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Abstract—Parameter estimation has applications in
many applications of signal processing, such as Angle-of-
Arrival (AoA) estimation. Compressed sensing is a widely
growing paradigm that can be applied to parameter
estimation via sparse recovery. In this paper, we propose
a Newton-type Forward Backward Greedy method that
performs sparse recovery, given the observed data over
multiple snapshots. This method is applied to the AoA
estimation problem, where we have observed better
performance, in terms of Mean-Squared Error and faster
convergence when compared to existing methods. More
information can be found in the conclusions section.

Index terms— Sparse Recovery, Compressed Sensing,
Angle-of-Arrival Estimation, Forward Backward Greedy,
Multiple Measurement Vectors (MMV)

I. INTRODUCTION

The problem of angles of arrival (AoA) of multiple
sources is a fundamental one, which appears in several
areas such as radar [1], [2] and localization [3], [4].
However, multipath [5] deteriorates the estimation
performance if not taken into account. Therefore,
we must take into account multipath parameters and
implement fast algorithms to estimate all related
parameters. Indeed, AoA estimation could be used to
infer user position, such as in [6].

Compressed sensing seems to be a promising approach
for data acquisition and compression, in a sense that
reconstruction is possible even beyond the Nyquist rate.
The papers in [7]–[9] give certain conditions where
compressed sensing could be used to reduce the time
and space needed to reconstruct the desired signal. To
be more precise, assume the linear model

yyy ' AAAxxx

where yyy is the observed vector, AAA is an over-complete
dictionary and xxx is the desired signal. This problem has

an infinite number of solutions; however, `p (0 ≤ p ≤ 1)
constraints on xxx force sparsity on xxx and hence favor
sparse solutions, so the problem is no longer considered
to be over-determined.
Greedy methods [10] have gained popularity over the
recent years due to their fast nature to converge to a
local optimum of the `0−norm problem. In particular,
greedy methods select at each step the most suited
column, or atom, of AAA according to some criterion. For
instance, the Matching Pursuit (MP) [11] algorithms
atoms based on maximum norm projections and the
Orthogonal Matching Pursuit [12] selects atoms that
best correlate with the residual part of the signal.
Improvements of MP and OMP were implemented,
such as the Directional Pursuit [13] and the Adaptive
Forward Backward (AdFoBa) Greedy method [14]. In
this paper, we are more interested in the latter, due to
its ability to correct ”bad selections” of atoms, thanks to
its backward step. In addition to greedy methods, pusuit
algorithms were established so as to relax the `0 problem
to an `1. This offers convexity to the problem we have
and therefore some methods could be derived and solved
using fixed point methods. Popular algorithms that are
used for the l1 optimisation problem are the Iterative
Shrinkage Thresholding Algorithm (ISTA) [15] and the
Basis Pursuit Denoising (BPDN) [16]. Another category
of methods are based on the Bayesian approach, where
entries of x are assumed to have a priori statistical
information. For instance, the Fast Matching Bayesian
Pursuit (FBMP) [17] models the entries of xxx as Gaussian.

In this paper, we are interested in the Forward
Backward Greedy scheme, namely the adaptive one
in [14], i.e. AdFoBa. We propose a faster and better
version of the adaptive scheme in [14]. To be more
precise, a Newton type optimization is embedded in the
forward step. Thanks to this step, we have observed



faster convergence in the algorithm. Furthermore, the
backward step also differs from the one in [14], to adapt
with the Newton type version herein. Simulations show
the performance and speed of this method, compared to
[14] and others as well.

This paper is organized as follows: Section II presents
the system model. In Section III, the proposed method
is introduced and a pseudo code of the algorithm is
also given. Section IV presents some simulation results.
Finally, we conclude the paper in Section V.

Notations: Upper-case and lower-case boldface letters
denote matrices and vectors, respectively. (.)T and (.)H

represent the transpose and the transpose-conjugate oper-
ators. The matrix III is the identity matrix with appropriate
dimensions. For a vector xxx, the notation [xxx]k denotes
the kth entry of xxx. For a matrix XXX and set of indices
ΩΩΩ, the notation XXX(ΩΩΩ,:) is a submatrix of XXX obtained by
extracting the rows indexed by ΩΩΩ. Similarly, the notation
XXX(:,ΩΩΩ) is obtained by extracting the columns indexed by
ΩΩΩ. Finally, for a set ΩΩΩ, the notation ΩΩΩ/j is obtained by
removing j from set ΩΩΩ.

II. SYSTEM MODEL

Assume a planar arbitrary array of N antennas. Fur-
thermore, consider q < N narrowband sources attacking
the array from different angles, i.e. θ1 . . . θq. Collecting
L time snapshots, we could say the following

YYY = AAAXXX +χχχ (1)

where YYY ∈ CN×L is the collected data. The over-
complete basis AAA ∈ CN×K is assumed known in the
absence of array perturbations. For planar arrays, the jth

atom, or column, of AAA is aaa(θj), where the kth entry is

[aaa(θj)]k =
1√
N
e−j

wc
c

(x̄ksin(θj)+ȳkcos(θj)) (2)

where (x̄k, ȳk) is the position of the kth antenna in a
Cartesian system. The term wc = 2πfc is the angu-
lar frequency, and c is the speed of light in vacuum.
The matrix χχχ is modeled as a white circular complex
Gaussian process of zero mean and covariance σ2III and
independent from X. Recall that this model is ideal, in
a sense that the matrix AAA is known.

III. NEWTON-TYPE FORWARD BACKWARD METHOD

Consider the following optimization problem

minimize
XXX

‖YYY −AAAXXX‖22

subject to ‖XXX‖2,0 ≤ q
(3)

where ‖.‖2,0 is the `2,0 norm defined as

‖XXX‖2,0 = card {k : ‖XXXk,:‖2 6= 0} (4)

where XXXk,: is the kth row of XXX and ‖‖2 is the `2 norm.
So, basically, the `2,0 norm counts the number of rows
that have at least one non-zero entry. In this section,
we develop Forward-Backward Greedy approach that
optimizes (3).

A. Forward Step

At an nth iteration, we propose to choose an atom that
minimizes

j(n) = arg min
j 6∈ΩΩΩ(n−1)

min
βββ

‖YYY −AAA
(
XXX(n) + eeejβββ

H
)
‖22

‖
[
∇XXX(YYY −AAAXXX)

]
j,:
‖22

(5)

which is easily verified to be

j(n) = arg min
j 6∈ΩΩΩ(n−1)

‖YYY −AAA
(
XXX(n) + eeejAAA

H
:,j [YYY −AAAXXX]

)
‖22

‖
[
AAAH(YYY −AAAXXX)

]
j,:
‖22

(6)
Here, we are ”wiggling” the weights corresponding
to the jth atom, or column, in AAA and choosing the
atom index that is least affected with this perturbation.
Moreover, we have included the Gradient term in the
denominator of the above cost function, similar to the
Newton’s method. Although it may seem natural, this
additional term helps in speeding up the convergence of
the algorithm, yet achieving better performance as well.
After finding this index and appending it in the support
set, namely

ΩΩΩ(n) ← ΩΩΩ(n−1) ∪ {j(n)} (7)

We estimate an updated version of XXX as follows

XXX(n+1) = (AAAH(:,ΩΩΩ(n))AAA(:,ΩΩΩ(n)))
−1AAAH(:,ΩΩΩ(n))YYY (8)

Also, let ε(n) denote the relative error at iteration n as

ε(n) = |‖YYY −AAAXXX(n+1)‖22 − ‖YYY −AAAXXX(n)‖22| (9)

B. Backward Step

To allow flexibility of the proposed greedy method, we
propose a backward scheme. The backward scheme will
indeed depend on the value of the error ε(n) at iteration
(n). If the error is ”relatively” small, we can go on to
another forward step n + 1, otherwise a correction is
needed. A natural question arises here: ”What should
ε(n) be compared to?” Well, we can ask an alternative
question, which is the following ”What if the atom added
at iteration (n) corresponding to index j(n) increases the
cost function ‖YYY−AAAXXX‖22 and not decrease it ?” To check



Algorithm 1: Pseudo-code of the Newton-type
Forward-Backward Greedy Algorithm

Input: YYY , AAA, δ
Output: XXX
Initialize: XXX(0) = 000, n = 1, ΩΩΩ(0) = φ, ε(0) = 1015

do

j(n) = arg min
j 6∈ΩΩΩ(n−1)

‖YYY −AAA
(
XXX(n) + eeejAAA

H
:,j [YYY −AAAXXX]

)
‖22

‖
[
AAAH(YYY −AAAXXX)

]
j,:
‖22

ΩΩΩ(n) ← ΩΩΩ(n−1) ∪ {j(n)}

XXX(n+1) = (AAAH
(:,ΩΩΩ(n))

AAA(:,ΩΩΩ(n)))
−1AAAH

(:,ΩΩΩ(n))
YYY

ε(n) = |‖YYY −AAAXXX(n+1)‖22 − ‖YYY −AAAXXX(n)‖22|
n← n+ 1

Compute for i ∈ ΩΩΩ(n)

ϑ
(n)
i =

∣∣∣‖YYY −AAA(:,ΩΩΩ(n)/{i})XXX
(n+1)

(ΩΩΩ(n)/{i},:)
‖22 − ‖YYY −AAAXXX(n)‖22

∣∣∣
ϑ(n) = min {ϑ(n)

i }j∈ΩΩΩ(n)

i(n) = argmin
i
ϑ

(n)
i

if ϑ(n) ≤ ε(n) then

ΩΩΩ(n) ← ΩΩΩ(n)/{i(n)}

XXX(n+1) = (AAAH
(:,ΩΩΩ(n))

AAA(:,ΩΩΩ(n)))
−1AAAH

(:,ΩΩΩ(n))
YYY

n← n− 1

else
do nothing

while ε(n) > δ;

-100 -50 0 50 100
Dic Index (AoAs)

-160

-140

-120

-100

-80

-60

-40

-20

0

20
Wieghts

Proposed
AdFoBa

Fig. 1: Comparison of spectra for q = 4 sources.

for this case, we compare the error ε(n) to an error ϑ(n),
which is computed if the support ΩΩΩ(n) contains 1 less

element1. More precisely, define

ϑ
(n)
i =

∣∣∣‖YYY−AAA(:,ΩΩΩ(n)/{i})XXX
(n+1)
(ΩΩΩ(n)/{i},:)‖

2
2−‖YYY−AAAXXX(n)‖22

∣∣∣
(10)

for all i ∈ ΩΩΩ(n). Now choose the smallest error amongst
all ϑ(n)

i , i.e.

ϑ(n) = min {ϑ(n)
i }j∈ΩΩΩ(n) (11)

and denote
i(n) = argmin

i
ϑ

(n)
i (12)

Here, if ϑ(n) > ε(n), we say that the error at iteration n is
acceptable and there doesn’t seem to be any over-fitting.
On the other hand, if ϑ(n) ≤ ε(n), we should remove this
”defected atom”, which corresponds to index i(n)

ΩΩΩ(n) ← ΩΩΩ(n)/{i(n)} (13)

Re-modify the weighting matrix

XXX(n+1) = (AAAH(:,ΩΩΩ(n))AAA(:,ΩΩΩ(n)))
−1AAAH(:,ΩΩΩ(n))YYY (14)

and finally go one step backward

n← n− 1 (15)

The forward backward procedure is repeated until error
ε(n) ≤ δ, where δ is a given tolerance value.

IV. SIMULATIONS

In this section, we present some computer simulations.
In Fig 1, we have used N = 15 antennas and a dictionary
of size K = 181 discritized at steps of 1◦. Furthermore,
L = 1 snapshot was used at SNR = 20 dB. We have
q = 4 sources at θ1 = −50◦ , θ2 = −27◦ , θ3 = −20◦

, and θ4 = 20◦. We can clearly see the difference
between the proposed Newton-type method and the one
AdFoBa [14]. Our method avoids overfitting of sources,
whereas the AdFoBa overestimates then number of
existing sources.

In Experiment 1 (Fig. 2), we are interested in the
MSE performance of existing sparse recovery methods
compared to the proposed here. We compare the
Newton-type Forward Backward proposed method with
AdFoBa [14], BPDN [16] and FBMP [17]. Here we
have set L = 102, N = 10 , q = 2 with θ1 = 0◦

and θ2 = 10◦. Also K = 181 as before. The MSE is
computed using 104 Monte Carlo trials. Here, in case of
overfitting, we choose the q largest peaks in the weights.
We can see that both Forward-Backward schemes (the

1This could be seen as over-fitting.
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proposed one and AdFoBa) perform better than BPDN
and FBMP, due to their adaptive ability of ”correcting
themselves” in case of any overfitting or false selected
atoms. Moreover, the proposed one performs better than
AdFoBa, due to the different backward step criterion.
We can see an 5 dB between the proposed method and
the AdFoBa at sufficiently high SNR. In Experiment
2 (Fig. 3), we have used the same parameters as in
Experiment 1, except that we have changed L to
L = 10. We can also observe the phenomena as above.
Note that here we have a higher MSE for all methods
due to less observed samples. Nevertheless, we can see
that the MSE gaps between the different methods are
still the same as that in Experiment 1. We can see an 8
dB between the proposed method and the AdFoBa at
sufficiently high SNR.

Another important aspect is the algorithm complexity or
the number of operations required before the algorithm
terminates. In Experiment 3 (i.e. Fig 4), we study the
speed of the algorithms mentioned above as a function
of number of antennas N . To assess generality, we have
also averaged the speeds over 104 Monte Carlo trials.
We can see that the proposed algorithm terminates
before all the other ones mentioned above, thanks to

the gradient factor in the cost function of equation (5).
If N = 100 antennas were used, we can see a gain
of speed of about 0.6 seconds compared to the FBMP
algorithm and 0.2 seconds compared to AdFoBa and
BPDN.

Finally, in Experiment 4, i.e. Fig 5, we have fixed
the parameters as in Experiment 1 and studied the
behavior of the error for different algorithms, in the
sense of ∣∣∣‖YYY −AAAXXX(n)‖2 − ‖YYY −AAAXXX(n−1)‖2

∣∣∣ (16)

This means that when no improvement occurs, the above
error should become negligible. Also, we can see that
the proposed algorithm converges in about 8 to 9 iter-
ations. The AdFoBa and the BPDN require around 15
iterations to achieve the same error as the proposed one.
Additionally, we can see that the FBMP needs more than
20 iterations to achieve this accuracy.

V. CONCLUSION

From the outcomes of our investigations, it seems
to be possible that the propsed Newton-type forward
backward greedy method performs faster, in terms of
convergence and number of operations, and better, in
terms of Mean-Squared-Error of AoAs. At high SNR, we



have been able to achieve a 5 to 8 dB MSE improvement
compared to the Adaptive Forward Backward greedy
method (AdFoBa) and a 0.2 sec faster run time for large
number of antennas.
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