
An Industrial IoT Framework to Simplify Connection
Process using System-Generated Connector

Le Kim-Hung, Soumya Kanti Datta, Christian Bonnet

EURECOM, Biot, France
Email: {lek, dattas, bonnet}@eurecom.fr

Francois Hamon, Alexandre Boudonne

GREENCITYZEN, Marseille, France
Email: {francois.hamon,

alexandre.boudonne}@greencitizen.fr

Abstract— Industrial Internet of Thing (IIoT) promises a lot of

positive impacts on manufacturing, process transformation and

digital value acceleration. IIoT is considered to have the potential

to launch fourth industrial revolution and related economies.

However, since IIoT is at its early stage, its benefits are limited to

connected devices and open data sources to enrich the

measurements and analysis. In this paper, we propose an

innovative IIoT framework that could automate the process of

creating cloud-based middleware connector for things used in

industrial settings. The framework significantly accelerates the

configuration process for heterogeneous connections by using a

light-weight and convenient connector template and supports the

common set of protocols. Interoperability with other such

implementations is preserved using ongoing IoT standardization.

Index Terms—Cloud Computing; Industrial Internet of

Things; Interoperability; System-Generated Connector.

I. INTRODUCTION

The Internet has fundamentally transformed the way
humans interact. Over the next decade, the Internet of Things
(IoT) will revolutionize manufacturing, energy, agriculture,
transportation and other industrial segments of the economy
which are estimated to be in the range of $2.7 - $6.2 trillion by
2025 [1]. This significant development accompanies with the
increase in equipment manufacturers, Internet service
providers, and application developers. By the end of 2020, 212
billons IoT smart objects are expected to be deployed
worldwide [2]. Machine-to-Machine (M2M) traffic flows will
constitute up to 45% of the whole internet traffic in 2022 [3],
[4]. Additionally, the Industrial Internet (IIoT, Industry 4.0) is
predicted to create about $1279 billion in 2020 according to
Wikibon report [5].

While Industrial IoT offers infinite potentials and
opportunities for current industries and their process
transformation, achieving interoperability is still a major
challenge due to lack of uniform standards. One of the
emerging technologies to overcome this challenge is IoT
middleware. It is a software system implemented as a middle
layer between device and application layers. The IoT
middleware provides a set of programming abstraction to cover
the heterogeneous things and low-level communication
between IoT devices and end-user applications [6]. Global
Sensor Network (GSN), Xively, Paraimpu, ThingWorx are
some of the major middleware solutions used in similar
context. These systems share a common objective of achieving
seamless integration of heterogeneous things into the Internet

with different approaches. For example, GSN uses a concept
named wrapper to handle the connection from sensor hardware
to middleware. Hydra, ThingWorx offer a Device Development
Kit to create the applications on device side. However, these
approaches require programming skill and a lot of effort to
establish and configure connectivity for new IoT object, which
do not appropriate for non-specialist users. In case of GSN, in
order to establish the connection from sensors to middleware,
we must build an executable file named wrapper and a
corresponding configuration file for every sensor using
provided library.

Due to heterogeneity in IoT environment, each IoT object
such as sensor and actuator provides different software
interfaces and communicating configuration to exchange data
and control information with cloud-base middleware.
Furthermore, these interfaces and configuration are non-
standardized and frequently changing, expecially in a Low
Power Wide Area Network (LPWAN) senario. Moreover, to
retrieve the monitoring data from IoT devices using LoRa1
connection, we have to configure an HTTP callback following
special format which is defined by a network provider.
However, each provider has various configuration formats and
frequently changes that lead to a giant gap in syntactical
interoperability and stability.

In the IoT era, data processing plays a tremendous role in
analysis, prediction and context-awareness. Along with the
exponential growth of the open data services (ODS),
interoperating between these services and IoT middleware is
challenged by heterogeneity. Most of the ODS follow a client-
server model built using RESTful web service. However, each
service provider offers a diverse HTTP configuration (path,
method, header), data format (JSON, XML) and data syntax.
For example: “Accuweather”, a weather data sharing service,
configures identification key as a parameter in the URL namely
“apikey”. However, “Openweather” service configures
identification key in the HTTP header. Therefore, a new
mechanism to deal with heterogeneity syntax of IIoT
connectivity should be considered.

In this paper, we propose a novel Industrial IoT framework
to support automatic establishment and configuration process
for heterogeneous connectivity by using a system-generated
connector. The connector is a specific code segment that
performs the data acquisition process from a specific type of
connection using protocols like HTTP, MQTT. Our framework
also provides APIs to perform full “create, read, update,

1 https://www.lora-alliance.org

delete”, CRUD operation on the connectors. Furthermore,
automating connectivity mechanism assists end-user in quickly
retrieving data from various data sources via self-defined
connectors. These connectors also allow explicitly specifying
the information to be collected. For example, we can create a
connector to retreive only current temperature and humility
amongs deverse data of open weather data sources. Thus, this
mechanism enables the middleware to accelerate data
acquisition process. Especially, our proposed framework is
extremely fit for LPWAN scenario which lacks of uniform data
and interoperation between network provider. Moreover,
sensing data of LPWAN devices is restricted due to low data
rate and bandwidth. Thus, enriching data from open data
sources is extremely necessary for this scenario to gain
maximum benefit from data analysis and context-awareness.
To demonstrate the capability of this framework, we integrated
it into an existing middleware to evaluate the performance. The
main our contributions are:

• Identifying current middleware limitations for connectivity
and automatic configuration for IIoT.

• Proposing a novel and lightweight framework to accelerate
the connecting process for heterogeneous things.

• Utilizing the proposed framework to speed up the data

acquisition from open data sharing web services.

• Simplifying connectivity management by wrapping

connectivity object in a RESTful web service.

• Implementing and evaluating the proposed framework.

The remainder of this paper is constructed as follows:
Section 2 reviews the existing platforms and highlights
limitations. Our proposed framework is introduced in detail in
Section 3. Section 4 focuses on experiment and performance
evaluation. Finally, we summarize the paper and present future
works in Section 5.

II. STATE-OF-THE-ART

In this section, we review the connectivity mechanism for
IoT device in some current frameworks. We also identify their
limitations to motivate to deliver a novel IIoT framework that
simplifies the establishing and configuring connectivity to IoT
things using the system-generated connector.

A. FIWARE

FIWARE [7], [18] is cloud-based middleware platform that
provides an infrastructure to effectively reduce the cost of
creation and delivery IoT services by sharing and re-using
Generic Enablers (GE). All API and GE specifications are
public and royalty-free for all developer. These documents
contain the necessary information to create an IoT product that
can interoperate with other developed GE in FIWARE
community. The other innovative aspect of FIWARE is that all
IoT things are covered behind OMA Next Generation Service
Interface (NGSI) entities. Therefore, developers just need to
learn and work with the NGSI API used in FIWARE regardless
the complexity of IoT technologies and deployment. To handle
messages from the IoT devices and gateway, FIWARE
provides an element namely IoT Agent. The main

responsibility of this element is receiving and translating the
messages to a uniform format. Currently, FIWARE IoT Agent
supports HTTP and MQTT [8]. However, creating a new IoT
Agent involves a lot of effort to understand the FIWARE
framework2 which is only used by developer. Regarding
integration with data sharing service, FIWARE proposes
Cygnus, a connector between Orion Context Broker to certain
FIWARE storages such as CKAN, HADOOP, DynamoDB.
Cygnus is based on Apache Flume3 which supports collecting
data via persistence agents. Basically, Cygnus only supports
some specific HTTP Flume agents. That means, FIWARE is
able to integrate with a few supported data sources.

B. Global Sensor Network

The Global Sensor Network (GSN) is a platform aimed to
provide a flexible integration with different type of sensors.
GSN facilitates the connecting process of heterogeneous sensor
devices to an application by implementing a corresponding
wrapper and an XML file [9]. This XML file defines the basic
configuration information for the sensor such as the type of
data will be sent to GSN, parameters, and the corresponding
wrapper. The wrapper acts as a sensor driver to establish a
connection from sensor hardware to GSN. These two elements
must be created for every sensor which demands to connect to
GSN. Currently, creating the wrapper and establishing the
connectivity are complicated tasks and require high
programming skill [10]. Another critical drawback of GSN is
that all sensor data is stored in an SQL database. This leads to a
limitation in performance and scalability.

C. Hydra

Hydra middleware project aims to develop a service-
oriented middleware for physical devices in a distributed
architecture, also known as Link Smart [11]. This framework is
developed based on Service Oriented Architecture (SoA),
which uses web services for seamless integration of
heterogeneous physical devices into applications regardless
connectivity technologies. Hydra also provides a dedicated
access control mechanism to ensure the authorization and
privacy for all IoT services and devices. The Hydra IoT devices
are described by using semantic technologies. Thus, the new
devices can be discovered automatically in the Hydra Network
using peer-to-peer network technology. Hydra also provides
the set of development resource to create an application on both
device and end-user side including the Software Development
Kit (SDK) and the Device Development Kit (DDK). But, both
SDK and DDK are complicated to be used by end-user. In
addition, creating a new device template or Hydra IoT
Application must be implemented by a programmer. Therefore,
this middleware is not suitable for the end user to quickly
create or deploy the IoT devices, services or applications. The
other limitation of Hydra is that the Hydra device application
interacts with middleware using web service. Thus, this
application is too heavy to run on constraint IoT devices which
limit to memory size and processor.

2 https://github.com/telefonicaid/iotagent-node-lib/blob/master/doc/howto.md
3 https://flume.apache.org/

D. Kaa platform

Kaa project is open-source IoT middleware platform with a
lot of IoT features that allow the users build the complete end-
to-end IoT solution including data management, data
connection and configuration management [12]. Kaa
middleware uses data scheme and configuration scheme to
configure IoT devices in term of data structure and device
configuration. These schemes are created and managed by
Common Type Library (CTL). It also provides a SDK to create
the embedded application for IoT device in several
programming languages such as C, C++, java and Objective C.
However, the limitation of Kaa middleware is that the endpoint
SDK only supports few specific IoT devices and the
interoperation with other data sources is not mentioned.

E. Xively

Xively is a cloud-based platform using a central message
bus to route the message from devices to another platform
components. This platform provides many development tools
and resources supporting developer connect and obtain data
from their sensors. The IoT sensors can connect to Xively via
MQTT, HTTP and Web Socket protocol [13]. However, the
principal purpose of Xively is just to simplify the connecting
from the sensors to Xively’s Cloud. Therefore, in case we need
an additional service, we need to develop a new one or reuse
compatible service with Xively. Adding a new sensor to Xively
is supported to be uncomplicated, but the provided API is hard
to use, especially for the unsupported sensor. Furthermore,
there is no the function using to integrate with open data
sources via web service. These limitations lead to the restricted
usage for inexpert users.

F. ThingWorx

ThingWorx platform addresses IoT application integration
that monitors, manages and controls connected devices through
model driven development. All sensors, applications, and
services are treated as data sources and inter-connected via
virtual bus [14]. The platform supports several connection
protocols including CoAP, MQTT, REST/HTTP and Web
Socket. It also supports integrating with other sharing data
sources via web services including open weather services,
social data providers. However, ThingWorx only supports a
few web services, and not allow the user to establish the
integration to new web service. The other limitation of
ThingWorx is that devices only allow connecting to
ThingWorx’s Cloud by using the applications to be
implemented by ThingWorx SDK [15].

G. Limitations

Most of the studied platforms limit the type of sensor that
can be connected and request a specific application installed on
device side. For example, to connect Kaa, Xively and
ThingWorx cloud, the IoT device must be installed application
developed by their library. However, such libraries only
support a few sensor types. Also, adding a new sensor to the
platforms is complex and require advanced programming skills
to develop, install and configure a device application. In case of
unsupported devices, this work is much more complex. There

is no mechanism to deal with the rapid changes things in term
of software interface, connectivity protocol and data format.
Moreover, reviewed frameworks do not support the end-user to
establish connection and collect data on their own from open
data sources via HTTP, MQTT, CoAP or WS protocol. Our
framework has been designed and developed to overcome with
these limitations.

III. AUTOMATION CONNECTOR FRAMEWORK

This section concentrates on our middleware architecture,
connector management mechanism and connector generation
process along with its elements. At the end of the section, we
describe different deployment scenarios to emphasize its high
compatibility with various parts of IoT system.

A. System Architecture Overview

Our framework simplifies the creation and management
process for heterogeneous connectivity. Our approach is to
wrap the complex establishing and connecting functionalities in
the RESTful web services which are easily handled by end-
user. Fig. 1 depicts the proposed framework which is composed
of three different layers described below.

• Service Enablement Layer – This layer consists of several
web services which allow the end-user a direct interaction
with the framework. The supported operations are (i)
discovering connector, (ii) CRUD operations on connector
and connector template, (iii) activating, de-activating
connector and (iv) access control based on session token.
There are four main services are connector management,
connector discovery, access control and connector template
management. These services allow the end user to establish
and manage connectivity to IoT devices as well as various
data source simply regardless the complexity of protocol
and configuration process through RESTful web service.
This capability is essential and important for adapting to the
lack of standardization and the rapid changes of IoT thing.
However, it is not supported by the reviewed IoT platforms.

• Processing and Storage Layer – This layer contains the
databases and primary functions to generate the connectors
as well as pre-process data. It also carries a database to
store generated connector, connector template, and
connector status. The connector creation process is
performed and managed by connector generation service.
This service generates the connector from connector
template which is configured and sent by the end user via
connector management service.

• Connection Layer – This is composed of many generated
connectors that have the responsibility to handle the
connection to IoT things. Currently, our framework
supports two types of connectors - ‘Connector In’ and
‘Connector Out’. They are analogous to ‘proxy-in’ and
‘proxy-out’ concepts introduced in [16]. Each type of
connector supports HTTP, MQTT, CoAP and WebSocket
(WS) connectivity respectively to retrieve data from sensor,
actuator, gateway and open data sharing services. This is
extending the “collection proxies” concept presented in
[17]. This layer also keeps tracking the connector status via

connector management module. The end user can manage
this status by calling the appropriate web service.

Fig. 1. The overview of framework architecture

B. Connector Generation Elements

To facilitate the connectivity generation for end-user, we
propose the Connectivity Configuration Template (CTT) file,
contains the vital information of seeking connectivity such as
connection properties, data description. This file is encoded
under XML format which provides simplicity, openness, and
extensibility. The CTT’s content is coherent and convenient for
both human and machine. Moreover, the structure of CTT is
roughly equivalent to a network packet corresponding to the
supported connection. Fig. 3 illustrates an example of complete
CTT file to establish an HTTP connection to acquire the data
from Accuweather4, an open data sharing service about weather
information.

From Fig. 2, the necessary connection properties are a host
address, port number, connection method, path address. The
header element defines the operating information of HTTP
transaction such as content type, authentication information and
HTTP parameters. The next element describes the carrying
payload in the HTTP packet. Each data in the payload is
defined by one “infor” tag that has three attributes including (i)
“place” which describes the HTPP object storing the payload
such as HTTP body or HTTP header, (ii) “type” which
describes the type of the data such as string or number, (iii)
“path” which defines a specific location of data in the payload.

The connector is a piece of JavaScript code, which has a
responsibility to open connectivity and perform data
acquisition. It is also able to annotate the raw data by using
define vocabulary which increases the interoperability. The
connector structure consists of three distinct parts with the
different responsibility to (i) open the connection based on the
received in the CTT file, (ii) de-capsulate and process the data
from the received network packet and (iii) manage the

4 http://www.accuweather.com/en/fr/france-weather

connector status via web service. The connector functionalities
are not only triggered by incoming network packet but also by
defined interval time to obtain data from open data sharing
services. In order to facilitate the management process, the
framework uses a brief and a unique name to identify
connector. In case multiple devices connect to the same
connector, these devices are identified by their ID. The position
of device ID is configurable in connector. For example, in Fig,
2, device ID will be retrieve via “device” parameter in HTTP
header. The connector is created by combining CTT and
Connector Template (CT). CT is a composed script with the
marked position which is filled by the extracted information
from CTT to create the connector. Each type of connector has
different CT.

Fig. 2. An example of Connection Template.

C. The Framework Process

The primary task of our framework is presented in Fig. 3. In
order to create and effectively manage the connector, the end-
user must follow these steps. Firstly, they send the connectivity
protocol used (e.g., HTTP, MQTT) to the framework via
RESTful web service and then the framework response a CTT
file corresponding with their demand. Secondly, the end-user
fills received CTT file with connectivity configuration
information such as host address, port number and send this
CTT file to framework to trigger the connector generation
process. Finally, the framework automatically generates the
connector base on CTT file from user and response generating
status along with connector name to the user. After generating,
this connector is available to receive or obtain data from IoT
things as well as be managed via web services.

Fig. 3. The framework in operation.

D. Connector Generation Process

The connector generation is triggered when receiving a
creating connectivity requisition from end-user via Service

Enablement Layer. This request carries the CTT file which
contains the necessary configuration to establish connection
encoding under XML format. CCT can be delivered to end-
users in advance by RESTful web service to supports the non-
specialist end-user in creating connectivity. The framework
extracts the vital information in received CTT and assigned this
information to an array following a certain order. The next
operation is to inject these values into the correct positions in
CTT file. After successfully creating, the new connector is
stored in database and register with connection layer to be
available. The overall process is illustrated in Fig. 4.

Fig. 4. The operational diagram.

E. Connector Management

In order to control the connectors from end-user, we
propose Connector Management Component (CMP) which is
located in Connection Layer. CMP manages all existing
connectors following Resource Oriented Model. Each
connector is identified via unique connector name which
allows connector resources to be discovered by “Connector
discovery” component in Service Enablement Layer.

At first declaration, the framework will automatically
register the new connector with CMP by its name. After
successful registration, CMP will allocate a set of RESTful web
services to registered connector. Our framework supports basic
management actions on a connector including CRUD,
activation and deactivation. For instance, after successful
creating, a connector is associated with “active” status and
ready for operating. The end-user can deactivate the connector
by triggering “deactivate” action.

F. Deployment Scenarios

Our framework is implemented using Node.js programming
language, a JavaScript runtime built on Chrome's V8
JavaScript engine using an event-driven, non-blocking I/O
model. Therefore, it is extremely lightweight to be efficiently
deployed in the wide range of the M2M objects such as a
gateway, cloud-based system and even smartphone. This
capability makes the framework are flexible to integrate into
various parts of IoT ecosystem. For a large-scale enterprise
using various technologies to communicate, our framework can
be deployed to the gateway to facilitate the connection process
for new devices and easily adapt to the changes of
configuration from network providers and new coming
connectivity standard. In the real scenario, the framework is

deployed in a cloud-based system using to simplify
connectivity to devices via LPWAN connectivity. In the other
perspective, our framework can be implemented as a data
acquisition layer in other frameworks such as SIGHTED [19]
or as a proxy layer in a lightweight Framework for efficient
M2M device management in oneM2M Architecture [20] to
accelerate the connection process.

IV. EVALUATION

To evaluate our framework, we propose to measure the
execution time of connector generation process including two
main operations, namely connector creation and reloading
framework:

• Connector creation operation - The operation performs
the combination of CTT uploading from end-user and CT
storing in the database to generate the target connector.

• Reloading framework operation - After the finish of
connector generation process, this operation occurs to
integrate new connector into the framework.

We recorded the execution time in seconds of 50 times

wrapper generation process with the wrapper configuration is
852 bytes. The evaluation is performed on-device has the
processor: Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz,
2401 MHz, 2 Core(s), 4 Logical Processor(s), 4 GB of RAM
and the operating system is 64-bit Windows 10. The acquired
result is shown in Figure 6. According to that, reloading
framework takes around 1.15 s to 2.91 s while the connector
creation operation only consumes around 0.113 s to 1.4 s.
Overall, the total execution time is from 1.265 s to 4.31 s. This
performance satisfies the user experiment [21]. When the
connector works as a “proxy out”, the time of establishing
connection is extremely minor around 0.003ms comparing with
the total time which is largely depended on the performance of
the data sources. In addition, most of open data sources are
limited in the performance and the number of request could be
served per second.

Fig. 5. Connector generation performance.

The size of connector for each M2M connectivity is less
than 1 KB, and the requested memory of our framework is
only a couple of megabytes of memory. Thus, our framework
is satisfactory to deploy on the general IoT objects from cloud-
base middleware, M2M gateway and event smartphone with

gigabytes of internal memory along with the powerful
processor. It further demonstrates the ultra-lightweight of the
proposed framework. In the other hand, the size of CTT only
depends on the data section. However, this section is not
processed or participated in connector generation process.
Therefore, the performance of connector generation process is
independent of the size of CTT. Furthermore, the connectors
are developed Node JS Express framework5 supporting non-
blocking I/O model, and consequently, there is unlimited in
the number of devices connecting to a connector. These
properties make the framework more scalable and flexible to
be deployed in the large-scale scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we identify the limitations of some existing
middleware solutions regarding the data acquisition and
configuration connectivity. Motivating to bridge the gaps, we
proposed a framework that can simplify the establishing
connection process from IoT things to cloud-based middleware
via a system-generated connector. Our platform also provides
well-supplied management web services based on resource
oriented model. It allows the end users to easily discovery and
perform a wide range of management operation on the
connector including creating, retrieving, updating and deleting
as well as activating or de-activating. Another innovative
aspect is that the connector can facilitate and speed up the data
acquisition process from data sharing web services such as
Accuweather, OpenSensorIO. In evaluation section, we
demonstrate the scalability and flexibility of our platform via
satisfactory performance, lightweight software implementation
and low memory consuming. Regarding future works, we are
working on integrating our platform into oneM2M architecture
and implementing access control mechanism.

ACKNOWLEDGMENT

The work is supported by GreenCityZen company.
EURECOM acknowledges the support of its industrial
members - BMW Group, IABG, Monaco Telecom, Orange,
SAP, ST Microelectronics and Symantec.

REFERENCES

[1] J. Manyika et al., “Disruptive technologies: advances that will
transform life, business, and the global economy.” San
Francisco, CA, USA: McKinsey Global Instit., 2013.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,” IDC
iView: IDC Anal. Future, vol. 2007, pp. 1–16, Dec. 2012.

[3] S. Taylor, “The next generation of the Internet revolutionizing
the way we work, live, play, and learn,” CISCO, San Francisco,
CA, USA, CISCO Point of View, 2013.

[4] D. Evans, “The Internet of things: How the next evolution of the
Internet is changing everything,” CISCO, San Jose, CA, USA,
Whitepaper, 2011.

[5] D. Floyer, “Defining and sizing the industrial Internet,”
Wikibon, Marlborough, MA, USA, 2013.

5 http://expressjs.com/fr/

[6] G. Fersi, "Middleware for Internet of Things: A Study," 2015
International Conference on Distributed Computing in Sensor
Systems, Fortaleza, pp. 230-235, 2015.

[7] FIWARE documentation.
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.ph
p/Main_Page

[8] FIWARE IoT Agent specification. http://fiware-iot-
stack.readthedocs.io/en/latest/device_gateway/

[9] GSN Team, Global Sensors Networks, 2009.

[10] GSN Team, Global sensor networks project, 2011.
http://sourceforge.net/apps/trac/gsn/

[11] M. Eisenhauer, P. Rosengren, and P. Antolin, “Hydra: A
development platform for integrating wireless devices and
sensors into ambient intelligence systems,” in The Internet of
Things, New York, USA, pp. 367–373, 2010.

[12] Kaa Project, Kaa Overview - Kaa open-source IoT platform,
2016. www.kaaproject.org/overview

[13] M. Kohler, D. Worner, and F. Wortmann, “Platforms for the
internet of things: an analysis of existing solutions,” 5th Bosch
Conference on Systems and Software Engineering, May 2014.

[14] H. Derhamy, J. Eliasson, J. Delsing and P. Priller, "A survey of
commercial frameworks for the Internet of Things," 2015 IEEE
20th Conference on Emerging Technologies & Factory
Automation (ETFA), Luxembourg, pp. 1-8, 2015.

[15] Joy mining connected products success story. Thing- Worx.
http://www.thingworx.com/learningcontent/connected-products-
success-story-joy-mining-2/

[16] S. K. Datta, C. Bonnet and N. Nikaein, "An IoT gateway centric
architecture to provide novel M2M services," 2014 IEEE World
Forum on Internet of Things (WF-IoT), Seoul, 2014, pp. 514-
519.

[17] S. K. Datta and C. Bonnet, "Easing IoT application development
through DataTweet framework," 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), Reston, VA, 2016, pp. 430-435

[18] S. K. Datta and C. Bonnet, "Smart M2M Gateway Based
Architecture for M2M Device and Endpoint Management," 2014
IEEE International Conference on Internet of Things (iThings),
and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom),
Taipei, 2014, pp. 61-68.

[19] Ahmad M. Nagib, Haitham S. Hamza, “SIGHTED: a framework
for semantic integration of heterogeneous sensor data on the
internet of things,” Procedia Computer Science, Vol. 83, pp.
529-536, 2016,

[20] S. K. Datta and C. Bonnet, "A lightweight framework for
efficient M2M device management in oneM2M architecture,"
2015 International Conference on Recent Advances in Internet
of Things (RIoT), Singapore, pp. 1-6, 2015.

[21] Nielsen, J. (1993). Usability Engineering. Academic Press,
Boston, ISBN 0-12-518405-0.

