
A Scalable IoT Framework to Design Logical Data

Flow using Virtual Sensor
Le Kim-Hung, Soumya Kanti Datta, Christian Bonnet

EURECOM, Biot, France

Emails: {lek, dattas, bonnet}@eurecom.fr

François Hamon, Alexandre Boudonne

GREENCITYZEN, Marseille, France

Emails: {francois.hamon,

alexandre.boudonne}@greencityzen.fr

Abstract— During recent years, we have witnessed an explosion

in the Internet of Thing (IoT) in terms of the number and types of

physical devices. However, there are many limitations of these

devices regarding their computing power, storage, and

connection capabilities. They affect on-device processing of

sensed data significantly. Centralized treatment of IoT data has

proven challenging for many use cases demanding real time

response. This paper aims at augmenting sensor data processing

using the concept of virtual sensors. We propose a scalable

virtual sensor framework that supports building a logical data-

flow (LDF) by visualizing either physical sensors or custom

virtual sensors. The process produces high-level information

from the sensed data that can be easily perceived by machines

and humans. A web-based virtual sensor editor (VSE) is also

implemented on the top of the framework to simplify creation

and configuration of the LDF. The VSE supports cross-platform

and real-time verification for composed LDF. The paper also

presents a catalog of supported virtual sensor type along with

preliminary performance study.

Index Terms—Cloud Computing; Industrial Internet of

Things; Logical Data Flow; Scalability; Virtual Sensor.

I. INTRODUCTION

The Internet of Things (IoT) is expected to bring

connectivity to every object in the physical world. From

connected cars [20], buildings [21] and smart cities [22], the

IoT creates many opportunities in various domains [1].

According to Wikibon report [2], by the end of 2020, 212

billion IoT smart objects are expected to be deployed

worldwide. Despite the rapid growth, the IoT is still facing

some major challenges relating interoperation, performance,

data reliability. On the contrary, the cloud computing

environment offers a massive ability in term of computing and

storage. Thus, integrating the IoT with Cloud technology is

expected to provide scalable storage and sensing services

enabling unlimited IoT device connecting to the Internet, which

is called the CloudIoT paradigm [3].

However, there are critical challenges in deriving high-level

information from raw data of the physical devices. With the

exponential growth of IoT smart objects in term of power and

functionality, certain situations cannot be handled at the device

level. For instance - (i) a comprehensive query for checking the

average of humidity in a region. This query may request all

data of humidity sensor deployed in the corresponding area. (ii)

Predicting missing data based on the historical data. To handle

these situations, virtualization of the physical sensor in cloud

environment, namely Virtual Sensor (VS), is considered as a

practical approach. VS is a logical reflection of one or a set of

physical sensors on the Cloud platform and is able to handle

complex tasks which cannot be performed on physical sensors

[4] [5]. The key aspect of VS is to facilitate and enrich the

functionalities of physical sensors at the software level to adapt

to different purposes and scenarios [6].

In this paper, we present a scalable virtual sensor

framework (sVSF). It simplifies creating and configuring VSs

with the programmable operators (rule, formula or function).

These VSs are linked together to be a logical data-flow that

enables producing the high-level information from collected

data. On the top of the framework, a Virtual Sensor Editor

(VSE) is also implemented to facilitate building and

configuring the LDF by offering the drag-drop actions on

HTML5 web interface. In order to achieve scalability and

performance, sVSF is implemented based on clustering

architecture along with various strategies such as executing

LDF following asynchronous model, using No-SQL database

to store and query data.

Our framework supports various types of virtual sensors at

Infrastructures as a Service (IaaS) and Platform as a Service

(PaaS) such as singular, accumulator, aggregator, selector,

qualifier, context-qualifier, and simple predictor [7]. In the

sVSF, VSs are treated as physical sensors. The output data of

VS is stored in the database in the same way as physical. Thus,

each VS carries the historical data which is valuable for further

data analyzing. Furthermore, the proposed framework

remarkably fits for Low Power Wide Area Networking

(LPWAN) scenario where band width (12 bytes in SIGFOX

and up to 250 bytes in LoRa), and data rate (typically 10

kilobits per seconds) are limited [17]. These restrictions reduce

the quantity of collected data that affects directly on further

data analysis and context-awareness in term of accuracy and

trustworthiness.

On the top of the framework, sVSF offers a cross-platform

development environment for the virtual sensor by enabling

HTML5 technology. The lower layers take principal

responsibility to process and generate high-level information

based on the composed LDF. In order to enhance scalability

and performance, the core framework is implemented

following clustering architecture using Node.js language. Our

paper has four highlighted contributions:

• Identifying the limitations of current virtual sensor

framework in term of VS functionality and usability.

• Reviewing the concept of virtual sensor and its taxonomy.

• Presenting a scalable virtual sensor framework to increase

information quality from sensed data, and implementing

clustering model along with various strategies to archive

high scalability and performance.

• A cross-platform development tool for virtual sensor,

namely virtual sensor editor, is also offered to speed up

designing logical data-flow.

The remainder of this paper is constructed as follows:

Section II reviews the related works and highlights their

limitations. Our proposed framework is introduced in detail in

Section III. Section IV focuses on experiment and performance

evaluation. Finally, we summarize the paper and discuss future

works in Section V.

II. STATE-OF-THE-ART

In this section, we review virtual sensor and current virtual

sensor framework in the IoT. Their limitations are also

identified. At the end of the section, we present our motivations

to bridge the gaps by delivering a scalable IoT virtual sensor

framework.

As a definition in [15], a virtual sensor reflects a physical

sensor that is able to obtain and represent data on cloud.

Following [14], a virtual sensor is an emulation of a physical

sensor which collects its data from underlying physical sensors.

There are many ways to define and categorize virtual sensor. In

[15], the authors categorize virtual sensors into two types: (i)

Task level: represents the physical sensor as a virtual object

that could be processed, calculated. (ii) Node level: represents

a subset of physical sensor as a virtual topology. In [14],

virtual sensor is classified into four typical types: (i) One-to-

Many: One physical sensor is represented by many virtual

sensors. (ii) Many-to-One: One and more physical sensor is

presented by one virtual sensor. (iii) Many-to-Many: This is

the combination of two under types. (iv) Derived: One virtual

sensor can represent different physical sensor types. While in

other types, the virtual sensor only represents the same physical

device type. At the IaaS level, [16] categorizes virtual sensor

based on their offering services. Therefore, in the IoT, the

definition and taxonomy of the virtual sensor are chaos and

heterogeneous.

The authors of [8] propose a web-based virtual sensor

editor tool to facilitate designing virtual sensor process. This

tool visually aggregates either the physical sensors or

customized virtual sensors. It also supports calculating and

visualizing real-time sensor values on graphic charts. VSs are

created by aggregating physical sensors. The graphic interface

supports native HTML5 drag-drop and real-time virtual sensor

evaluation. As a result of HTM5 characteristics and call-by-

need strategy, this tool enables cross-platform and scalability.

Similarly, the authors of [9] present a web-based interactive

framework to visualize and authorize sensors as well as

actuators for indoor scenario. Each IoT Thing serves as a node,

which is visualized within a 3D indoor scene. Thus, the end-

user can monitor, link and program sensors and actuators

respectively. This framework works based on event handling

model which treats incoming data as an event. In order to

handle complex events, that must be processed on multiple

sensors; the author proposes a hierarchical graph for visual

summarizing sensors, actuators and their relations.

In the IoT environment, physical sensors are distributed and

affected by many adverse factors. Thus, sensed data need to be

processed, filtered and transformed for precise measurement

and providing high-level information. Many middleware

platforms are designed to process the IoT data on either multi-

sensors or multi-stream [10] [11]. These works aim to improve

the information quality of data coming from heterogeneous

data sources. In the same scope, the authors of [12] present a

virtual sensor environment that can handle real-time sensing

data processing. This approach uses Complex Event Processing

(CEP) as a virtual sensor engine. Their main contributions are

to take the benefit from CEP and allow the user to define the

custom analytic algorithm along with data analysis block on the

incoming data. The authors of [13] address solving major

challenges about implementing virtual sensor at Software as a

service (SaaS) and Platform as a service (PaaS) level. They

propose explicit sensor-cloud architecture with four separate

modules to handle specific tasks such as sensing, processing,

storing and communicating. Each module is equipped an API

supporting the end-user building applications and sharing

sensed data to either the IoT users or services.

The limitations of state-of-the-art are given below.

• In [8], we notice limited functionalities for the virtual

sensor. These functions are only able to perform on

incoming data. There is no discussion regarding virtual

sensor types and which types are supported by their tool.

• The authors of [9] have not shown how to configure the

algorithm of CEP. They also do not offer a graphic

interface to facilitate the configuration process of data

analysis block for end-user. Likewise, the works of [10]

[11] more focus on services and implementation than

simplifying configuration process at the user level.

• The work of [12] just focuses on the indoor scenario.

There is no mention on the mechanism to create and

configure a custom virtual sensor as well as an actuator.

From all points above, there is not a comprehensive virtual

sensor framework proposing an effective web-based interface

along with a robust backend. Utilization of virtual sensor to

present historical data is also not mentioned. Our framework is

designed and implemented to mitigate their limitations.

III. VIRTUAL SENSOR FRAMEWORK

In this section, we present the definition and taxonomy of

the virtual sensor as well as our virtual sensor framework

architecture, which is designed as a modularized layered

application. Such framework operates over clustering

architecture and asynchronous model to maximize scalability

and performance. At the end of the section, we describe the

workflow of the proposed framework in specific deployment

scenarios to emphasize its benefit.

A. Virtual Sensor

We define the virtual sensor as a virtual object. Such object

is equiped an operator to perform specific functionalites. In our

framework, we support three type of operator including rule,

formula and function. We also proposed a new taxonomy of the

virtual sensor based on its operator. For instance, a virtual

sensor is labelled an “Accumulator” type if its operator

contains accumulated functions. The following is the list of

supported virtual sensor type :

• Singular: This type allows performing one-to-one

mapping between the physical sensor and its reflected

interface in cloud side. Through this virtual interface, the

end-user can configure sensor configuration to obtain the

data from a physical sensor. At the first stage, the sensor

configuration is stored as a sensor driver that is selected by

the user via VSE.

• Accumulator: A virtual sensor could perform

accumulation function on its sensing data within a

particular duration. For example, a rainfall physical sensor

uses the counter value to identify the rainwater volume. An

accumulator VS is useful to present rainwater volume

within 24 hours by accumulating on this counter value.

• Selector: A virtual sensor enables to acquire sensing data

from one or many physical sensors replied on defined

criterions. For instance, a selector virtual sensor represents

all temperature data that is higher than 10.

• Aggregator: A virtual sensor can perform basic statistics

(averaging, maximum, minimum, etc.) on physical

sensors. The functions of aggregator can mitigate the

limitations of physical sensor regarding memory and

computing. For example, in the case of humidity sensor

deploying in various regions, an aggregator sensor can be

implemented to calculate the average of humility for a

particular area.

• Qualifier: The same with the singular type but virtual

sensor only is activated if sensing value satisfies qualifier

function. This VS type is configured by using “IF ELSE”

statement. For example, one qualifier virtual sensor

monitoring temperature can generate an alert when sensing

value higher a defined threshold.

• Context-qualifier: The same with qualifier but the

qualifier function performs on a bundle of sensor.

• Predictor: This virtual sensor performs prediction next

sensing value base on analyzing previous data. Such

virtual sensor is necessary in case of occurring error of

physical sensor.

• Compute: A virtual sensor is equipped a complex

function, that analyzes sensing data from a set of the

sensor to propose a higher-level information. For example,

a Compute virtual sensor could offer the car state based on

observed data (engine temperature, oil level, gas level)

from car’s sensors.

We also present a novel component named “Logical Data-

Flow” which represents a chain of virtual sensors to perform a

specific task. For example, a logical data flow can be used to

determine remains of liquid in a tank from ultrasonic sensor

data. This LDF is probably a chain of one singular virtual

sensor, one selector virtual sensor and one aggregator virtual

sensor.

B. Virtual Sensor Framework Architecture Overview

The primary goal of our framework is to produce high-level

of information from sensing data using logical data flow. This

framework also simplifies creation and configuration logical

data flow by offering an interactive virtual sensor editor and

many types of productive operators such as rule, formula, and

function. Fig. 1 depicts the framework architecture composing

of three horizontal layers which are described below.

• Connection Layer – This layer takes responsibility to

maintain the connection of sVSF and Sensor Data Service

Platform (SDSP) where aggregates and pre-process

collected data from physical sensors. There are three core

components: (i) Sensor Data Connector: This connector is

used to interact with SDSP through RESTful web services

and MQTT. (ii) Sensor Configuration Synchronization:

This component oversees synchronizing sensor

configuration between sVSF and SDSP. In addition, after

successful testing, the configuration of a singular VS will

be applied to corresponding physical sensor managed by

SDSP through calling a RESTful web service. (iii) Sensor

Tracking: This component is used to track the new sensor,

which is recently registered to SDSP. The sensor profile

will be saved in the database and reused in VSE.

• Processing Layer – This layer contains the database and a

primary engine to execute the logical data-flow and virtual

sensor functionalities. There are two databases: (i) Sensor

Data Storage database is a permanent database to store

sensor information, LDF. (ii) Temporary Data Storage

database is used to store temporary values of virtual sensor

as well as intermediate results of LDF. Such data will be

removed after a certain time configured by the

administrator. Processing layer also manages a “Sensor

Composition” (CP) component to retain a record of

configuration and relationship among virtual sensors at the

presentation layer. When a new virtual sensor is created by

dragging and dropping onto VSE, such changes will be

caught and stored by CP. In addition, such CP ensures

logical data-flow is executed following asynchronous

model in the engine. The processing layer carries a user-

defined function library that contains the custom functions

declared by end-user; this function can be called directly

from CP.

• Presentation layer – This layer oversees rendering an

interactive HTML5 web interface, namely virtual sensor

editor. The editor supports the end-user to effectively

interact with virtual sensors to create a logical data-flow.

Virtual sensors are visualized as linkable boxes which can

be configured either functionality or appearance via setting

panel. In addition, these boxes can link together to create

logical data flow. All such configurations are handled by

“Sensor Composition” in under layer. Presentation layer

also carries a “Data-flow Profile Selector” component

supporting the end-user to select and reuse virtual sensor

template as well as logical data flow from the database.

• Administration layer – This layer takes the role in

authorizing and supervising user access right on virtual

sensors and logical data-flows. The end-users are only

allowed to perform certain actions based on their roles. For

instance, a standard user cannot delete a logical data flow.

Administration layer is also used to manage general settings

of the framework such as the time life of temporary data,

sensor configuration synchronization interval.

Fig. 1. The proposed architecture and its building blocks.

C. Virtual Sensor Editor

One of a key element of sVSF is an HTML5 web-based

virtual sensor editor, which enables cross-platform

development environment. The editor is a WYSIWYG (what

you see is what you get) system. This allows the user to simply

build a LDF by creating, configuring and connecting VSs

together. VSE is implemented using native HTML5 and

JointJS
1
 library to maximize portability and availability across

various end-user platforms. There are four highlighted

attributes of this editor: (i) Drag-drop interface: The end-user

is able to simply create and link the virtual sensors by drag-

drop action, (ii) Real-time Evaluation: After creating, user-

defined LDF could be evaluated and receive result

immediately, (iii) Reusability: VS configuration and LDF is

stored and shared between the end-users.

As shown in Fig. 2, a virtual sensor is represented as a box

consisting of input, output ports and a VS operator. The

number of these ports and sensor configuration depend on the

type of virtual sensor. For example, a singular virtual sensor

which serves as a physical sensor has one output and no input

port. In Configuration panel on the left side, a drop box is

added to allow the user to configure sensor driver. By default,

we use the green and red color to identify virtual sensor type.

But the end-user can change this attribute. Each output port can

be assigned to one or more input of different boxes via data

links. After data link is established, the later sensor enables to

select the output of former sensor as an input parameter for its

operator. The auto-complete feature is also equipped to speed

up this selecting process.

Our sVSF offers recursive composing for the virtual sensor.

A defined virtual sensor can be used as an input to construct

other virtual sensors. After logical data flow is completely

established, the evaluation feature enables the user to execute

the data flow on self-generated data and receive the result

immediately. Thus, the user can evaluate or correct the

configuration in case of error. At the final state, the complete

logical data flow is saved in the database and reused for next

time.

1
 http://resources.jointjs.com

Fig. 2. Virtual Sensor Editor Interface.

Fig. 3. The framework operation diagram.

D. Virtual Sensor Framework Workflow

The overall blueprint of our sVSF workflow is shown in

Fig. 3. Physical sensors register their resource descriptions

under CoRE Link Format [18] with our backend. Once

registered successfully, such sensors and resources are

discovered through simple search queries. For instance, a query

to search all the temperature sensor can be GET /rd-

lookup/ep?rt=temperature. All sensing data from registered

sensors will be forwarded to sVSF via SDSP.

In sVSF, VS function supports three types of the operator:

rule, formula, and function. At the first state, the incoming data

is received by connection layer. After that, this data is

conveyed to Sensor Composition which handles and processes

the VS operators and relationships in the logical data flow. This

component also takes responsibility to convert VS operators to

the proper mathematical operations and ensures it is executed

in correct order in the processing engine. The conversions of

VS operator into mathematical operation goes through two

phases: First, the logical data flow content and sensor

information are loaded into CP. More detail, as shown in Fig.

4, a logical data flow comprises four VS operators, and sensor

metadata are inserted in CP. Second, the particular variables of

the operator are extracted and calculated by calling the

corresponding functions in Function Lib Component (FL).

These variables are reserved to simplify particular operations.

For example, as shown in Fig. 4,

$device.tank_level_change.data[24] represents all sensing data

of “tank_level_change” sensor within 24 hours. After

calculating, the values of special variables are added into

virtual sensor operator before storing in temporary data storage

in order to be reused in another stage. The lifetime of this

temporary data can be set up by the sVSF administrators In the

case of the virtual sensor has an input from another virtual

sensor. This input value is also considered as a special variable

and directly access via sensor name. For instance, sensor

named “tank_volume” can use the output value of “tank_level”

sensor via declaring a speacial variable named “tank_level”.

Furthermore, to maximize performance, Sensor Composition

take responsibility for organizing the working schedule based

on the asynchronous model. The un-relational virtual sensors,

which are not linked together, will be arranged into the same

thread and executed in parallel in processing engine. For

example, in Fig. 2, all green virtual sensors will be performed

in parallel.

The most important component in processing layer is

processing engine, where VS operators are executed. These

executions are performed in parallel by a JavaScript library,

namely MathJS
2
. Finally, the output of processing engine will

be stored in the database to be reused before responding final

result to SDSP.

Fig. 4. The generating high-level information process.

IV. PROTOTYPE AND EVALUATION

In this section, we describe the utilization of our framework

in a practical use-case. We also discuss how to archive high

performance, scalability in our framework. Finally, an

evaluation of our strategies is proposed.

Our first work has been applied to an industrial project for

tank monitoring. The primary goal of this project is to manage

the chemical volume via a level sensor which is plugged at the

top of a tank. The raw data of this sensor is the distance from

the top of the tank to the chemical surface. Fig. 4 illustrates the

whole process of generating high-level information such as

remaining of the chemical level (Tank_level), remains of

chemical volume (Tank_volume), change of chemical level

(Tank_level_change), average on this change within 24h

(Avg_tank_level_change). Firstly, the raw data contains sensor

information and sensed data is sent to sVSF. This data is

handled by Sensor Composition where corresponding logical

data-flow and sensor metadata is loaded from the database. In

this case, the metadata is the tank information such as the

height of tank (Tank_high) and the total volume of tank

(Tank_total_volume). At this component, special variables

such as last value of such sensor (Tank_leve.lastValue) or

historical sensing data within 24h (Tank_leve_change.data[24])

are calculated by calling the corresponding functions in

Function Lib component. All obtained information (special

variable value, raw data value, sensor metadata) is injected into

logical data low. Before transferring and executing at

Processing Engine, logical data flow is converted to the

2
 http://mathjs.org

mathematical operations. The final result is responded to SDSP

via Connection Layer

SVSF is developed by integrating MathJS library into

NodeJS Express framework
3
 which uses event-driven

architecture. Nodejs also leverages a non-blocking I/O model

that allows request being processed asynchronously. In order to

enhance the framework scalability, we use clustering

architecture. A cluster comprises a set of servers running

simultaneously. Each server is called node. The cluster is

elastic to adapt to the unexpected change in term of the number

of concurrent user by dynamically add or remove a node to the

cluster. There are two types of nodes: master node and worker

node. The master node is used to manage the worker node in

the cluster. It plays a role to distribute requests among different

nodes in the cluster. Other strategies are proposed to increase

the performance:

• The first strategy is to store the output of the virtual sensor

in a temporary database. Such value could be re-used as

the input of other VS sensor instead of re-calculation.

• The second strategy is to use an in-memory database
4
 to

speed up data querying process. Our framework uses a

NoSQL database named Apache CouchDB
5
. Comparing

with a relational database, CouchDB stores the data in an

independent document and its self-contained schema. As

the result, it provides a massive scalability and powerful

full-text search

• The final strategy is to apply the asynchronous model to

execute logical data-flow, meaning that all independent

virtual sensor or virtual sensor in the same stage is

executed in parallel.

To evaluate the effectiveness of proposed strategies, we

have to consider two scenarios: (i) Significantly increasing the

number of simultaneous physical sensor in SDSP. (ii)

Increasing the complexity of logical data flow regarding the

number of VS. All evaluations are performed on a computer

with following configuration: Intel(R) Core(TM) i5-6200U

CPU @ 2.30GHz, 2401 MHz, 2 Core(s), 4 Logical

Processor(s), 8GB of RAM and the operating system is 64-bit

Windows 10. The clustering model is set up and deployed

using native Clustering Module
6
 provided by NodeJS .The data

rate of the physical sensor is one message per second. For the

first scenario, we have conducted an experiment with different

scale of sensor network, which increases from 100 to 450

concurrent physical sensors. The logical data flow comprises

50 virtual sensors. Fig. 5 illustrates the performance changes

after adopting our enhancements. As shown in the figure, our

enhancement is remarkably effective. Without clustering model

and enhancement strategies, the response time is significant

increase when expanding the scale of sensor network. After

applying clustering model using 4 or 8 clusters, the response

time is highly stable under 1 second regardless the size of

sensor network. With 450 concurrent physical sensors, the

3
 http://expressjs.com/fr

4
 https://en.wikipedia.org/wiki/In-memory_database

5
 http://couchdb.apache.org

6
 http://nodejs.org/api/cluster.html

normal response time is over 6 seconds comparing with 875

milliseconds and 650 milliseconds of the model using 4 and 8

clusters respectively.

Fig. 5. The effect of our enhancement in scalability and performance

In the second scenario, the simulations are performed with

different logical data flows size, which contains from 1 to 100

virtual sensors. Each logical data-flow is evaluated by various

sensor network scale in SDSP. As shown in Fig. 6, when

increasing the number of concurrent physical sensor, the

response time lightly increases regardless logical data flow

size. In case the scale of the logical data flow is moderate

(comprising fewer than 50 virtual sensors), our system is able

to serve a data message under 800ms even when 50 concurrent

physical sensors are running. In the case of scaling up to 100

concurrent physical sensors, the response time is still under 1

second.

Fig. 6. The framework’s performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we review a concept of the virtual sensor and

propose a new virtual sensor taxonomy based on its

functionality. The limitations of the existing virtual sensor

frameworks are also considered in term of virtual sensor

functionality and usability. Motivating to bridge the gaps, we

proposed a scalable virtual sensor framework that allows

producing high-level information from sensed data, by creating

a logical data flow over a collection of the virtual sensor. A

web-based virtual sensor editor is also offered to accelerate

creating and configuring logical data-flow. In evaluation

section, a serial of strategies to enhance the performance and

scalability are discussed and evaluated. Regarding future

works, we are currently working on integrating our platform

into the oneM2M based framework [19] and FIWARE
7

architecture for ensuring interoperability.

ACKNOWLEDGMENT

The work is supported by GreenCityZen Company.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M.

Ayyash, "Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications," IEEE

Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-

2376, Fourthquarter 2015.

[2] D. Floyer, “Defining and sizing the industrial Internet,”

Wikibon, Marlborough, MA, USA, 2013.

[3] A. Botta, W. de Donato, V. Persico and A. Pescapé, "On the

Integration of Cloud Computing and Internet of Things," 2014

International Conference on Future Internet of Things and

Cloud, Barcelona, 2014, pp. 23-30.

[4] S. Kabadayi A. Pridgen C. Julien "Virtual sensors: Abstracting

data from physical sensors", Proceedings of the 2006

International Symposium on on World of Wireless Mobile and

Multimedia Networks, pp. 587-592 2006.

[5] I. Leontiadis C. Efstratiou C. Mascolo J. Crowcroft "Senshare:

Transforming sensor networks into multi-application sensing

infrastructures", Proceedings of the 9th European Conference on

Wireless Sensor Networks, pp. 65-81 2012.

[6] A. Gupta and N. Mukherjee, "Implementation of virtual sensors

for building a sensor-cloud environment," 2016 8th International

Conference on Communication Systems and Networks

(COMSNETS), Bangalore, 2016, pp. 1-8.

[7] S. Bose A. Gupta S. Adhikary N. Mukherjee "Towards a sensor

cloud infrastructure with sensor virtualization", Proceedings of

the Second Workshop on Mobile Sensing Computing and

Communication ser. MSCC '15, pp. 25-30 2015.

[8] J. Zhang et al., "Supporting Personizable Virtual Internet of

Things," 2013 IEEE 10th International Conference on

Ubiquitous Intelligence and Computing and 2013 IEEE 10th

International Conference on Autonomic and Trusted Computing,

Vietri sul Mere, 2013, pp. 329-336.

[9] Y. Jeong, H. Joo, G. Hong, D. Shin and S. Lee, "AVIoT: web-

based interactive authoring and visualization of indoor internet

of things," IEEE Transactions on Consumer Electronics, vol. 61,

no. 3, pp. 295-301, Aug. 2015.

[10] X. Zheng D. E. Perry C. Julien "BraceForce: a middleware to

enable sensing integration in mobile applications for novice

programmers", Proceedings ACM International Conference on

Mobile Software Engineering and Systems, pp. 8-17 Jun. 2014.

[11] L. Hu F. Wang J. Zhou K. Zhao "A Data Processing Middleware

Based on SOA for the Internet of Things", Journal of Sensors,

Jan. 2015

[12] Brunelli D., Gallo G., Benini L., "Sensormind: Virtual Sensing

and Complex Event Detection for Internet of Things", De Gloria

A. Applications in Electronics Pervading Industry, Environment

and Society. ApplePies 2016. Lecture Notes in Electrical

Engineering, vol 409. Springer, Cham.

7
 https://www.fiware.org

[13] A. Gupta and N. Mukherjee, "Implementation of virtual sensors

for building a sensor-cloud environment," 2016 8th International

Conference on Communication Systems and Networks

(COMSNETS), Bangalore, 2016, pp. 1-8.

[14] Sanjay Madria, Vimal Kumar, Rashmi Dalvi, "Sensor Cloud: A

Cloud of Virtual Sensors", IEEE Software, vol. 31, no. , pp. 70-

77, Mar.-Apr. 2014, doi:10.1109/MS.2013.141.

[15] A. Gupta and N. Mukherjee, "Rationale behind the virtual

sensors and their applications," 2016 International Conference

on Advances in Computing, Communications and Informatics

(ICACCI), Jaipur, 2016, pp. 1608-1614.

[16] Sunanda Bose, Atrayee Gupta, Sriyanjana Adhikary, and

Nandini Mukherjee, "Towards a Sensor-Cloud Infrastructure

with Sensor Virtualization", Proceedings of the Second

Workshop on Mobile Sensing, Computing and Communication

2015 (MSCC '15), New York, NewYork, USA, pp. 25-30.

[17] Ferran Adelantado, Xavier Vilajosana, Pere Tuset, Borja

Martinez, Joan Melia-Segui, et al., Understanding the Limits of

LoRaWAN. IEEE Communications Magazine, Institute of

Electrical and Electronics Engineers, 2017

[18] Z. Shelby, IETF RFC 6690: Constrained RESTful Environments

(CoRE) Link Format. IETF, 2012.

[19] S. K. Datta, A. Gyrard, C. Bonnet and K. Boudaoud, "oneM2M

Architecture Based User Centric IoT Application Development,"

2015 3rd International Conference on Future Internet of Things

and Cloud, Rome, 2015, pp. 100-107.

[20] S. K. Datta, R. P. F. Da Costa, J. Härri and C. Bonnet,

"Integrating connected vehicles in Internet of Things

ecosystems: Challenges and solutions," 2016 IEEE 17th

International Symposium on A World of Wireless, Mobile and

Multimedia Networks (WoWMoM), Coimbra, 2016, pp. 1-6.

[21] S. K. Datta, C. Bonnet and N. Nikaein, "An IoT gateway centric

architecture to provide novel M2M services," 2014 IEEE World

Forum on Internet of Things (WF-IoT), Seoul, 2014, pp. 514-

519.

[22] S. K. Datta, R. P. Ferreira da Costa, C. Bonnet and J. Härri,

"oneM2M architecture based IoT framework for mobile crowd

sensing in smart cities," 2016 European Conference on

Networks and Communications (EuCNC), Athens, 2016, pp.

168-173.

