change point.

The novelty of the approach lies in the use of an efficient and discriminative
approach to modelling using binary keys (BKs) which have been reported pre-
viously in the context of speaker recognition [1, 5], emotion recognition [3, 19],
speech activity detection [15] and, more extensively, speaker diarization [15, 2,
12, 11, 14, 13, 22]. In all of this work, segmentation consists in a straightforward
partition of the audio stream into what are consequently non-heterogeneous
speaker segments. In this case, speaker segmentation is only done implicitly at
best; none of this work has investigated the discriminability of the BK approach
for the task of explicit SCD. The novel contribution of this paper includes two
BK-based approaches to explicit SCD. They support the flexible use of contex-
tual information and are both shown to outperform a state-of-the-art baseline
approach to SCD based on the Bayesian information criterion (BIC).

The remainder of the paper is organised as follows. Section 2 describes binary
key modelling. Its application to speaker change detection is the subject of
Section 3. Section 4 describes the experimental setup including databases, system
configuration and evaluation metrics. Section 5 reports experimental results and
discussion. Conclusions are presented in Section 6.

2 Binary key modelling

This section presents an overview of the binary key modelling technique. The
material is based upon original work in speaker diarization [2] and recent en-
hancements introduced in [22].

2.1 Binary key background model (KBM)

Binary key representations of acoustic features are obtained using a binary key
background model (KBM). The KBM plays a similar role to the conventional
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Fig. 1. An illustration of the BK extraction procedure based upon the comparison of
acoustic features and the KBM

UBM. Just like a UBM, the KBM can be estimated using either external data [1]
or the test data itself [2].

The KBM training procedure involves the selection of discriminative Gaussians
from a large pool of candidates. The pool is learned from standard acoustic
features extracted with a conventional frame-blocking approach and spectral
analysis. The selection process uses a single-linkage criterion and a cosine distance
metric to select the most discriminant and complementary Gaussians. This
approach favours the selection of dissimilar candidates thereby resulting in a set
of Gaussians with broad coverage of the acoustic space; closely related, redundant
candidates (which likely stem from the over-sampling of homogeneous audio
segments) are eliminated. The process is applied to select an arbitrary number
of N Gaussian candidates which then constitute the KBM. As in [22], the size
of the KBM is expressed not in terms of a fixed number of components, but
is defined adaptively according to the quantity of available data. The resulting
KBM size is hence defined as a percentage α of the number of Gaussians in the
original pool. The KBM is hence a decimated version of a conventional UBM
where Gaussian components are selected so as to be representative of the full
acoustic space in terms of coverage rather than density. Full details of the KBM
training approach can be found in [13].

2.2 Feature binarisation

Binarised features are obtained from the comparison of conventional acoustic
features to the KBM. The process is illustrated in Figure 1. A sequence of nf
acoustic features is transformed into a binary key (BK) whose dimension N is
dictated by the number of components in the KBM. For each acoustic feature
vector in the input sequence (labelled 1 in Figure 1), the likelihood given each
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Fig. 2. A matrix of BKs from an arbitrary 2.5-minute speech fragment from the ETAPE
database. Each column of the matrix is an individual BK with N=320 elements extracted
according to the procedure illustrated in Figure 1. Distinguishable BK patterns indicate
distinct speakers whereas differences bewteen them indicate speaker change points

of the N KBM components is computed and stored in a vector which is sorted
by Gaussian index. The top NG Gaussians defined as those with the NG highest
likelihoods (2 - illustrated in solid blue) are then selected and used to create
binarised versions of the acoustic features (3).

This process is repeated for each frame of acoustic features thereby resulting
in a binary matrix of nf × N , each column of which has NG values equal to
binary 1. A row-wise addition of this matrix is then used to determine a single
cumulative vector (CV) which reflects the number of times each Gaussian in the
KBM was selected as a top-Gaussian (4). The final BK is obtained from the M
positions with highest values in the CV (5). Corresponding elements in the BK
are set to binary 1 whereas others are set to 0. The BK provides a sparse, fixed
length representation of a speech segment based on similarities to the acoustic
space modelled by the KBM. Full details of the feature binarisation approach
are also available in [13].

2.3 An illustrative example

By way of illustrating the speaker-discriminability of the BK approach, Figure 2
depicts a sequence of BKs extracted following the procedure described in Sec-
tion 2.2 from an arbitrary speech fragment in the order of 2.5 minutes duration.
Each column of the matrix is a BK computed from a 1s window with a 0.1s
shift using a KBM of size N = 320. Speaker labels towards the top of the plot
indicate the speaker which is active during each apparent segment. The vertical
axis indicates the sorted KBM Gaussian indexes whereas the horizontal axis
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indicates time. The intra-speaker consistency of BKs is immediately evident, as
are the inter-speaker differences which indicate speaker changes or turns. The
apparent diagonal component towards the upper half of the figure stems from
the sequential, temporal nature with which Gaussian candidates are added to
the KBM pool.

3 BK-based speaker change detection

This section describes the application of BK modelling to speaker change detection.
Two such approaches are proposed.

3.1 KBM estimation

The KBM can be learned using either one of the two approaches illustrated
in Figure 3 and Figure 4. The first is a global-context approach whereby the
KBM is learned with data from the entire test sequence. This approach follows
the algorithm described in Section 2.1. The second is a variant referred to as
a local-context approach whereby the KBM is learned from a shorter context
window centred on the hypothesised speaker change point. Unlike the global-
context approach, the local-context approach uses all the Gaussians contained in
the defined context (no selection process is performed). This approach to KBM
learning enables the flexible use of acoustic context information.

KBM

1
0

...

1
1

0
1

...

1
0

Fig. 3. Global-context KBM obtained through the selection of Gaussians from a
global pool

3.2 Speaker change detection

Speaker change detection (SCD) is performed using data from two smaller and
non-overlapping windows, one either side of hypothesized speaker change points.
BKs are extracted for each window and are compared using the Jaccard distance,
defined as:

DJ(va, vb) = 1− SJ(va, vb) (1)
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Fig. 4. Local-context KBM constructed using all Gaussians estimated from within
a local context

where SJ(va, vb) is the Jaccard similarity between two binary vectors va and vb
defined as:

SJ(va, vb) =

∑N
i=1(va[i] ∧ vb[i])∑N
i=1(va[i] ∨ vb[i])

(2)

where N is the vector dimension, ∧ is the boolean AND operator and ∨ is the
boolean OR operator.

This procedure is applied sequentially to obtain a curve of window distances
at regular intervals. Local peaks in this curve represent speaker change candidates.
Speaker change decisions are then obtained by thresholding the distance curve
using an empirically optimised threshold.

4 Experimental setup

This section describes the database, the configuration of baseline and BK-based
approaches to SCD and the evaluation metrics.

4.1 Database

In keeping with previous work on SCD, e.g. [17, 6], this work was performed with
the ETAPE database [16] which contains audio recordings of a set of French TV
and radio shows. The TV show development partition used for all work reported
here consists of 9 audio files containing excerpts of debate, entertainment and
broadcast TV shows broadcast on a number of different French TV channels.
Together the recordings contain in the order of 5.5 hours of audio of which 3.9
hours contain the speech of 61 speakers in 2304 speech segments.

4.2 Baseline system

Acoustic features comprise 19 static Mel-frequency cepstral coefficients (MFCCs)
which are extracted from pre-emphasised audio signals using an analysis window
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of 25ms with a time shift of 10ms using a 20-channel Mel-scaled filterbank. No
dynamic features are used.

The baseline SCD approach is a standard BIC segmentation algorithm [8]. It
is applied with two windows of 1s duration either side of a hypothesised speaker
change point. The resulting BIC distance curve is smoothed by replacing each
point with the average estimated over 1s context. Local maxima are identified
by enforcing a minimum distance of 0.5s between consecutive peaks. Within any
0.5s interval, only the highest peak is retained before speaker change points are
selected by thresholding. This is a standard approach similar to those reported
in [10, 7, 9].

4.3 Binary key system

Acoustic features are the same as for the baseline system. Candidate Gaussians
for the KBM pool are learned from windows of 2s duration with a time shift of
1s. The number of components in the final KBM is chosen adaptively according
to a percentage α of the number in the initial pool. Reported below are a set of
experiments used to optimise α. The number of top Gaussians NG used for BK
extraction (step 5 in Figure 1) is set to 5 and the number of bits M that are set
to 1 is set to 20% of the number of KBM components N .

Two BKs are extracted every 0.1s with sliding windows of 1s duration po-
sitioned either side of the hypothesized change point. The distance between
each pair of BKs is calculated using the Jaccard similarity (Section 3.2) and the
distance curve is smoothed in the same way as for the baseline system. Speaker
change points are again selected by thresholding.

4.4 Evaluation metrics

SCD performance is evaluated using the approach used in [6], namely through
estimates of segment coverage and purity. According to the work in [6], coverage
is defined as:

coverage(R,H) =

∑
r∈R maxh∈H|r ∩ h|∑

r∈R |r|
(3)

where |r| is the duration of segment r within the set of reference segments R,
and where r ∩ h is the intersection of segments r and segments h within the set
of hypothesis segments H. Purity is analogously defined with R and H in Eq. 3
being interchanged.

An over-segmented hypothesis (too many speaker changes) implies a high
segment purity at the expense of low coverage (hypothesised segments cover a low
precentage of reference segments). In contrast, an under-segmented hypothesis
(too few speaker changes) implies the opposite, namely high coverage, but low
purity. Purity and coverage are hence a classical trade-off, with the optimal
algorithm configuration depending on the subsequent task.

In order to concentrate on the assessment of SCD alone, ground-truth an-
notations are used for speech activity detection (SAD). It is noted that the use
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Fig. 5. Performance measured in segment purity and coverage using global-context
KBM, obtained by varying the decision threshold θ

of ground-truth SAD as a hypothesis with a single speaker delivers a ceiling
coverage of 100% and a floor purity of 83%. These values can be taken as a
performance reference.

5 Results

Figures 5 and 6 show plots of purity and coverage for global- and local-context
KBMs respectively. Each profile shows the trade-off between the two metrics as
the distance threshold θ is varied. Profiles are shown for KBMs whose size α is
set to 20, 40, 60, 80 and 100% of the total number of original Gaussians. In both
cases, the performance of the BIC baseline system is illustrated with a solid blue
line.

The BK approach with global-context KBMs (Figure 5) gives universally
better performance than the baseline, even if the trend is somewhat inconsistent.
This behaviour is due to the Gaussian selection process which can result in a
selection of Gaussians that are not representative of certain audio segments.
KBMs of larger size have inherently better potential to cover the full acoustic
space and hence better potential to produce more discriminant BKs. Larger
KBMs then give better performance, e.g. for α greater than 40%. The optimal
α is 60%. Greater value of α do not necessarily give better performance. This
is because the acoustic space is already fully covered and the introduction of
additional Gaussians is largely redundant. The BK approach with local-context
KBMs (Figure 6) also outperforms the baseline. While the trend is consistent for
lower values of coverage, across the range the optimal α varies between 60% and
100%.
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Fig. 6. Performance measured in segment purity and coverage using local-context
KBM, obtained by varying the decision threshold θ

Table 1 illustrates the variation in coverage against purity for BK-based SCD
using global-context KBMs for α = 60%. The performance is compared to that
obtained with the baseline system. The BK approach gives higher coverage at
all operating points, especially for those with higher purity. Estimated using an
area-under-the-curve (AUC) metric, the average relative improvement in coverage
and purity across all operating points is 17.39% and 4.48%, for coverage and
purity metrics respectively.

Table 2 illustrates the same analysis for BK-based SCD using local-context
KBMs for α = 70. Using the same AUC metric, the average relative improvement
in coverage and purity is 18.71% and 4.51% respectively. These improvements
are similar to results achieved by more advanced deep learning-based solutions
such as that in [6].

It is of interest to compare the two proposed methods not only in terms
of performance, but also in terms of efficiency and practical application. Even
if the local-context approach slightly outperforms the global-context one, each
approach can be better suited for different application modes. On one hand,
in the case of offline processing (when the entire input stream is available in
advance), the global-context approach is more efficient since the KBM is fix for all
the process, hence allowing to compute frame-wise likelihoods only once and then
reuse them for subsequent operations. However, in the local-context approach,
the KBM changes over time (by using Gaussian components estimated on the
contextual window around the current time point). This forces to recompute
frame-wise likelihoods every time the window is shifted, therefore adding an extra
computation cost. On the other hand, in online processing scenarios, the global-
context approach cannot be used since the complete input stream is required in
advance to train the KBM. However, the local-context approach is well suited
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for online applications since it only utilises local information around the current
time point. In the latter case, system latency is proportional to the amount of
contextual data considered.

Table 1. Comparative performance measured in coverage for several fixed purity values
using the global-context KBM approach

Purity (%) 84 88 92 96

Coverage (%)
BIC 96.48 79.54 60.92 37.90

BK 98.88 91.71 78.46 48.99

Table 2. Comparative performance measured in coverage for several fixed purity values
using the local-context KBM approach

Purity (%) 84 88 92 96

Coverage (%)
BIC 96.48 79.54 60.92 37.90

BK 98.99 92.86 77.45 51.51

6 Conclusions

This paper introduces a binary key (BK) solution to speaker change detection
(SCD). The algorithm uses traditional acoustic features and a configurable quan-
tity of contextual information captured through a binary key background model
(KBM). Speaker-discriminative BKs are then extracted from the comparison of
acoustic features to the KBM. The binarisation of acoustic features resembles a
form of quantisation which helps to reduce noise and hence improve the robust-
ness of subsequent SCD. The latter is performed by thresholding the distance
between BKs extracted from two adjacent windows either side of hypothesized
speaker change points. While not requiring the use of external data, two variants
of the novel BK SCD algorithm are shown to outperform a baseline approach
based on the classical Bayesian information criterion. Results obtained using a
standard dataset show average relative improvements which compare favourably
to results reported recently for more computationally demanding deep learning
solutions.
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