WIRELESS CODED CACHING: A PARADIGM SHIFT IN WIRELESS COMMUNICATIONS

PETROS ELIA

(EURECOM – FRANCE)

Intro

- This tutorial is about a <u>novel use of caching in wireless</u> communication networks
- Using on-board memory at the nodes:
 - NOT to reduce the volume/size of the problem
 - "Prefetch something today so that you don't have to send it tomorrow"
 - BUT to surgically alter the informational <u>structure</u> of networks
 - Use on-board memory to change the network to something faster, simpler, more efficient.

Outline

- Challenges of modern wireless communications
 - The need of a new technology
- Basic elements of coded caching
 - Basic properties
 - Main gains
 - Important variants
 - Main bottlenecks

Outline

- Need to fuse coded caching with advanced PHY techniques
- Some differences between wired and wireless coded caching
- Coded caching in multi-user MIMO settings
- Coded-caching and feedback
- Coded caching in a variety of wireless networks
 - Femtocaching
 - Caching on the edge
 - Wireless multihop D2D caching networks
- Theoretical and practical open problems

Limitations of Current Communications Paradigms

Main Challenges

- `Feedback': channel-state information (CSI)
 - The instantaneous strengths of each propagation-path between different nodes
- As *K* increases, the overhead consumes more and more resources
 - No room for actual data
 - Brings current systems and envisioned methods to a halt

Multi-cell Cooperation

- Even full BS cooperation cannot handle interference
- Spectral efficiency upper bound that is independent of the transmit power
- Cooperation possible only within clusters of limited size (due to CSI)
 - subject to out-of-cluster interference with power similar to in-cluster signals

$$DOF \stackrel{\text{def}}{=} \frac{Per \, User \, Capacity}{\log SNR} \to 0$$
 (as K increases)

Wireless Network Densification

Deployment of more base-stations/access-points per unit area

- Short-range wireless channels different from classical cellular counterparts
 - Exhibit <u>path loss subduction</u> (reduced path loss exponent)
 - <u>Extreme fading</u> (more severe deep-fades)
- SINR decrease after certain densification threshold
- Similar trends are observed for the throughput
- ⇒ Disruption of densification gains

source: Andrews et al. (2015)

Massive MIMO and mm-Wave

Massive MIMO:

- Gains in spectral efficiency
- Gains reduced by expensive channel estimation
 - Pilot contamination*

Mm-Wave Communications:

- High frequency results in sparse and easier to estimate channels
- Channels though can fluctuate between sparse and denser
 - think of AoD in urban settings
- Introduces FB delays/overhead
- Also directionality can create signal "holes" for users**

*source: Marzetta (2010) **source: Rappaport et al. (2014)

Simple Caching

Single stream channel: No caching (M = 0)

Transmission sequence:

$$T = K$$

- Local cache gain: (1 M/N) for each user
- The rate: $T = K(1 - M/N) = K(1 - \gamma), \qquad \gamma \stackrel{\text{def}}{=} \frac{M}{N}$

Basic Parameters

 $T(\gamma)$: duration of delivery phase

OBJECTIVE: reduce $T(\gamma)$

Coded caching

Key breakthrough:

- Cache so that one transmission is useful to many
 - Even if requested files are different
 - Increases multicast opportunities
- Substantial increase in throughput ("worst case")

Example:
$$N = K = 2, M = 1$$
 $(\gamma = \frac{1}{2})$

Source: Maddah-Ali, Niesen (2012)

Caches

- Hard case: distinct requests
- Easy case: same requests

Comparison:
$$N = K = 2, M = 1 \ (\gamma = \frac{M}{N} = \frac{1}{2})$$

• For N = K = 2 case, optimal rate can be achieved for $M \in [0,1]$

Another Example: N = K = 3, M = 2 $(\gamma = \frac{2}{3})$

Source: Maddah-Ali, Niesen (2012)

algorithm: Maddah-Ali, Niesen (2012)

Coded Caching Pseudocode (recall $\gamma \stackrel{\text{def}}{=} \frac{M}{N}$)

- *N* files in library
- Split each file into $\binom{K}{KM/N} = \binom{K}{K\gamma}$ subfiles
- Cache: In every $\frac{MK}{N} = K\gamma$ set of users, there is one part of each file in common
- Request: Each user asks for one file (out of N)
- Deliver to $K\gamma + 1$ users at a time
 - Via XORs with Kγ + 1 subfiles/summands. Each user (out of the Kγ + 1 now served) knows all summands except one (its own requested subfile)
- Repeat for all possible sets of $K\gamma + 1$ users

Maddah-Ali and Niesen's results

Result and image source: Maddah-Ali, Niesen (2012)

Example:

$$K = 10, \gamma = 0.01 \quad (K\gamma = 0.1):$$
 $T(M) = 9.9$ $T_D(M) = 9.466$ $T_C(M) = 9.0$ $T_C(M) = 9.0$ $T^*(M) \ge 9.0$ (MN optimal bound)

 \Rightarrow Generally small gains when $K\gamma < 1$

$$K = 1000, \gamma = 0.01 \quad (K\gamma = 10):$$

$$T(M) = 990 \qquad T_C(M) = 90$$

$$T_D(M) = 99 \qquad T^*(M) \ge 25$$

Generally large gains when $K\gamma > 1$

Result: Maddah-Ali, Niesen (2013)

On the Optimality of Uncoded Cache-Placement

Maddah-Ali and Niesen's coded caching is optimal under
 ➤ the constraint of uncoded cache placement
 ➤ the constraint of N ≥ K

Bounds to optimal

• Centralized to optimal:

$$1 \le \frac{T_C(M)}{T^*(M)} \le 4^{\dagger} \le 12^{\dagger\dagger}$$

• Decentralised to centralized

$$\frac{T_D(M)}{T_C(M)} \le 1.5^* \le 4.7^{**} \le 12^{***}$$

Source ††: Maddah-Ali, Niesen (2013) Source†: Ghasemi, Ramamoorthy (2015) Source***: Maddah-Ali, Niesen (2013) Source**: Lim, Wang and Gastpar (2016) Source*: Q. Yan, X. Tang, Q. Chen (2016)

Coded vs Traditional Multicasting (More Users than Files)

- *N* < *K* means that a file may be demanded by multiple users
 - Implies possible additional multicasting opportunities
 - > Possible scenario: server to many users, selects few (N < K), (equally) popular files
- Original MNS misses this additional (traditional) multicast opportunity
 - because it treats each sub-file demanded by each user as a district sub-file

On Caching with More Users than Files

T(M) vs M (load vs. memory) - decentralized system: N = 4 and K = 8

- A novel method* allows for additional (traditional) multicasting opportunities (see also [Chen et al. 2014], and [Sahraei and Gastpar, 2015])
- Optimal under the constraint of uncoded placement and K > N = 2
- Gains are quite limited
 - Coded caching automatically `covers' almost all multicasting opportunities!

Result and image source: Wan, Tuninetti and Piantanida (2016)

First Conclusions

- Significant gain of coded caching
 - > Multicasting gain $(K\gamma + 1)$ among users with different demands
- Significant improvement over conventional caching schemes
 - \succ Gains seen when $K\gamma > 1$
 - \succ For large K, then T need not scale as K

$$T \approx \frac{1-\gamma}{\gamma}$$

Traditional caching works when <u>M is comparable with N</u>, while

coded caching works when <u>KM is comparable with N</u>

• Potential bottlenecks for small γ : T increasing sharply as γ decreases

Coded Caching with Non-uniform Demands

Exploiting File Popularities

- Content popularity is not uniformly distributed
- Could be modelled by a power law / Zipf distribution

Optimal approach for K = 1:

29

- Least Frequently Used (LFU) eviction policy
- Cache M most popular files
- Can end up with identical caches
- ightarrow No coded-multicasting opportunities

Coded Caching - Non-uniform Demands

Simply assigning a larger cache to more popular files, can result in different subpacket sizes

Part sizes must be equal to avoid padding losses

• Biggest subpacket limits rate

Batch Coding for Non-Uniform Demands

- Separate files into batches of similar popularity
- Cache size allocation is proportional to average batch popularity
- Coded caching for each batch separately

> Only code among files with same subfile sizes

Index-Coding based Scheme for Non-Uniform Demands

- Subfile size same for all files
- Popular files get more subfiles
- Improvement by creating coding opportunities between batches

- Delivery uses index coding to combine (XOR) different subfiles
 - graph coloring
 - clique cover

Source: Ji et al. (2015)

Example

- 3 files $\{A, B, C\}$ split into 3 parts each. E.g. $A = \{A_1, A_2, A_3\}$
- Cache distribution $\mathbf{p} = \{A = \frac{2}{3}, B = \frac{1}{3}, C = 0\}$ Cache realization \mathcal{C}

Request: user1 \rightarrow A, user2 \rightarrow B, user3 \rightarrow C Queried parts: $Q = \{A_3, B_1, B_3, C_1, C_2, C_3\}$

Conflict Graph $H_{C,Q}$

Vertex for each requested subpart ($\in Q$):

- Replicate if multiple requests of a subfile

Edge if

- Not same identity (cannot connect subfile to itself)
- Request(er) not among users caching the other vertex
 see (A₃, B₁)

Requests: user1 \rightarrow A, user2 \rightarrow B, user3 \rightarrow C Queried parts: $Q = \{A_3, B_1, B_3, C_1, C_2, C_3\}$

Graph Coloring $H_{C,Q}$

Connected vertices must have different colors

Graph Coloring for non-uniform requests

In general

- NP hard
- exponentially complex

For this particular (coded-caching) coloring problem:

- Greedy constrained coloring used*
 - polynomial complexity in number of users and subfiles
Subpacketization Problem (Motivates Fusing Coded-Caching and PHY)

- Recall need to split each file into $\binom{K}{K\nu}$ subfiles
- So that:
 - In every $K\gamma$ caches, there is one part of each file in common
 - For each XOR, each of the $K\gamma + 1$ users served knows all subfiles except one (their requested own)
- Introduces intense `sub-packetization' problem
 Intense file-size problem

Subpacketization constraints

 $K = 6, K\gamma = 2$

38

CC with Bounded File Sizes

 No algorithm with <u>randomized and uncoded placement</u> can escape

$$g \le O\left(\frac{\log|F|}{\log\frac{1}{\gamma}}\right)$$

- Conditional bound achieved by Shanmugam et al.
- Also

$$(1 - \epsilon)R \le \mathbb{E}\{R\} \le (1 + \epsilon)R$$

 $\Rightarrow |F| = O(K^3 \log K)$

Results: Shanmugam et al. (2014)

Improved Decentralized Scheme

40

Bottlenecks Introduce Need to Combine Memory and PHY Resources in Wireless Networks

Coded-caching: Non-trivial Application of Single-Stream Coded Caching to Wireless Networks

Example:

(Cache-aided Degrees of Freedom)

• A equivalent measurement: per-user DoF

$$d(\gamma) = \frac{1 - \overline{\gamma}}{T} \in [0, 1]$$

 $\succ \gamma = \frac{M}{N}$ is normalized local caching gain: prefilled content

 $\succ 1 - \gamma$ excludes local caching gain

Captures the joint effect of coded caching and PHY resources

- For one user, the interference-free optimal to serve one file: $T = 1 \gamma$
- ⁴³ $\geq d(\gamma)$ between 0 and 1 (d = 1: Interference-free optimal DoF)

MIMO and Feedback with Coded Caching: Trivial Example (N = K = 2, M = 1)

- $A_2 \bigoplus B_1$ will be delivered
- multicasting phase $x_1 = \begin{bmatrix} A_2 \bigoplus B_1 \\ 0 \end{bmatrix}$
- $T = \frac{1}{2}$
 - > Turns out it is optimal $(T = 1 \gamma = 1 \frac{M}{N} = 1 \frac{1}{2} = \frac{1}{2})$ (same as interference-free)
 - Optimal achieved without CSIT and with just a single antenna

INSIGHT:

Coded caching can reduce need for feedback and multiple antennas, and vice-versa

44

One Shot Cache-aided Interference channel

- Cache-aided interference channel
 - *K* interfering transmitter/ receiver pairs (fully connected)
 - Each transmitter has cache with size $M_T < N$ $(\gamma_T \stackrel{\text{def}}{=} \frac{M_T}{N})$
 - Each receiver has cache with size $M_R < N$ $(\gamma_R \stackrel{\text{def}}{=} \frac{M_R}{N})$

Example: N = K = 3, $M_T = 2$, $M_R = 1$

- *N* files: $W_1 = A, W_2 = B, W_3 = C;$ $(\gamma_T = \frac{M_T}{N} = \frac{2}{3}, \gamma_R = \frac{M_T}{N} = \frac{1}{3})$
- Split each file into $\binom{K}{K\gamma_T}\binom{K}{K\gamma_R} = \binom{3}{2}\binom{3}{1} = 9$ parts $A = (A_{12,1}, A_{12,2}, A_{12,3}, A_{13,1}, A_{13,2}, A_{13,3}, A_{23,1}, A_{23,2}, A_{23,3})$
- Cache Tx 1: $A_{12,1}, A_{12,2}, A_{12,3}, A_{13,1}, A_{13,2}$
- Cache Rx 1: $A_{12, 1}, A_{13, 1}, A_{23, 1}$

Source: Naderializadeh et al. (2016)

Example: N = K = 3, $M_T = 2$, $M_R = 1$

- Rx1 needs: A_{122} , A_{123} , A_{132} , A_{133} , A_{232} , A_{233} , A_{233}
- Rx3 needs: C_{131} , C_{232} , C_{231} , C_{122} , C_{121} , C_{132}

Idea for the General Case

- With transmitter cooperation and perfect quality CSIT
 - interference can be cancelled
- Combining with the caching content
 - recover the missing information in cache

Conclusion – Cache Aided IC (one shot)

• The one-shot linear sum-DoF:

$$d_{\Sigma} = \min\{\frac{KM_T + KM_R}{N}, K\}$$

$$d(\gamma_T, \gamma_R) = \gamma_T + \gamma_R \leq 1$$

- Within a factor of 2 of the <u>one-shot linear-DoF</u> optimal
- Equal contribution of transmitter and receiver caches
- Linear scaling of DoF with network size
- Covers single-stream and multi-server cases.

Caching and Feedback

Feature: Synergy and interplay between memory and feedback

Background

• In most cases, DoF impact of coded caching:

$$d(\gamma) - d(\gamma = 0) = \gamma$$

- Even in settings with perfect feedback and many antennas

Gains due to caching are $\approx \gamma \approx 10^{-3} \rightarrow 10^{-2}$ (Roberts et al.)

• Are there settings for which the impact of caching is substantially larger?

Cache-aided K-user BC with mixed CSIT

- Delayed CSIT + imperfect-quality current CSIT
- High-SNR current-CSIT quality exponent

$$\alpha = -\lim_{P \to \infty} \frac{\log \mathbb{E}[||\boldsymbol{h}_k - \hat{\boldsymbol{h}}_k||^2]}{\log P}, \qquad k \in \{1, \dots, K\}$$

 $\succ \alpha = 0$ means \approx no current feedback, and $\alpha = 1$ means perfect CSIT

CSIT/Caching Interplay: MISO BC

Corollary (Zhang-Elia):

$$T(\gamma, \alpha) = \frac{(1 - \gamma) \cdot \log(\frac{1}{\gamma})}{\alpha \cdot \log(1/\gamma) + (1 - \alpha)(1 - \gamma)}$$

Per-user DoF

$$d(\gamma, \alpha) = \alpha + (1 - \alpha) \quad \frac{1 - \gamma}{\log\left(\frac{1}{\gamma}\right)}$$

Features:

- additive combination of resources
- Initial offset due to FB (larger K), and then substantial additional boost due to memory
 - ⁵³ Under the logarithmic approximation $H_n \approx \log(n)$ (Exact for large K)

Cache-aided Prospective-hindsight Scheme

Feature:

- With delayed CSIT, multicasting is much faster than broadcasting
- Memory boosts broadcasting

redundancy

- $\alpha \uparrow \Rightarrow$ can have more private data
 - \Rightarrow Less to be cached
 - \Rightarrow Caching can be more redundant
 - \Rightarrow XORS have higher order
 - \Rightarrow multicast to more users at a time
 - \Rightarrow Much much faster

Intuition: Some Competition between Feedback-Quality and Memory

Cache-aided Feedback Reductions

To get the same rate, the required CSIT quality;

$$\bar{\alpha}(\gamma, \alpha) = \alpha + (1 - \alpha) \frac{1 - \gamma}{\log\left(\frac{1}{\gamma}\right)} = \alpha + 0.11(1 - \alpha)$$
cache-aided CSIT reduction

• For example: with $\gamma = 10^{-4}$, then $\bar{\alpha} = 0.2 \rightarrow \alpha = 0.1$

56 Small cache size, halved CSIT requirement

Using Coded Caching to `Buffer' CSI

Feature: Caching allows for CSIT reductions (and `buffering') $\gamma'_{\alpha} = e^{-\frac{1}{\alpha}}$ can achieve – without current CSIT – the optimal DoF $d^*(\gamma = 0, \alpha)$ associated to a system with delayed CSIT and α -quality current CSIT.

Example (large *K*)

• Assume D-CSIT and α = 1/5. Then

$$\gamma'_{\alpha=\frac{1}{5}} = e^{-5} = 0.0067 \approx \frac{1}{150}$$

$$d^*(\gamma = 0.0067, \alpha = 0) \ge d^*(\gamma = 0, \alpha = 1/5)$$

• The $d^*(\gamma = 0, \alpha = 1/5)$, can be achieved by substituting all current CSIT with DCSIT and coded caching employing $\gamma \approx 1/150$.

- Feature: CSIT allows for boost from small (reasonable) amounts of caching
- Synergy because PHY and CC exceed sum of two individual compontents

$$d(\gamma) > d_{ss}(\gamma) + d_{PHY}(\gamma = 0)$$

Exponential' effect of coded caching (for sufficiently large K)
 A very small γ = e^{-G} can offer a very satisfactory

$$d(\gamma = e^{-G}) - d(\gamma = 0) \rightarrow \frac{1}{G}$$

High Impact of Coded Caching

Example

• In a MISO BC system with only delayed CSIT, K antennas and K users:

$$d^*(\gamma = 0) = \frac{1}{H_K} \rightarrow 0$$
 (as K increases)

• A DoF of
$$d(\gamma \approx \frac{1}{50}) = \frac{1}{4}$$
 for all K

• A DoF of $d(\gamma \approx \frac{1}{1000}) = \frac{1}{7}$ for all K

• A DoF of
$$d(\gamma \approx 10^{-5}) > \frac{1}{12}$$
 for all K

CSIT-Aided Amelioration of the Sub-Packetization Problem

• For CC per-user DoF gain d_G , we needed

$$\binom{K}{K\gamma} = \binom{K}{Kd_G}$$
 Sub-packets

• Synergistically, this same DoF gain d_G needs only

$$\binom{K}{Ke^{-1/d_G}}$$
 Sub-packets

Example (large K):
$$d_G = \frac{1}{6}$$
: Then $\binom{K}{K/6} \rightarrow \binom{K}{Ke^{-6}} \approx \binom{K}{K/400}$

Topology (no FB)

Wireless Coded Caching: A Topological Perspective

Features/Opportunities:

- <u>Topological `holes'</u> to attenuate interference
- XORING on the air
- XORs need not be common
- Interesting relationship between coding gain and local caching gain

Topological SISO BC

Topologically-uneven wireless <u>SISO</u> *K*-user BC:

- W weak users with normalized capacity $\tau < 1$
- K W strong users with normalized capacity = 1
- Same cache size per user (*M*)

System Model

• Recall when $\tau = 1$ (M&N) $T(K) = \frac{K(1 - \gamma)}{1 + K\gamma}, \quad \gamma = \frac{M}{N}$ which gives a caching gain

$$K(1-\gamma)$$

$$g \triangleq \frac{K(1-\gamma)}{T} = K\gamma + 1$$

- Problem: multicasting can suffer from "worst-user" effect $d(\gamma) \rightarrow \tau \cdot d(\gamma)$
- **Opportunity:** <u>Topological `holes'</u> to attenuate interference
- Question: how is the performance affected as τ decreases?

Main Result

Theorem (Zhang-Elia 16):

In the *K*-user topological cache-aided SISO BC with *W* weak users,

$$\begin{aligned}
\frac{T(W)}{\tau}, & 0 \le \tau \le \overline{\tau}_{thr} \\
\text{min}\left\{T(K-W) + T(W), \frac{\tau_{thr}T(K)}{\tau}\right\}, & 0 \le \tau \le \tau_{thr} \\
T(K), & \tau_{thr} \le \tau \le 1
\end{aligned}$$
is achievable and has a gap-to-optimal
$$\frac{T}{T^*} < 8
\end{aligned}$$

that is always less than 8.

64

$$T(N) = \frac{N(1-\gamma)}{1+N\gamma}, \bar{\tau}_{thr} = \frac{T(W)}{T(W) + T(K-W)}, \tau_{thr} = \begin{cases} 1 - \frac{\binom{K-W}{K\gamma+1}}{\binom{K}{K\gamma+1}}, & for \ W < K(1-\gamma) \\ 1, & otherwise \end{cases}$$

 $\overline{T^*}$

Topology Threshold

Corollary (Zhang-Elia 16):

There is a threshold

65

$$\tau_{thr} \approx 1 - \left(1 - \frac{W}{K}\right)^{g_{max}}$$

which guarantees full-capacity performance

$$T(\tau \ge \tau_{thr}) = T(K)$$

Recall
$$g_{max} \stackrel{\text{def}}{=} K\gamma + 1$$
, $w \stackrel{\text{def}}{=} \frac{W}{K}$ $\tau_{thr} \in \left[1 - (1 - w)^{g_{max}}, 1 - \left(1 - w - \frac{w\gamma}{1 - \gamma}\right)^{g_{max}}\right]$

Topology Threshold

- τ_{thr} corresponding to distinct values for gains g_{max}
- E.g., for $g_{max} = 5$ and w = 0.1, then $\tau_{thr} \approx 0.4$

Coded-caching Gain

• Coded-caching gain under topology setting

The caching gain for K = 500, W = 50

- The horizontal lines denote the maximum gain g_{max} corresponding to $\tau = 1$
- Demonstrate how these can be achieved even with lesser link capacities.

Intuition of the schemes

- Interference $\mathcal{X}_{\psi,S}$ hidden from weak users due to topology
 - For the two terms of the terms of terms o
 - > Transmission rate can be kept (in some cases) at 1 (as if all strong)
 - This ameliorates the negative effects of uneven topology

(Insight)

- > For large K (actually for large envisioned gains),... we are in trouble
- Else, `worst-user' effect can be ameliorated
 - Feature: Sometimes strong users can lift the performance of the weak users without any penalties on the overall (worst-case) T

Caching in More Involved Networks

Caching at the Edge

FemtoCaching

- 1 BS delivering content to users
- Introduce helper nodes with caches
- Caches are filled with different <u>whole</u> files
- Content follows a popularity distribution
- Users connect to helpers if their requested file is present

Femtocaching

FemtoCaching

Results

If each user is attached to a single helper, then:

Optimal Solution: Cache the most popular content

FemtoCaching

Results

If users could be served by multiple helpers
 Main idea: If 2 or more helper-nodes share 1 or more users, then cache more than just the most popular files
 Increase the union of caches of neighboring helpers
 Increase the union of caches of neighboring helpers

FemtoCaching

Greedy algorithm is 2 from optimal in terms of

- Hit probability
- Using the knowledge of user positions

Main Result (simulation): 4-5 times more users served simultaneously

Result contributed substantially to the revival of caching

RS-coded Caching at the Edge

- Main BS with all content
- Helper BSs with fraction of content cached
- Users requesting files
- Users can connect to multiple helper BSs, and to the main BS if necessary

Altman, Avrachenkov, Goseling (2014) Also Bioglio, Gabry, Land (2015)(image source)

RS-coded Caching at the Edge

- N files, each split in D subfiles
- RS code each file: $D \rightarrow D'$ subfiles
- Each helper BS gets at least one element of each codeword
 - No overlaps/no content repetition
- User needs only D (out of D') elements of a codeword (RS)
- Look for subfiles in neighboring BS
- The rest from main BS
- Effort reduce (remaining) amount of information leaving main BS

- Simulation results as a function of:
 - radius of vicinity (more HBSs per user)
 - Cache size (increases D')
 - Increases chance to get file from HBs

Altman, E., Avrachenkov, K. and Goseling (2014) Also Bioglio, Gabry, Land (2015)(image source)

Fundamental Limits of Caching in Wireless D2D Networks

- Users are positioned in a grid
- N files
- γ : fraction of each file pre-cached at each node
- Next day, users can ask for anything
- Variable Tx Radii: with and w/o spatial reuse
- Both decentralized and deterministic cases

Goal: Delivery of the requested content

ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet
ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet
ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	•	lacksquare
ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet
ullet	ullet	ullet	•	ullet		ullet	ullet	ullet	ullet
\bullet	ullet	ullet	•	ullet	ullet	ullet	ullet	ullet	ullet
lacksquare	ullet	ullet	٠	ullet	ullet	۲	ullet	ullet	ullet
\bullet	ullet	ullet	٠	ullet	ullet	•	ullet	ullet	ullet
ullet	ullet	ullet	•	ullet	ullet	ullet	ullet	ullet	ullet
ullet	ullet	ullet	ullet	ullet	ullet	ullet	ullet		ullet

Setting: Ji, Caire, Molisch (2013)

D2D - No Spatial Reuse Model

- Radius covers the whole network
- One user communicates at a time
- Performance:

$$T(\gamma) = \frac{K(1-\gamma)}{K\gamma} = \frac{1-\gamma}{\gamma}$$

(order optimal)

Result: Ji, Caire, Molisch (2013)

D2D - Spatial Reuse Model

- Small radius ensures simultaneous transmissions
- Radius is fixed and same for all users
- Users are clustered and exchange content inside the same cluster
- Radius/memory is big enough to ensure all the library is available inside a cluster
- Performance

81

$$T(\gamma) = \frac{1-\gamma}{\gamma}$$
(order optimal)
INSIGHT: Multicasting and Spatial
Reuse are competing resources

Result: Ji, Caire, Molisch (2013)

D2D - Placement Schemes

Deterministic Placement Scheme

- A variation of original MN, with $K\gamma \cdot \binom{K}{K\gamma}$ subpacketization
- In the case of Spatial Reuse the subpacketization level is reduced compared to MN

Decentralized Placement Scheme

- Files are encoded through an MDS code
- Ensures, with high probability that all the content exists in the network
- Achieves order optimality
- Is considered more practical

D2D – Deterministic Delivery Example

Initial Placement with $K\gamma = 2$ $\psi = 123$ User 1 Serves 2 & 3 User 3 Serves 1 & 2 User 2 Serves 1 & 3 $\psi = 124$ User 4 Serves 1 & 2 User 2 Serves 1 & 4 User 1 Serves 2 & 4 $\psi = 134$ User'4 Serves 1 & 3 User 3 Serves 1 & 4 User 1 Serves 3 & 4 $\psi = 234$ User 4 Serves 2 & 3 User 3 Serves 2 & 4 User 2 Serves 3 & 4

Setting: Ji, Caire, Molisch (2013)

General Conclusions

Caching in wireless: a set of different challenges

- Several salient features when caching is for wireless
- Certain non-separability between caching and PHY
- Feedback and topology are unexplored frontiers in caching for wireless.
 - Among many interesting differentiating ingredients
- Interesting tradeoffs, synergies, and opportunities

Addressed Misconceptions

- Where to install memory
 - > No need of deploying too many caches due to its costly nature
 - > Now, much higher gains though. Change of mind?

- The differences between wireless and wired caching
 - Caching is an upper layer problem
 - > Fusion is fascinating, and very powerful

Open Problems and Future Directions

- Different measures of performance (beyond rate, capacity, delay, DoF, etc)
 - Infuse this approach with network-theoretic considerations!!
- Subpacketization bottleneck
 - Perhaps look into coded placement
- Fusing PHY and CC to improve performance and subpacketization
 - Need to boost DoF gains for small γ
 - Under subpacketization constraints
 - Need to explore new cache-endowed powerful PHY resources
- CC in different network topologies.
 - Topologies affect FB, interference, and multicasting capabilities (all connected)
 - Currently worst-channel user `brings down' the rest. Can this be ameliorated?

Open Problems and Future Directions

- Caching with secure communications (e.g. https)
 - Public key encryption changes files differently at different receivers
- Cost of cache placement
 - Mainly have assumed zero-cost placement
 - Updating is also an issue (see `Online coded caching')
- What is the best way to utilize file popularity and user behavior
 - Open problem and could be key in unlocking CC for commercial use
- Computational and implementation complexity (subpacketization, clique-finding, cache-allocation)

THANKS FOR YOUR ATTENTION!

******Looking for Postdocs and PhD students

Limitations of current communication paradigms:

- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019. White Paper.
- J. Andrews, X. Zhang, G. Durgin, A. Gupta, "Are we approaching the fundamental limits of wireless network densification?," ArXiv e-prints, Dec. 2015.
- L. Zheng and D. N. C. Tse, "Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel," IEEE Trans. Information Theory, Feb. 2002.
- A. Lozano, R. W. Heath Jr., and J. G. Andrews, "Fundamental limits of cooperation," IEEE Trans. Information Theory, Sep. 2013.
- M. A. Maddah-Ali and D. N. C. Tse, "Completely stale transmitter channel state information is still very useful," IEEE Trans. Information Theory, Jul. 2012.
- A. Singh, P. Elia, J. Jaldén, "Achieving a vanishing SNR-gap to exact lattice decoding at a subexponential complexity," IEEE Trans. Information Theory, Jun. 2012.
- A. J. Fehske, et al., "The global footprint of mobile communications: The ecological and economic perspective," IEEE Communications Magazine, Aug. 2011.
- T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
 2012.

Feedback communication theoretic solutions:

- V.R. Cadambe, S.A. Jafar, "Interference alignment and degrees of freedom of the K-User interference channel," IEEE Trans. Information Theory, Aug. 2008.
- J. Chen and P. Elia, "Toward the performance versus feedback tradeoff for the twouser MISO broadcast channel," IEEE Trans. Information Theory, Dec. 2013.
- J. Chen, P. Elia, and S. Jafar, "On the two-user MISO broadcast channel with alternating CSIT: A topological perspective," IEEE Trans. Information Theory, Aug. 2015.
- R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, "On the synergistic benefits of alternating CSIT for the MISO broadcast channel," IEEE Trans. Information Theory, Jul. 2013.
- C. S. Vaze, S. Karmakar, and M. K. Varanasi, "On the generalized degrees of freedom region of the MIMO interference channel with no CSIT," IEEE International Symposium on Information Theory (ISIT), Aug. 2011.
- J. Chen, S. Yang, A. Ozgur, A. Goldsmith, "Achieving Full DoF in Heterogeneous Parallel Broadcast Channels with Outdated CSIT", IEEE Trans. Information Theory, Sep. 2014
- P. de Kerret, D. Gesbert, J. Zhang and P. Elia, "Optimal sum-DoF of the K-user MISO BC
- ⁹¹ with current and delayed feedback," ArXiv e-prints, Apr. 2016

Single-stream Coded caching:

- M. Maddah-Ali and U. Niesen, "Fundamental limits of caching," IEEE Trans. Information Theory, May 2014.
- U. Niesen and M. Maddah-Ali, "Coded caching with non-uniform demands," in Computer Communications Workshops (INFOCOM WKSHPS), May 2014.
- M. Maddah-Ali and U. Niesen, "Decentralized caching attains order-optimal memory-rate tradeoff," Allerton Conference, Monticello, IL, Oct. 2013 see also ArXiv e-prints, 2013.
- K.Wan, D. Tuninetti, and P. Piantanida, "On Caching with More Users than Files", ArXiv e-prints, Jan. 2016.
- K. Shanmugam, M. Ji, A. M.Tulino, J. Llorca, and A. G. Dimakis, "Finite length analysis of caching-aided coded multicasting," ArXiv e-prints, Aug. 2015.
- Z. Chen, P. Fan, and K.B. Letaief, "Fundamental Limits of Caching: Improved Bounds For Small Buffer Users", ArXiv e-prints, Nov. 2015.
- M. Ji, A. M. Tulino, J. Llorca, G. Caire, "Order-Optimal Rate of Caching and Coded Multicasting with Random Demands", ArXiv e-prints, Feb. 2015.
- S. Sahraei, M. Gastpar, "Multi-Library Coded Caching", ArXiv e-prints, Jan. 2016

Single-stream Coded caching:

- M. Maddah-Ali and U. Niesen, "Fundamental limits of caching," IEEE Trans. Information Theory, May 2014.
- M. Mohammadi Amiri, D. Gunduz, "Fundamental Limits of Caching: Improved Delivery Rate-Cache Capacity Trade-off", ArXiv e-prints, Apr. 2016.
- R. Pedarsani, M. Ali Maddah-Ali, U. Niesen, "Online Coded Caching", ArXiv e-prints, Nov. 2013.
- J. Hachem, N. Karamchandani, S. Diggavi, "Effect of Number of Users in Multi-Level Coded Caching", ArXiv e-prints, Apr. 2015
- J. Zhang, X. Lin, X. Wang, "Coded Caching under Arbitrary Popularity Distributions", Information Theory and Applications Workshop (ITA), Feb. 2015
- C. Wang, S. Lim, M. Gastpar, "Information-Theoretic Caching: Sequential Coding for Computing", ArXiv e-prints, Feb. 2016
- U. Niesen, M. Maddah-Ali, "Coded Caching for Delay-Sensitive Content", ArXiv eprints, Jul. 2014.
- S. Bidokhti, M. Wigger, R. Timo, "Noisy Broadcast Networks with Receiver Caching", ArXiv e-prints, May. 2016.

93

Extensions of Coded Caching in different settings:

- R. Timo and M. A. Wigger, "Joint cache-channel coding over erasure broadcast channels," ArXiv e-prints, May 2015.
- A. Ghorbel, M. Kobayashi, S. Yang, "Cache-Enabled Broadcast Packet Erasure Channels with State Feedback", Allerton Conference, Monticello, IL, Oct. 2015.
- N. Karamchandani, U. Niesen, M. Maddah-Ali, S. Diggavi, "Hierarchical Coded Caching", ArXiv e-prints, Jun 2014.
- K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, G. Caire"FemtoCaching: Wireless video content delivery through distributed caching helpers", ArXiv eprints, Sep 2013
- M. Ji, G. Caire, A. F. Molisch, "Fundamental limits of distributed caching in D2D wireless networks", ArXiv e-prints, Apr 2013
- Y. Ugur, Z. Awan, A. Sezgin, "Cloud Radio Access Networks With Coded Caching", ArXiv e-prints Feb 2016
- S. Lim, C. Wang, M. Gastpar, "Information Theoretic Caching: The Multi-User Case", ArXiv e-prints Apr 2016

- V. Bioglio, F. Gabry, I. Land, "Optimizing MDS Codes for Caching at the Edge", ArXiv e-prints Sep 2015.
- Altman, E., Avrachenkov, K. and Goseling, J. "Distributed storage in the plane". In Networking Conference, 2014 IFIP (pp. 1-9). IEEE.
- Avrachenkov, K., Bai, X. and Goseling, J., 2016. "Optimization of Caching Devices with Geometric Constraints," arXiv preprint arXiv:1602.03635.
- B. Perabathini, E. Baştuğ, M. Kountouris, M. Debbah, A. Conte, "Caching at the Edge: a Green Perspective for 5G Networks", ArXiv e-prints Mar 2015.
- M. Deghel, E. Bastug, M. Assaad, and M. Debbah, "On the benefits of edge caching for MIMO interference alignment," in Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2015.
- A. Liu, V.t K. N. Lau, "Cache-Enabled Opportunistic Cooperative MIMO for Video Streaming in Wireless Systems", IEEE Trans. Signal Processing, Jan. 2014.

Coded Caching with Feedback:

- S. P. Shariatpanahi, A. S. Motahari, and B. H. Khalaj, "Multi-server coded caching," ArXiv e-prints, Aug. 2015.
- A. Liu, V. K. N. Lau, "Mixed-Timescale Precoding and Cache Control in Cached MIMO Interference Network", IEEE Trans. Signal Processing, Dec. 2013.
- Maddah-Ali and Niesen, "Cache-Aided Interference Channels", 2015.
- J. Zhang, F. Engelmann and P. Elia, "Coded caching for reducing CSIT-feedback in wireless communications," Allerton Conference, Monticello, IL, Oct. 2015.
- J. Zhang and P. Elia, "Fundamental limits of cache-aided wireless BC: Interplay of coded-caching and CSIT feedback," ArXiv e-prints, Nov. 2015.
- J. Zhang and P. Elia, "The synergistic gains of coded caching and delayed feedback," ArXiv e-prints, Apr. 2016
- N. Naderializadeh, M. Maddah-Ali and A. Avestimehr, "Fundamental Limits of Cache-Aided Interference Management", ArXiv e-prints, Apr. 2015.
- G. Paschos, E. Baştuğ, I. Land, G. Caire, M. Debbah, "Wireless Caching: Technical Misconceptions and Business Barriers", ArXiv e-prints, Jan. 2016.
- M. Wigger, R. Timo, S. Shamai (Shitz), "Complete Interference Mitigation Through Receiver-Caching in Wyner's Networks", ArXiv e-prints, May. 2016.

Outer bounds of Coded Caching

- H. Ghasemi and A. Ramamoorthy, "Improved lower bounds for coded caching," ArXiv e-prints, Jan. 2015.
- R. Timo and M. A. Wigger, "Joint cache-channel coding over erasure broadcast S. Lim, C. Wang, M. Gastpar, "Information Theoretic Caching: The Multi-User Case", ArXiv e-prints Apr. 2016
- K. Wan, D. Tuninetti, P. Piantanida, "On the Optimality of Uncoded Cache Placement", ArXiv e-prints, Nov. 2015.
- A. N., N. S. Prem, V. M. Prabhakaran, R. Vaze, "Critical Database Size for Effective Caching", ArXiv e-prints, Jan. 2015.
- Q. Yan, X. Tang, Q. Chen, "On the Gap Between Decentralized and Centralized Coded Caching Schemes," Arxiv May 2016.