
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Extension Breakdown: Security Analysis of
Browsers Extension Resources Control Policies

Iskander Sanchez-Rola and Igor Santos, DeustoTech,
University of Deusto; Davide Balzarotti, Eurecom

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola

Extension Breakdown: Security Analysis of
Browsers Extension Resources Control Policies

Iskander Sanchez-Rola
Deustotech,

University of Deusto

Igor Santos
Deustotech,

University of Deusto

Davide Balzarotti
Eurecom

Abstract

All major web browsers support browser extensions to
add new features and extend their functionalities. Never-
theless, browser extensions have been the target of sev-
eral attacks due to their tight relation with the browser
environment. As a consequence, extensions have been
abused in the past for malicious tasks such as private in-
formation gathering, browsing history retrieval, or pass-
words theft — leading to a number of severe targeted
attacks.

Even though no protection techniques existed in the
past to secure extensions, all browsers now implement
defensive countermeasures that, in theory, protect ex-
tensions and their resources from third party access. In
this paper, we present two attacks that bypass these con-
trol techniques in every major browser family, enabling
enumeration attacks against the list of installed exten-
sions. In particular, we present a timing side-channel
attack against the access control settings and an attack
that takes advantage of poor programming practice, af-
fecting a large number of Safari extensions. Due to the
harmful nature of our findings, we also discuss possible
countermeasures against our own attacks and reported
our findings and countermeasures to the different actors
involved. We believe that our study can help secure cur-
rent implementations and help developers to avoid simi-
lar attacks in the future.

1 Introduction

Browser extensions are the most popular technique cur-
rently available to extend the functionalities of modern
web browsers. Extensions exist for most of the browser
families, including major web browsers such as Firefox,
Chrome, Safari, and Opera. They can be easily down-
loaded and installed by users from a central repository
(such as the Chrome Web Store [15] or the Firefox Add
Ons [26]).

Unfortunately, extensions are also prone to misuse. In
fact, due to their close relationship to the browser envi-
ronment, they can be abused by an adversary in order
to gather a wide range of private information — such
as cookies, browsing history, system-level data, or even
user passwords [7]. Due to this raising concern, the
amount of research studying the security implications
and vulnerabilities of browser extensions has rapidly in-
creased in the last years [3, 4, 8, 10, 18, 21, 25].

When browser extensions were first introduced, web-
sites were able to access all their local resources. As a
consequence, malicious actors started to use that freely-
accessible data to enumerate the extensions a user has
installed in her system, or even to exploit vulnerabilities
within installed extensions [23]. To mitigate this increas-
ing threat, Firefox introduced the contentaccessible

flag and Chrome a new manifest version [16] to imple-
ment some form of access control over the extension re-
sources. In the rest of the paper we will refer to these
security measures as access control settings. Developers
of Safari decided to adopt a different mechanism, which
consists in randomizing at runtime part of the extension
URI [2]. We will refer to this second class of protection
technique as URI randomization.

Information of the web browser has been used for a
number of malicious or “questionable” purposes. For
example, Panopticlick [12] creates a unique browser fin-
gerprint using the installed fonts, among other features.
PluginDetect [14] retrieves instead the list of plugins in-
stalled in the browser. Even worse, this technique has
recently been used in two reported fingerprinting-driven
malware campaigns [33, 37].

Thanks to the existing browser security countermea-
sures described above, so far extensions were protected
against these fingerprinting techniques. Two very simple
enumeration attacks were recently proposed to retrieve a
small number of installed extensions in the browsers that
adopted access control settings [6,20]. These techniques

USENIX Association 26th USENIX Security Symposium 679

took advantage of accessible resources of the extensions
present in Chrome and Firefox to identify a small num-
ber of popular extensions. In addition, XHOUND [34]
was also recently proposed to enumerate extensions and
perform fingerprinting, by measuring the changes in the
DOM of the website.

In this paper we present the first in-depth security
study of all the extensions resource control policies
used by modern browsers. Our analysis show that all
browsers families that currently support extensions are
vulnerable to some form of enumeration attack. In par-
ticular, while the two design choices (i.e., access control
settings or URI randomization) are both secure from a
theoretical point of view, their practical implementation
suffers from many different problems.

We discuss two offensive techniques to subvert these
control policies, one based on a timing side-channel at-
tack and one based on an involuntary leakage of the ran-
dom URI token that affects many extensions. At the time
of writing, these attacks undermine the extension secu-
rity of all browsers. We also discuss a set of attacks based
on these techniques, which allow third-parties to perform
precise user fingerprinting, or to perform various types
of targeted attacks, performing proof-of-concept tests of
some of them.

We already reported the discovered problems to the
involved browsers and extensions developers and we are
currently discussing with them about possible fixes.

In summary, this paper makes the following contribu-
tions:

• We propose the first time-based extension enumer-
ation attack that can retrieve the complete list of ex-
tensions installed in browsers that use access con-
trol settings. This method largely outperforms any
previous extension fingerprinting methodology pre-
sented to date.

• We design a static analysis tool for Safari exten-
sions, and use it to flag hundreds of potentially
vulnerable cases in which the developers leaked
the random extension URI. Through an exhaustive
manual code analysis on a subset of the extensions,
we confirm that this is indeed a very widespread
problem affecting a large fraction of all Safari ex-
tensions.

• We show that browsers extension resources control
policies are very difficult to properly design and im-
plement, and they are prone to subtle errors that
undermine their security. Our research led to nu-
merous discussions with the developers of all major
browsers and extensions, including the ones vulner-
able to our attacks and the ones that are still in the

design or testing phase. As a result, our study is
helping to secure all browsers against these com-
mon errors.

The remainder of this paper is organized as follows.
§2 provides the background on extension control meth-
ods. §3 describes the problems and two different attacks
to subvert them. §4 describes the impact of the prob-
lems in a broad set of scenarios. We then discuss possi-
ble countermeasures and summarize the outcome of our
research in §5. Finally, §6 discusses related work and §7
concludes the paper.

2 Background

All browsers that support extensions implement some
form of protection to prevent arbitrary websites from
enumerating the installed extensions and freely accessing
their resources. After an extensive survey of several tra-
ditional and mobile browser families, we identified two
main classes of protection mechanisms currently in use:
access control settings (§2.1), and URI randomization
(§2.2).

2.1 Access Control Settings
The most popular approach to protect extension re-
sources from unauthorized accesses consists in letting
the extensions themselves specify which resources they
need to be kept private and which can be made publicly
available. All browsers that adopt this solution rely on
a set of configuration options included in a manifest file
that is shipped with each extension. For security rea-
sons, by default all the resources are considered private.
However, developers can specify in the manifest a list of
accessible resources.

This solution is currently used by all browsers based
on Chromium, all the ones based on Firefox and Mi-
crosoft Edge.

Chromium family
The Chromium family includes all versions of
Chromium (such as Google Chrome), and all browsers
based on the Chromium engine (e.g., Opera, Comodo
Dragon, and the Yandex browser).

Extensions in this family are written using a combi-
nation of HTML, CSS, and JavaScript [17]. They are
not required to use any form of native code, as it is in-
stead the case for plugins or other forms of browser ex-
tensions. Each Chromium extension includes a JSON
file called manifest.json that defines a set of proper-
ties such as the extension name, description, and version
number (see Figure 1 for an example of manifest). The

680 26th USENIX Security Symposium USENIX Association

"name": "description",

"example": "Example extension",

"version": "1.0",

"browser_action": {

"default_icon": "icon.png",

"default_popup": "popup.html"},

"permissions": [

"activeTab",

"https://ajax.googleapis.com/"],

"web_accessible_resources": [

"images/*.png",

"style/double-rainbow.css",

"script/double-rainbow.js",

"script/main.js",

"templates/*"], ...

Figure 1: Snippet of a Chrome Extension
manifest.json file.

manifest is used by the browser to know the functionality
offered by the extension and the permissions required to
perform those actions [16].

In the first version of the manifest, there was no re-
striction over the resources of the extensions accessi-
ble from third-party websites. Because of that, different
tools were released to take advantage of this weakness
to enumerate user extensions and exploit their vulnera-
bilities [23]. To mitigate this threat, Google decided to
introduce dedicated access control settings in the second
version of the manifest file. This extension uses a pa-
rameter (web accessible resources) to specify the
paths of packaged resources that can be used in the con-
text of a website. Resources are available through the
URL chrome-extension://[extID]/[path]. How-
ever, any navigation access to an extension or its re-
sources is blocked by the browser, unless the extension
resource has been previously listed as accessible in its
manifest.json. This solution was explicitly designed
to minimize the attack surface while protecting users’
privacy.

Firefox family

Firefox family extensions (or Add-ons, as they are called
in the Mozilla jargon) can add new functions to the web
browser, change its behavior, extend the GUI, or in-
teract with the content of websites. Add-ons have ac-
cess to a powerful API called XPCOM [30], that en-
ables the use of several built-in services and applications
through the XPConnect interface. In the Firefox family
(which includes for example Firefox Mobile, Iceweasel
and Pale Moon), extensions are written in a combina-
tion of JavaScript and XML User Interface Language

(XUL). Extensions are also allowed to use functionality
from third-party binaries or create their own binary com-
ponents. Recently, Mozilla changed its extension devel-
opment framework, introducing the Add-on SDK of the
JetPack project [28]. This development kit provides a
high-level API, easing the development process and ad-
dressing some of the security issues of previous Firefox
extensions.

The registration and allocation of the different exten-
sions is performed through the Chrome Registry [27]
which is also in charge of customizing user interface ele-
ments of the application window that are not in the win-
dows content area (such as toolbars, menu bars, progress
bars, or windows title bars). Each extension contains a
chrome.manifest file that specifies options related to
three main categories — content, locale, and skin — as
exemplified in the following snippet:

content ext src/content/

skin ext classic src/skin/

locale ext en-US src/locale/en-US/

content pck chrome/ext/pck contentaccessible=yes

As it was the case for Chromium extensions, origi-
nally there was no control performed to prevent exter-
nal websites from accessing the different resources of
an extension. And also in this case, developers de-
cided to solve the problem by including a new option
in the chrome.manifest (called contentaccessible

and depicted in the last line of the previous example) that
specifies which resources can be publicly shared. How-
ever, resources have a restricted access by default, unless
contentaccessible=yes is specified in the manifest.

Firefox is now developing a new way of handling Add-
ons called WebExtensions [29]. This technology is de-
signed mainly for cross-browser compatibility, support-
ing the extension API of Chromium. Porting extensions
between the two platforms will require few changes in
the code of the Add-on. The new extensions will also
use a manifest.json, including some extra data spe-
cific for Firefox (see Figure 2). In order to access the
different resources of the extension, Firefox will use the
moz-extension:// schema.

As WebExtensions are currently in an early stage we
are not including them in our tests, but we notified their
developers and we will discuss more about them in §5.

Microsoft Edge

Edge will be the first Microsoft browser to fully support
extensions. It will follow a Chrome-compatible exten-
sion model based on HTML, JavaScript and CSS. This
means that the migration process to Microsoft Edge for

USENIX Association 26th USENIX Security Symposium 681

"applications": {

"gecko": {

"id": "{the-addon-id}",

"strict_min_version": "40.0.0",

"strict_max_version": "50.*"

"update_url": "https://foo/bar"

}

} ...

Figure 2: Snippet of a Firefox WebExtension manifest’s
new data.

Chrome extension developers will require minimal ef-
fort.

Beside the general web APIs, a special exten-
sion API will provide a deeper integration with the
browser, making possible to access features such as
tab and window manipulation. The manifest will
be named manifest.json and will use the same
JSON-formatted structure and general properties of
the Chromium implementation. The URL to access
the extension resources follows the ms-browser-ex-

tension://[extID]/[path] schema.
As the design is in its preliminary stages and it is not

yet fully working, we are not including it in our analysis.

2.2 URI Randomization
As Safari was one of the last major browsers to adopt ex-
tensions, its developers implemented a resource control
from the beginning to avoid enumeration or vulnerabil-
ity exploitations of installed extensions. Instead of re-
lying on settings included in a manifest file like all the
other major browsers, Apple developers adopted a URI
randomization approach. In this solution there is no dis-
tinction between private or public resources, but instead
the base URI of the extension is randomly re-generated
in each session.

Safari extensions are coded using a combination of
HTML, CSS, and JavaScript. To interact with the web
browser and the page content, a JavaScript API is pro-
vided and each extension runs within its own “sand-
box” [1]. To develop an extension, a developer has to
provide: (i) the global HTML page code, (ii) the content
(HTML, CSS, JavaScript media), (iii) the menu items
(label and images), (iv) the code of the injected scripts,
(v) the stylesheets, and (vi) the required icons.

These components are grouped into two categories:
the first including the global page and the menu items,
and the second including the content, and the injected
scripts and stylesheets. This second group cannot ac-
cess any resource within the extension folder using rel-
ative URLs as the first group does. Instead, these
extension components are required to use JavaScript

1 <script type = "text/javascript">

2 var myImage = safari.extension.baseURI +

3 "Images/paper.jpg";

4 document.body.style.cssText =

5 "background -image: url(" +myImage+ ")";

6 </script >

Figure 3: Example of background image load in CSS
using absolute URLs in Safari extension.

Request
Extension

installed?

Path

accessible?

Case A

Send data

x time y time

x+y time

Case B

yes

yes

no

no

Figure 4: Resource accessibility control schema.

to access the randomized URI that changes each time
Safari is launched. Absolute URIs are stored in the
safari.extension.baseURI field, as shown in Fig-
ure 3.

3 Security Analysis

In the previous section we presented the two complemen-
tary approaches adopted by all major browser families to
protect the access to extension resources. The first so-
lution relies on a public resource URI, whose access is
protected by a centralized code in the browser accord-
ing to settings specified by the extension developers in a
manifest file. The second solution replaces the central-
ized check by randomizing the base URI at every execu-
tion. In this case, the extension needs to access its own
resources by using a dedicated Javascript API.

While their design is completely different, both solu-
tions provide the same security guarantees, preventing an
attacker from enumerating the installed extensions and
accessing their resources. We now examine those two
approaches in more detail and discuss two severe limita-
tions that often undermine their security. It is important
to note that these attacks can also be used in any type of
device with a browser with extension capability, such as
smartphones or smartTVs.

3.1 Timing Side-Channel on Access Con-
trol Settings Validation

As already mentioned, the vast majority of browsers
adopt a centralized method to prevent third parties from

682 26th USENIX Security Symposium USENIX Association

Figure 5: Comparison between number of iterations and errors with different CPU usages (%), .

accessing any resource of the extensions that have not
been explicitly marked as public. Therefore, when a
website tries to load a resource not present in the list of
accessible resources, the browser will block the request.
Despite the fact that, from a design point of view, this so-
lution may seem secure, we discovered that all their im-
plementations suffer from a serious problem that derives
from the fact that these browsers are required to perform
two different checks: (i) to verify if a certain extension is
installed and (ii) to access their control settings to iden-
tify if the requested resource is publicly available (see
Figure 4 for a simple logic workflow for the enforcement
process). When this two-step validation is not properly
implemented, it is prone to a timing side-channel attack
that an adversary can use to identify the actual reasons
behind a request denial: the extension is not present or
its resources are kept private. To this end, we used the
User Timing API1, implemented in every major browser,
in order to measure the performance of web applications.

As an example, an attacker can code few lines of
Javascript to measure the response time when invoking
a fake extension (refer to case A in Figure 4). For in-
stance, in Chromium the requested URI could look like
this:

chrome-extension://[fakeExtID]/[fakePath]

Then, the attacker can generate a second request to
measure the response time when requesting an exten-
sion that actually exists, but using a non-existent resource
path (case B in Figure 4):

chrome-extension://[realExtID]/[fakePath]

By comparing the two timestamps, the attacker can
easily determine whether an extension is installed or not
in the browser. Similar response times mean that the cen-
tral validation code followed the same execution path on

1https://www.w3.org/TR/user-timing/

the two requests and, therefore, the extension is not in-
stalled in the browser. Otherwise, significantly different
execution times mean that only the second test failed and,
therefore, that the requested extension is present in the
browser.

We performed an experiment in order to empirically
tune the time difference threshold and the number of cor-
rect requests required to ensure the correctness of our at-
tack. In particular, the following configuration was used:

• We configured 5 different CPU usages: 0%, 25%,
50%, 75%, and 100%. The experiment was exe-
cuted on a 2.4GHz Intel Core 2 Duo with 4 GB
RAM commodity computer.

• The attack was configured to be repeated from 1 to
10 iterations. Note that each iteration performs two
calls to the browser: one that asks for the fake ex-
tension and one that asks for the actual extension
with a fake path.

• We repeated each attack testing 500 times to avoid
any bias. In this way, we performed: 2 calls × 10
iteration configurations × 500 times × 5 CPU us-
ages, resulting in a total number of 275,000 calls.

We observed that, when the execution paths were dif-
ferent, the response times differed by more than 5%. It
is important to remark that our method exploits the pro-
portional timing difference between two different calls
rather than using a pre-computed time for a specific de-
vice. Figure 5 shows the precision across different CPU
loads and different numbers of iterations. Five iterations
were sufficient enough to achieve a 100% success rate
even under a 100% CPU usage.

Affected Browsers

We tested our timing side-channel attack on the two
browser families (Chromium-based and Firefox-based)
that use extensions access control settings.

USENIX Association 26th USENIX Security Symposium 683

Table 1: Percentage extension detected by previous
methods.

Chrome Firefox Total

Extensions Tested 10,620 10,620 21,240
% Previous Approaches 12.73% 8.17% 10.45%

% Our Approach 100.00% 100.00% 100.00%

Our experiments confirm that all versions of
Chromium are affected by this vulnerability. Browsers
such as Chrome, Opera, the browser of Yandex (largest
search engine in Russia) and the browser of Comodo
(largest issuer of SSL certificates) are included in this
group. As aforementioned, we are not including Edge
and Firefox WebExtensions because they are still in early
stages of development. However, as they follow the same
extension control mechanism as Chromium, they are also
likely to be vulnerable to our timing side-channel attack.

Surprisingly, non-WebExtensions in Firefox suffer
from a different bug that makes even easier to detect the
installed extensions. The browser raises an exception if a
webpage requests a resource for non-installed extension
(case A in Figure 4), but not in the case when the re-
source path does not exist (case B in Figure 4). While the
exception does not cause any visible effect in the page,
an attacker can simply encapsulate the invocation in a
try-catch block to distinguish between the two execu-
tion paths and reliably test for the presence of a given
extension.

Extensions Enumeration

By telling apart the two centralized checks that are part
of the extension settings validation (either because of the
side-channel or because of the different exception behav-
iors), it is possible to completely enumerate all the in-
stalled extensions. It is sufficient for an attacker to sim-
ply probe in a loop all existing extensions to precisely
enumerate the ones installed in the system.

In comparison, previous bypassing techniques [6, 20]
were only able to detect a small subset of the exist-
ing extensions. In order to precisely assess the accu-
racy improvement over these previous techniques, we
conducted an experiment on a set of 21,240 extensions.
For this test, we decided to focus on the two browsers
with the highest number of available extensions: Chrome
and Firefox (Opera also has its own extension store, but
the number of popular extensions is very low compared
with the other browsers). In the case of Chrome, exten-
sions are divided in three different groups: extensions,
apps, and games. Although one of the groups is ex-
plicitly called extensions, all of them are installed as a
chrome-extension and follow the same access control

settings model.
At the time of writing, the number of recommended

extensions in the games category (the smallest of the
three) was 3,540. To keep a balanced dataset, we there-
fore selected also the top 3,540 of the remaining two
categories, resulting in a balanced dataset of the 10,620
most recommended extensions.

For Firefox, the selection process was easier because
its store makes no distinction among different categories.
Therefore, we selected the 10,620 most popular Firefox
extensions to keep our complete dataset equally balanced
between the two browsers.

To measure the coverage of previous bypassing meth-
ods and compare it with the full coverage of our bypass
technique, we combined the methods described in [6,20].
These methods are, to the best of our knowledge, the
only ones that exist capable of enumerating extensions
by subverting access control settings. These methods are
based on checking the existence of externally accessible
resources in extensions. To test them, we analyzed the
manifest files of all extensions we downloaded, looking
for any accessible resources.

Table 1 shows the obtained coverage using previous
methods. Chrome extensions were easier to enumerate
than the ones in the Firefox store. However, the coverage
of these old methods is very low compared to the full
coverage achieved by our method.

3.2 URI Leakage

Even if URI randomization control is completely central-
ized, it strongly depends on developers to keep resources
away from any third-party access. In fact, extensions
are often used to inject additional content, controls, or
simply alert panels into a website. This newly gener-
ated content can unintentionally leak the random exten-
sion URI, thus bypassing the security control measures
and opening access to all the extension resources to any
other code running in the same page. In addition, the
leaked random URI may be used by third-parties to un-
equivocally identify the user while browsing during the
same session.

A simple example taken from the Web of Trust2 ex-
tension is shown in Figure 6. The code snippet creates
a new iframe (line #11), sets its src attribute to the
baseURI random address of the extension (line #14), and
adds the frame to the document body (line #19). As a re-
sult, any other JavaScript code running in the same page
(and therefore potentially under control of an attacker)
can retrieve the address of the injected iframe and use
it to access any resource of the extension. In fact, once
the random token is known, the browser offers no other

2https://www.mywot.com/

684 26th USENIX Security Symposium USENIX Association

https://www.mywot.com/

1 wot.rating = {

2 toggleframe: function(id, file , style){

3 try {

4 var frame = document.getElementById(

id);

5 if (frame) {

6 frame.parentNode.removeChild(frame);

7 return true;

8 } else {

9 var body = document.

getElementsByTagName("body");

10 if (body && body.length) {

11 frame = document.createElement("

iframe");

12 if (frame) {

13 frame.src = safari.extension.

baseURI+file;

14 frame.setAttribute("id", id);

15 frame.setAttribute("style", style)

;

16 if (body [0]. appendChild(frame))

17 {return true;}

18 }

19 }

20 }

21 } catch (e) {

22 console.log("failed with"+e+"\n");}

23 return false;

24 }

Figure 6: Web Of Trust Safari extension function that
creates an iframe in the website with the baseURI ran-
dom variable as source.

security mechanism to protect the access to an extension
resources.

While this may seem like a simple bug in the extension
development, our experiments show that it is instead a
very widespread phenomenon. The entire security of the
extension access control in Safari relies on the secrecy of
the randomly generated token. However, the token is part
of the extension URI which is often used by the exten-
sions to reference public resources injected in the page.
As a result, we believe that this design choice makes it
very easy for developers to unintentionally leak the se-
cret token.

Estimating the Scale of the Problem

The Web-of-Trust example discussed above consists of a
single function of 30 lines of code, but not all the cases
are so obvious to identify without a complex static anal-
ysis of the extension.

To estimate how prevalent the problem is, we imple-
mented a prototype analyzer that reports candidate cases
of URI leakage in all Safari extensions. Our tool is based
on Esprima3 to perform a static analysis based on the Ab-

3https://github.com/jquery/esprima

file_B

(function_B)

file_C

(function_C)

file_A

(function_A)

baseURI

file_D

(function_D)

injection

calls
calls

calls

Figure 7: Simplified example schema of an extension
that leaks the baseURI.

stract Syntax Trees (ASTs) of all the different JavaScript
components of the extension under analysis. Source and
sinks are located by just looking for the specific code in
the nodes of the tree, while the information flow is com-
puted by following the different pieces of code that actu-
ally have access to the data along the different execution
paths. In particular, the analysis is performed in three
steps:

1. In the first step, the tool identifies the source loca-
tions where the code accesses the random extension
URI (looking for calls to the baseURI method).

2. The tool then separately analyzes all the compo-
nents that can use the retrieved value. Following the
information flow (i.e., functions that are are called
or are calling), this process is performed recursively
until no more connections are found.

3. For every identified components, the tool locates the
sinks, i.e., the location where new content is injected
in the webpage (e.g., through the createElement

and appendChild methods). If there is a connec-
tion between the baseURI access and the injec-
tion of an element in the website, the extension is
flagged as suspicious and reported for further anal-
ysis.

The schema in Figure 7 shows a simplified example of
an extension that leaks the baseURI using function A

of file A to obtain the value, function B of file B

as an intermediate phase, and function D of file D to
finally make the injection on the website.

This technique is designed to act as a screening filter
and NOT as a precise detection method. Indeed, the fact
that an extension retrieves the baseURI and then uses
it to create some content is not sufficient to identify if
the full information is actually leaked. For instance, we

USENIX Association 26th USENIX Security Symposium 685

https://github.com/jquery/esprima

Table 2: Percentage of potential baseURI leakage in sa-
fari extensions.

Category # Total Ext. # P. Leak
Shopping 95 57.89%
Email 13 53.85%
Security 84 52.38%
News 20 45.00%
Photos 25 44.00%
Bookmarking 61 42.62%
Productivity 147 40.82%
RSStools 5 40.00%
Entertainment 37 37.84%
Translation 8 37.50%
Social 80 30.00%
Developer 57 29.82%
Other 42 26.19%
Search 42 21.43%
urlshorteners 5 0.00%
Total 721 40.50%

found an extension that used the baseURI to retrieve its
version number and then injected an iframe with the
version number included directly as part of its URL, but
without leaking the complete baseURI.

To evaluate our tool, we downloaded and analyzed
all the available extensions within the Safari Extension
Gallery4. The 718 extensions belonged to 15 differ-
ent categories (e.g., security, shopping, news, social net-
working, and search tools).

Table 2 shows the obtained results. In general, more
than 40% of the Safari Extension Gallery were poten-
tially vulnerable to our enumeration technique. We de-
cided to manually analyze some of the results to deter-
mine whether the reported extensions actually performed
the leak or not. Since the security category is among the
ones with the highest percentage of extensions with a po-
tential leak and it is also particularly sensitive due to the
type of information these extensions usually deal with
(such as user passwords), we decided to manually verify
all the results for the extensions in this category.

With a considerable effort, we performed an exhaus-
tive manual code review of all the security extensions, se-
lecting those that were completely functional, excluding
the ones that required payment for their services. Among
the 68 extensions in this group, 29 were flagged as sus-
picious of making the leakage and 39 were not leak-
ing it. From the suspicious ones, 20 out of 29 actually
leaked the secret baseURI. In addition, we only iden-
tified one false negative that leaked the information but
was not identified by our static analysis tool. In partic-
ular, this extension obtained the complete URL, includ-
ing baseURI, but stored it locally. Within the extensions
that are vulnerable to our attack, we found popular pro-

4https://extensions.apple.com/

tection extensions such as Adblock5, Ghostery6, Web Of
Trust7, and Adguard8. The list also includes password
managers, such as LastPass9, Dashline10, Keeper11, and
TeedyID12 and combinations of the two functionalities
(e.g., Blur from Abine13).

In summary, a relevant number of Safari extensions
are vulnerable to our technique, including several impor-
tant and very popular security-related extensions. As ex-
plained in §5, we are now in the process of validating all
the results and contacting the developers of the affected
extensions to fix their code.

4 Impact

In the previous section we discussed the security of
access control settings and URI randomization, and
we showed how every mechanism adopted by current
browsers can be easily bypassed in practice. There are
several possible consequences of abusing the informa-
tion provided by our two techniques.

4.1 Fingerprinting & Analytics
The most accurate and controversial form of fingerprint-
ing aims at building a unique identifier for each user de-
vice, such as Panopticlick [12]. It is considered a state-
less technique, because in order to build and share the
unique identifier, these techniques do not require to store
anything on the user machine (in contrast with stateful
techniques such as Cookies). To build a unique iden-
tifier, several features are retrieved from the user’s ma-
chine and combined in a unique fingerprint. This pro-
cess can be repeated across multiple websites and the
identifier will always be the same for the same machine,
allowing trackers to determine users’ browsing history,
among other tasks. Using the set of installed extensions
can increase the uniqueness of the resulting fingerprint.
To measure the exact fingerprinting ability of extension
enumerations, a study should be performed to measure
the discriminatory power of the most popular extensions
available for each browser. To this end, we have con-
ducted a preliminary study of this type of analysis in
§4.3.

The techniques proposed in this paper can also be
used to perform a completely accurate browser finger-

5https://getadblock.com/
6https://www.ghostery.com/
7https://www.mywot.com/
8https://adguard.com/
9https://lastpass.com/

10https://www.dashlane.com
11https://keepersecurity.com/
12https://www.teddyid.com/
13https://dnt.abine.com

686 26th USENIX Security Symposium USENIX Association

https://extensions.apple.com/
https://getadblock.com/
https://www.ghostery.com/
https://www.mywot.com/
https://adguard.com/
https://lastpass.com/
https://www.dashlane.com
https://keepersecurity.com/
https://www.teddyid.com/
https://dnt.abine.com

printing without checking the User-Agent. To this end,
our method can be used to check for built-in extensions.
These extensions are pre-installed and present in nearly
every major web browser and there is no possibility for
the user to uninstall them. Therefore, if we configure our
techniques to check one of these built-in extensions that
does not exist in other browsers, a website can precisely
identify the browser family with 100% accuracy.

The installed extensions enumeration combined with
the aforementioned browser identification can be used to
determine users’ demographics. The extensions that a
particular user utilizes can be easily discovered by web-
sites or third-party services. Installed extensions provide
information about a particular user’s interests, concerns,
and browsing habits. For example, users with security
and privacy extensions installed in their browsers such as
Ghostery or PrivacyBadger are potentially more aware
about their privacy than other users. The same happens
with personalizing extensions, games, or any possible
combinations of other extensions categories. In order to
measure the feasibility of performing analytics through
extensions, we have conducted a proof-concept test de-
scribed in §4.3.

4.2 Malicious Applications
The information retrieved from the installed extensions
can also be used for malicious purposes, as the informa-
tion gathering phase about potential victims is usually
the first step to perform a targeted attack. For instance,
attackers can inject the extension enumeration code in a
compromised website and search for users with shopping
management extensions and password managers to nar-
row down their attack surface to only those users whose
credit card information has a higher likelihood to be
stolen. Another possibility would be to identify the pres-
ence of a major antivirus vendor extension to personalize
an exploit kit or to decide whether the malicious payload
should be delivered or not to a certain user.

In addition to the attacks already presented, in a re-
cent work, Buyukkayhan et al. [7] presented CrossFire,
a technique that allows attacker to perform malicious ac-
tions using legitimate extensions. The part that was left
unanswered by the paper is how the attacker can identify
a set of installed extensions to use for her purpose. By
using our enumeration technique, an attacker can create
completely functional malicious extensions by knowing
all installed victim’s extensions in beforehand.

Due to the variability of possible extensions, the infor-
mation of a particular user can be exploited in different
social-driven attacks (automated or not). For example, a
malicious website can exploit the information about par-
ticular extensions being installed to impersonate and fake

Table 3: Top 10 most Popular Extension Categories in
the Chrome Store.

Category % Usage

productivity 29.90
fun 10.45
communication 9.76
web development 7.74
accessibility 4.65
search tools 4.44
shopping 3.46
photos 3.12
news 2.40
sports 1.80

legitimate messages about that extensions, with the in-
tention of deceiving the user and leading her to install
malicious software. As an example, if a malicious web-
site discovers that the user is using a concrete password
management extension, it can create a fake window to
ask the user to re-type her password. This attack is partic-
ularly severe in the case of Safari, since the attacker can
actually access all the resources of an extension that leaks
its baseURI. Hence, even a careful user who decides to
analyze the website source cannot easily understand if a
certain window or frame is created by an installed exten-
sion or by the site reusing the extension resources.

While the URI randomization control bypass does not
provide a complete enumeration capability, when an ex-
tension leaks its random token it opens all its internal re-
sources to the attacker. This is potentially very harmful
as it increases the attack surface, allowing the attacker to
access and exploit any vulnerability in one of the inter-
nal extension components. For example, Kotowicz and
Osborn [23] presented a Chrome extension exploitation
framework14 that could be used when it was still possible
to access all the different extension resources.

4.3 Viability Study
We have studied the viability of the estimated impact
for several of the cases discussed before. In particular,
we have analyzed their potential for performing analyt-
ics as well as the fingerprinting capability of extensions.
We have omitted the malicious case studies due to their
inherent ethical concerns. In addition, we believe that
their implementations are more straightforward than in
the proof-of-concept cases we tested and evaluated.

Analytics
In the case of the analytics capability of extensions, we
have computed the popularity of the different categories

14https://github.com/koto/xsschef

USENIX Association 26th USENIX Security Symposium 687

https://github.com/koto/xsschef

Figure 8: Distribution of anonymity set sizes regarding
extensions.

established in the Chrome Web Store for each of the ex-
tensions that we previously analyzed in §3.1. In particu-
lar, we analyzed the 63 categories present in the 10,620
most popular Chrome extensions (Table 3 shows the 10
most popular categories).

The most popular category was “productivity” with
29.90% usage. Nevertheless, the definition of this cate-
gory is not clear because it includes a wide-range of types
of extensions such as ad blockers, schedulers, or office-
related tools. Anyhow, a possible sub-categorization may
be possible by means of the available description of each
extension. The rest of the 10 most popular are more pre-
cise and may be helpful in order to perform analytics re-
lated tasks such as targeted advertisement or website per-
sonalization. For instance, the number of visitors with
“shopping”, “web development”, or “sports” extensions,
may help the website owner to personalize her content or
ads accordingly, thus improving her number of visitors
or ad revenues.

However, not only the most popular extensions may
help the website owner to get a better understanding of
her visitors and act accordingly. Indeed, less popular ex-
tensions, because their higher power of discrimination
among users, can also be used for this task. For example,
the usage of extensions from the “creative tools” cate-
gory indicates that the visitor is prone to create content,
the presence of extensions within “academic resources”
category would likely indicate that the visitor is near the
academic environment, “teacher tools” may imply that
the visitor deliver at least some lectures, and “blogging”
implies that the visitor is a blogger.

In summary, we believe that extensions are a power-
ful tool to perform fine-grained user analytics because of
their diversity. Moreover, the information derived from
the installed extensions of a web visitor, combined with
the classical analytics information may lead to a better
user analytics for website owners.

Device Fingerprinting

In order to understand and measure the capability of
extensions for device fingerprinting, we implemented a
page that checks the users’ installed extensions among

Table 4: Comparison between Extensions with other Fin-
gerprinting Attributes.

Method Entropy

Extensions 0.869

List of Plugins 0.718
List of Fonts 0.548
User Agent 0.550
Canvas 0.475
Content Language 0.344
Screen Resolution 0.263

the top 1,000 most popular from the Chrome Web Store
and the Add-ons Firefox websites, using the timing side-
channel extension enumeration attack described in §3.1.
Since our study involved the enumeration of several
users’ installed extensions, we informed the users about
the procedure including the information gathered. Only
after the user agrees to perform the experiment and share
the collected information, the enumeration of her exten-
sions is conducted. We also set a cookie on the user
browser to prevent multiple resubmissions from the same
user. In addition, to protect the user privacy, we only col-
lected anonymous data.

We disseminate the URL of the page through social
networks and friends, asking them to participate in the
study and further re-disseminate the link among their
contacts. This way we collected the list of installed ex-
tensions from 204 participants from 16 different coun-
tries. Even though this number is smaller than in previ-
ous studies, we would like to remark that fingerprinting
is not the actual goal of the paper but just a possible ap-
plication of our attacks. In fact, this analysis is simply
designed to determine the viability of our technique for
device fingerprinting, either as a method by itself or by
complementing other existing fingerprinting techniques.

Following the standard adopted in previous works [12,
24], we analyzed the extension anonymity sets of the
fingerprinted users, which is defined as the number of
users with the same fingerprint i.e., same extension set
(the distribution of anonymity sets is shown in Figure 8).
Overall, from the 204 users that participated in our study,
116 users presented a unique set of installed extensions,
which means that 56.86% of the participants are uniquely
identifiable just by using their set of extensions.

In addition, we also compare the discriminatory level
of this proof-of-concept fingerprinting technique by
computing its normalized Shannon Entropy [24] and
comparing it with other fingerprinting attributes pro-
posed in previous studies. In particular, Table 4 com-
pares the different entropy values of the top six finger-
printing methods or attributes measured in the work by
Laperdrix et al. [24] with our extensions-based finger-
printing method. We can notice that extensions pre-

688 26th USENIX Security Symposium USENIX Association

Table 5: Current Browsers affected by our attacks. The
last two lines refer to Extensions still under development.

Browser Extensions Resource
Enumeration Access

Chromium Family X
– Chrome X
– Opera X
– Yandex X

. . . X

Firefox Family X
– Firefox Mobile X
– Iceweasel X
– Pale Moon X

. . . X

Safari ≤ 40% ≤ 40%

Microsoft Edge in discussion
Firefox WebExtensions in discussion

sented the highest entropy of the analyzed fingerprinting
attributes — making them more precise than using the
list of fonts or canvas-based techniques.

5 Vulnerability Disclosure and
Countermeasures

5.1 Attack Coverage & Effects

In this paper we presented two different classes of attacks
against the resource control policies adopted by all fam-
ilies of browsers on the market. Table 5 summarizes the
overall impact of our methods.

As already mentioned, the coverage of our enumer-
ation attack is complete in the case of the timing side-
channel attack to access-control-based browser families
(i.e., Chromium and Firefox Families) while approxi-
mately around 40% in URL randomization browsers (Sa-
fari).

Effects of Private Mode

“Incognito” or private mode is present in most of the
modern browsers and it protects and restricts several ac-
cesses to the browser resources such as cookies or brows-
ing history. Therefore, we decided to analyze if our at-
tacks can enumerate extensions even when this mode is
activated.

We discovered that all of our attacks accurately identi-
fied the list of installed extensions also within the private
mode. This fact is due to several reasons. In the case of
Chromium family browser, the browser checks for exten-
sions in incognito mode, even though extensions are not
allowed to access the websites [9]. Firefox and Safari did

1 GetFlagsFromPackage(const nsCString&

aPackage ,uint32_t* aFlags){

2 PackageEntry* entry;

3 if (! mPackagesHash.Get(aPackage , &

entry))

4 return NS_ERROR_FILE_NOT_FOUND;

5 *aFlags = entry ->flags;

6 return NS_OK;

7 }

8
9 GetSubstitutionInternal(const nsACString

& root , nsIURI ** result){

10 nsAutoCString uri;

11 if (! ResolveSpecialCases(root ,

NS_LITERAL_CSTRING("/"), uri)) {

12 return NS_ERROR_NOT_AVAILABLE ;}

13 return NS_NewURI(result , uri);

14 }

Figure 9: Firefox functions that cause the difference be-
tween existing and not existing extensions.

3 const Extension* extension=

RendererExtensionRegistry ::Get()->

GetExtensionOrAppByURL(resource_url)

;

4 if (! extension) {

5 return true;

6 }

Figure 10: Snip of Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (see Appendix for full code).

not include any check for extensions and, therefore, both
websites and extensions are able to access each other.

5.2 Timing Side-Channel Attack
The first class of attacks is the consequence of a poor
implementation of the browser access control settings:
Firefox-family browsers usage of extensions can be ex-
ploited to recognize the reason behind a failed resolution,
and Chromium family timing-side channel allows an at-
tacker to precisely tell apart the two individual checks
performed by the browser engine.

The consequence, in both cases, is a perfect technique
to enumerate all the extensions installed by the user.
Given the open-source nature of these two browsers, we
manually identified the functions responsible of the prob-
lem and indicated how to fix each of them.

Chromium family
We contacted the Chromium team to report the timing
problem. The developers were quite surprised about the
attack, because they believed that the time differences in

USENIX Association 26th USENIX Security Symposium 689

the checking phase were not significant enough to allow
this type of timing side-channel attack. By inspecting
the function responsible of checking the accessibility of
a concrete extension path (see Figure 10), the two dif-
ferent steps described in section 3 can be clearly identi-
fied. First, the browser tests the existence of the exten-
sion (line #4) and finishes if the extension does not exist.
If the extension does exist, it performs different checks
to make sure that the path is accessible, returning a error
message if it is not. These checks are the ones that permit
the timing difference exploited in the attack.

We suggested a possible way to fix the code to avoid
the time measurement by modifying the extension con-
trol mechanism to combine the internal extension verifi-
cation and the resource check together in a single atomic
operation (i.e., by modifying the extension existence
check of line #4). This requires to replace the extension
list with a hashtable containing the extensions and the
full path of their resources.

While it may seem simple to fix the problem by mak-
ing the check atomic, the problem remains if the attack
is performed with real extension paths (easily obtainable)
instead of fake paths. The timing difference would be the
same as the one presented in Figure 4, with the only dif-
ference that the first check would validate the full path
and not just the extension. At the time of writing, as it is
a design-related problem, it is still not fixed.

In addition, as the new Firefox WebExtensions and
Microsoft Edge (both currently in their early stages)
use the same extension control mechanisms proposed by
Chromium, we also notified their developers to make
them aware of the issue described in this paper. We hope
that our effort will help these two new versions to inte-
grate by-design the necessary countermeasures to avoid
these security problems since the beginning.

Firefox family

We also responsibly reported the Firefox non-
WebExtensions problem that makes our enumeration
attack possible to its developers, who acknowledged
the issue and are currently discussing how to proceed.
Specifically, Figure 9 show the function that causes the
response difference regarding the extension existence.

The error returned when the resource path does not ex-
ist (line #4 and line #12 in Figure 9) does not raise any
exception. Therefore, the solution is straightforward: re-
turn a NS ERROR DOM BAD URI error (i.e., the same one
that is thrown when extension is not installed). This
fix will not cause any issue to websites using extension
paths, maintaining the functionality intact.

Regarding WebExtensions, the Firefox developers re-
cently changed the way extensions are accessed in
order to solve the timing side-channel and other re-

lated attacks. In particular, they changed the ini-
tial scheme (moz-extension://[extID]/[path]) to
moz-extension://[random-UUID]/[path]. Unfor-
tunately, while this change makes indeed more difficult
to enumerate user extensions, it introduces a far more
dangerous problem. In fact, the random-UUID token can
now be used to precisely fingerprint users if it is leaked
by an extensions. A website can retrieve this UUID and
use it to uniquely identify the user, as once it is generated
the random ID never changes. We reported this design-
related bug to Firefox developers as well.

5.3 URI Leakage
The second class of attacks presented in the paper is
quite different. In fact, the method that Safari’s exten-
sion control employs to assure the proper accessibility
of resources is, in principle, correct. However, Safari
delegates to the extension developers the responsibility
to keep the random URI secret. We believe that this is a
very risky decision because most of the developers lack a
proper understanding of the problem. As a consequence,
our experiments confirm that a relevant number (40% in
our preliminary experiments) of the extensions are likely
to leak the baseURI, undermining the entire security so-
lution. In particular, we discovered that important secu-
rity extensions such as multiple password managers or
advertisement blockers suffer from this baseURI leak-
age vulnerability and, hence, they are vulnerable to this
attack. In the case of security extensions, this is particu-
larly worrying due to the type of information they man-
age is usually very sensitive.

In this case the problem is even harder to solve, be-
cause it is not a consequence of an error in the extension
control but of hundreds of errors spread over different ex-
tensions. Reaching out and training all the extension de-
velopers is a difficult task but Apple should provide more
information on the proper way to handle the baseURI

and about the security implications of this process.
In addition, we believe that Safari could benefit from

adopting a lightweight static analysis solution (similar
to the one we discuss in §3) to analyze the extensions
in their market and flag those that leak the random to-
ken. This would allow to immediately identify poten-
tially leaking extensions that may need a more accurate
manual verification. In the meantime, we started report-
ing the problem to some security extensions we already
manually confirmed, to help them solve their URI leak-
age problem.

5.4 Extension Security Proposal
In order to improve the security and privacy of browser
extensions, we propose a solution that solves all the dif-

690 26th USENIX Security Symposium USENIX Association

ferent problems presented in this paper.

1. All browsers should follow an extension schema
that includes a random generated value in the URL:
X-extension://[randomValue]/[path]. This
random value should be modified across and dur-
ing the same session and should be independent for
each extension installed. For example, the browser
should change it in every extension in every access.
In this way, the random value cannot be used to fin-
gerprint users.

2. Browsers should also implement an access control
(such as web accessible resource) to avoid any
undesirable access to all extensions resources even
when the random value is unintentionally leaked.

3. Extensions should be analyzed for possible leakages
before making them public to the users. Moreover,
developer manuals should specifically discuss the
problems that can cause the leakage of any random
value generated.

6 Related Work

Security of Browser Extensions
The research community has made a large number
of contributions analyzing the security properties of
browsers extensions. A number of recent studies have
focused on monitoring the runtime execution of browser
extensions. Louw et al. [35, 36] proposed an integrity
checker and a policy enforcement for Firefox legacy ex-
tensions. A more recent framework, Sentinel [31, 32],
provided a fine-grained control to the users over legacy
extensions, allowing them to define custom security poli-
cies while blocking common attacks to these extensions.

Other approaches have focused on providing security
analysis of browsers extensions in order to discover se-
curity flaws. On the static analysis side, IBEX [18] is
a framework to analyze security properties by means of
a static methodology and it also allows developers to
create a fine-grained access control and data-flow poli-
cies. VEX [3] is instead a static analyzer for Firefox
JavaScript extensions that applies information flow anal-
ysis to identify browser extension vulnerabilities.

Dynamic extensions analysis includes the work of
Djeric et al. [11], in which the authors proposed the use
of dynamic analysis to track data inside the browser and
detect malicious extensions. Dhawan et al. [10] pro-
posed a similar approach to detect extensions that com-
promised the browser environment. In a similar vein,
Wang et al. [39] used an instrumented browser to ana-
lyze Firefox Extensions. Hulk [21] is a dynamic analysis
framework that controlled the activity of the browsing

extensions, employing fuzzing techniques and Honey-
Pages adapted to the extensions. Hulk was used to an-
alyze more than 48,000 Chrome extensions, discovering
several malicious ones.

Despite the fact that these approaches are useful to de-
tect malicious or compromised extensions, they are un-
fortunately useless against external attacks or informa-
tion leakages. Our analysis has lead to the most com-
plete set of attacks against resource accessibility control
and baseURI randomization, allowing in both cases ex-
tension enumeration attacks that can be used as part of
larger threats.

Similar to our own work, XHOUND [34] recently
showed that the changes extensions perform on the DOM
are enough to enumerate extensions. Using this tech-
nique, the authors also developed a new device finger-
printing technique and measured its impact. However,
this approach has a much more limited applicability. In
comparison, our techniques achieve a larger coverage,
successfully enumerating 100% of the extensions for ac-
cess control browsers and around 40% for those using
URI randomization.

Web Timing Attacks

Web Timing attacks have been used for many different
purposes, both in the client side and server side. Felten
and Schneider [13] introduced this type of attacks as a
tool to compromise users’ private data and, specifically,
their web-browsing history. In this way, a malicious at-
tacker might obtain this information by leveraging the
different forms of web browser cache techniques. By
measuring the time needed to access certain data from
an unrelated website, the researchers could determine if
that specific data was cached or not, indicating a previous
access.

Later, Bortz et al. [5] organized timing attacks in two
different types of attacks: (i) direct timing, consisting in
measuring the time difference in HTTP requests to web-
sites and (ii) cross-site timing, which allows to obtain
data from the client-side. The first type could expose
website data that may be used to prove the validity of a
username in certain secure website. The second type of
attacks follow the same line of work of previous work
by Felten and Schneider. They also performed some ex-
periments that suggested that these timing vulnerabilities
were more common than expected. In addition, Kotcher
et al. [22] discovered that besides from the attacks pre-
vious discussed, the usage of CSS filters made possible
the revelation of sensitive information such as text tokens
exploiting time differences to render various DOM trees.

Two recent studies show that these attacks are far
from being solved. Jia et al. [19] analyzed the possi-
bility of determining the geo-locations of users thanks

USENIX Association 26th USENIX Security Symposium 691

to the customization of services performed by websites.
Location-sensitive content is cached the same way as
any other content. Therefore, a malicious actor can de-
termine the victim’s location by checking this concrete
data and without relying in any other technique. Be-
sides, Van Goethem et al. [38] proposed new timing tech-
niques based on estimating the size of cross-origin re-
sources. Since the measurement starts after the resources
are downloaded, it does not suffer from unfavorable net-
work conditions. The study also shows that these attacks
could be used in various platforms, increasing the attack
surface and the number of potential victims.

However, none of these timing techniques have been
previously used to identify components of the web
browser itself. Our new timing side-channel attacks are
the first attacks capable of determining with 100% accu-
racy which extensions are installed in the browser, inde-
pendently of the CPU usage.

7 Conclusions

Many different threats against the users security and pri-
vacy can benefit from a precise fingerprint of the exten-
sions installed in the browser.

In this paper, we show that the current countermea-
sures adopted by all browser families are insufficient or
erroneously implemented. In particular, we present a
novel time side-channel attack against the access con-
trol settings used by the Chromium browser family. This
technique is capable of correctly identifying any installed
extension. Firefox WebExtensions and Microsoft Edge
(early states) follow the same API and design, indicating
that they may be prone to be vulnerable to the attack.

We also discuss a URI leakage technique that subverts
the URI randomization mechanism implemented in Sa-
fari, that emerges from inappropriate extension imple-
mentations that leak the value of a random token. We
implemented a new method to identify extensions with
this potential leakage and we found out that up to 40%
of Safari extensions could be vulnerable to this problem.
After a manual inspection of security-related extensions,
we discovered that many popular extensions are vulner-
able to this attack. In addition, in the case of this attack,
not only the extension is identified but also its resources
can be accessed, posing as a more dangerous threat.

We also presented applications for our extension enu-
meration attacks. First, we propose different fingerprint-
ing and user analytics techniques, demonstrating their
feasibility in a real-world scenario. Second, we also pro-
posed technique to use our enumeration techniques for
malicious applications such as targeted malware, social
engineering, or vulnerable extension exploitation.

We responsibly disclosed all our findings and we are
now discussing with the developers of several browsers

and extensions to propose the correct countermeasures to
mitigate these attacks in both current and future versions.

Acknowledgments

This work is partially supported by the Basque Gov-
ernment under a pre-doctoral grant given to Iskander
Sanchez-Rola.

References
[1] APPLE. Accessing Resources Within Your

Extension Folder. https://developer.

apple.com/library/safari/documentation/

Tools/Conceptual/SafariExtensionGuide/

AccessingResourcesWithinYourExtensionFolder/

AccessingResourcesWithinYourExtensionFolder.html.

[2] APPLE. Safari Extensions Development Guide.
https://developer.apple.com/library/

safari/documentation/Tools/Conceptual/

SafariExtensionGuide.

[3] BANDHAKAVI, S., TIKU, N., PITTMAN, W., KING, S. T.,
MADHUSUDAN, P., AND WINSLETT, M. Vetting browser ex-
tensions for security vulnerabilities with vex. Communications
of the ACM 54, 9 (2011), 91–99.

[4] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.
Protecting Browsers from Extension Vulnerabilities. In Proceed-
ings of the Network and Distributed Systems Security Symposium
(NDSS) (2010).

[5] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In Proceedings of the 16th international
conference on World Wide Web (WWW) (2007), ACM, pp. 621–
628.

[6] BRYANT, M. Dirty browser enumeration tricks – us-
ing chrome:// and about: to detect firefox & addons.
https://thehackerblog.com/dirty-browser-

enumeration-tricks-using-chrome-and-about-to-

detect-firefox-plugins/index.html.

[7] BUYUKKAYHAN, A. S., ONARLIOGLU, K., ROBERTSON, W.,
AND KIRDA, E. CrossFire: An Analysis of Firefox Extension-
Reuse Vulnerabilities. In Proceedings of the Network and Dis-
tributed System Security (NDSS) (2016).

[8] CARLINI, N., FELT, A. P., AND WAGNER, D. An evaluation of
the google chrome extension security architecture. In Proceed-
ings of the USENIX Security Symposium (SEC) (2012).

[9] CHROMIUM. Extension in incognito. https:

//blog.chromium.org/2010/06/extensions-in-

incognito.html.

[10] DHAWAN, M., AND GANAPATHY, V. Analyzing information
flow in JavaScript-based browser extensions. In Proceedings of
the Annual Computer Security Applications Conference (ACSAC)
(2009).

[11] DJERIC, V., AND GOEL, A. Securing script-based extensibility
in web browsers. In Proceedings of the USENIX Security Sympo-
sium (SEC) (2010).

[12] ECKERSLEY, P. How unique is your web browser? In Proceed-
ings of the Privacy Enhancing Technologies (PETS) (2010).

[13] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference on Com-
puter and communications security (2000), ACM, pp. 25–32.

692 26th USENIX Security Symposium USENIX Association

https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html

[14] GERDS, E. Plugindetect. http://www.pinlady.net/

PluginDetect/.

[15] GOOGLE. Chrome Web Store. https://www.google.es/

chrome/webstore/.

[16] GOOGLE. Manifest - web accessible resources. https:

//developer.chrome.com/extensions/manifest/web_

accessible_resources.

[17] GOOGLE. What are extensions? https://developer.

chrome.com/extensions.

[18] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND SWAMY, N.
Verified security for browser extensions. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland) (2011).

[19] JIA, Y., DONG, X., LIANG, Z., AND SAXENA, P. I know where
you’ve been: Geo-inference attacks via the browser cache. IEEE
Internet Computing 19, 1 (2015), 44–53.

[20] K. KOTOWICZ. Intro to chrome add-ons hacking.
http://blog.otowicz.net/2012/02/intro-to-chrome-

addons-hacking.html.

[21] KAPRAVELOS, A., GRIER, C., CHACHRA, N., KRUEGEL, C.,
VIGNA, G., AND PAXSON, V. Hulk: Eliciting malicious behav-
ior in browser extensions. In Proceedings of the USENIX Security
Symposium (SEC) (2014).

[22] KOTCHER, R., PEI, Y., JUMDE, P., AND JACKSON, C. Cross-
origin pixel stealing: timing attacks using css filters. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 1055–1062.

[23] KOTOWICZ, K., AND OSBORNAND, K. Advanced chrome ex-
tension exploitation. leveraging api powers for better evil. Black
Hat USA (2012).

[24] LAPERDRIX, P., RUDAMETKIN, W., AND BAUDRY, B. Beauty
and the beast: Diverting modern web browsers to build unique
browser fingerprints. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland) (2016).

[25] LIU, L., ZHANG, X., YAN, G., AND CHEN, S. Chrome Ex-
tensions: Threat Analysis and Countermeasures. In Proceed-
ings of the Network and Distributed Systems Security Symposium
(NDSS) (2012).

[26] MOZILLA. Add-ons for Firefox. https://addons.mozilla.

org/es/firefox/.

[27] MOZILLA. Chrome registration. https://developer.

mozilla.org/en-US/docs/Chrome_Registration.

[28] MOZILLA. JetPack Project. https://wiki.mozilla.org/

Jetpack.

[29] MOZILLA. WebExtension Add-ons. https://developer.

mozilla.org/en-US/Add-ons/WebExtensions.

[30] MOZILLA. XPCOM Reference. https://developer.

mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference.

[31] ONARLIOGLU, K., BATTAL, M., ROBERTSON, W., AND
KIRDA, E. Securing legacy firefox extensions with SENTINEL.
In Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) (2013).

[32] ONARLIOGLU, K., BUYUKKAYHAN, A. S., ROBERTSON, W.,
AND KIRDA, E. Sentinel: Securing legacy firefox extensions.
Computers & Security 49 (2015), 147–161.

[33] SECURITY RESPONSE, SYMANTEC. The Waterbug attack
group. http://www.symantec.com/content/en/us/

enterprise/media/security_response/whitepapers/

waterbug-attack-group.pdf, 2015.

[34] STAROV, O., AND NIKIFORAKIS, N. Xhound: Quantifying the
fingerprintability of browser extensions. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland) (2017).

[35] TER LOUW, M., LIM, J. S., AND VENKATAKRISHNAN, V. Ex-
tensible web browser security. In Proceedings of the Conference
on Detection of Intrusions and Malware and Vulnerability As-
sessment (DIMVA) (2007).

[36] TER LOUW, M., LIM, J. S., AND VENKATAKRISHNAN, V. En-
hancing web browser security against malware extensions. Jour-
nal in Computer Virology 4, 3 (2008), 179–195.

[37] THREAT INTELLIGENCE, FIREEYE. Pinpointing Targets:
Exploiting Web Analytics to Ensnare Victims. https:

//www2.fireeye.com/rs/848-DID-242/images/rpt-

witchcoven.pdf, 2015.

[38] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1382–1393.

[39] WANG, L., XIANG, J., JING, J., AND ZHANG, L. Towards fine-
grained access control on browser extensions. In Proceedings
of the International Conference on Information Security Practice
and Experience (2012).

USENIX Association 26th USENIX Security Symposium 693

http://www.pinlady.net/PluginDetect/
http://www.pinlady.net/PluginDetect/
https://www.google.es/chrome/webstore/
https://www.google.es/chrome/webstore/
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions
http://blog.otowicz.net/2012/02/intro-to-chrome-addons-hacking.html
http://blog.otowicz.net/2012/02/intro-to-chrome-addons-hacking.html
https://addons.mozilla.org/es/firefox/
https://addons.mozilla.org/es/firefox/
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://wiki.mozilla.org/Jetpack
https://wiki.mozilla.org/Jetpack
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference
https://developer.mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf

Appendix

1 bool ResourceRequestPolicy ::

CanRequestResource(const GURL&

resource_url , blink:: WebFrame* frame

, ui:: PageTransition transition_type

) {

2 CHECK(resource_url.SchemeIs(

kExtensionScheme));

3 const Extension* extension =

RendererExtensionRegistry ::Get()->

GetExtensionOrAppByURL(

resource_url);

4 if (! extension) {

5 return true;

6 }

7 std:: string

resource_root_relative_path =

8 resource_url.path().empty() ? std

:: string ()

9 : resource_url.path().substr (1);

10 if (extension ->is_hosted_app () && !

IconsInfo :: GetIcons(extension).

ContainsPath(

resource_root_relative_path)) {

11 LOG(ERROR) << "Denying load of " <<

resource_url.spec() << " from "

<< "hosted app.";

12 return false;

13 }

14 if (! WebAccessibleResourcesInfo ::

IsResourceWebAccessible(extension ,

resource_url.path()) && !

WebviewInfo ::

IsResourceWebviewAccessible(

extension , dispatcher_ ->

webview_partition_id (),

resource_url.path())) {

15 GURL frame_url = frame ->document ().

url();

16 GURL page_origin = ablink ::

WebStringToGURL(frame ->top()->

getSecurityOrigin ().toString ());

Figure 11: Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (part 1)

17 bool is_empty_origin = frame_url.

is_empty ();

18 bool is_own_resource = frame_url.

GetOrigin () == extension ->url()

|| page_origin == extension ->url

();

19 bool is_dev_tools = page_origin.

SchemeIs(content ::

kChromeDevToolsScheme) && !

chrome_manifest_urls ::

GetDevToolsPage(extension).

is_empty ();

20 bool transition_allowed = !ui::

PageTransitionIsWebTriggerable(

transition_type);

21 bool is_error_page = frame_url ==

GURL(content ::

kUnreachableWebDataURL);

22
23 if (! is_empty_origin && !

is_own_resource && !is_dev_tools

&& !transition_allowed && !

is_error_page) {

24 std:: string message = base::

StringPrintf("Denying load of

%s. Resources must be listed

in the

web_accessible_resources

manifest key in order to be

loaded by pages outside the

extension.", resource_url.spec

().c_str ());

25 frame ->addMessageToConsole(

26 blink:: WebConsoleMessage(blink ::

WebConsoleMessage ::LevelError ,

blink:: WebString :: fromUTF8(

message)));

27 return false;

28 }

29 }

30 return true;

31 }

Figure 12: Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (part 2)

694 26th USENIX Security Symposium USENIX Association

	1 Introduction
	2 Background
	2.1 Access Control Settings
	2.2 URI Randomization

	3 Security Analysis
	3.1 Timing Side-Channel on Access Control Settings Validation
	3.2 URI Leakage

	4 Impact
	4.1 Fingerprinting & Analytics
	4.2 Malicious Applications
	4.3 Viability Study

	5 Vulnerability Disclosure and Countermeasures
	5.1 Attack Coverage & Effects
	5.2 Timing Side-Channel Attack
	5.3 URI Leakage
	5.4 Extension Security Proposal

	6 Related Work
	7 Conclusions

