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Abstract— Industrial Internet of Thing (IIoT) promises a lot of 

positive impacts on manufacturing, process transformation and 

digital value acceleration. IIoT is considered to have the potential 

to launch fourth industrial revolution and related economies. 

However, since IIoT is at its early stage, its benefits are limited to 

connected devices and open data sources to enrich the 

measurements and analysis. In this paper, we propose an 

innovative IIoT framework that could automate the process of 

creating cloud-based middleware connector for things used in 

industrial settings. The framework significantly accelerates the 

configuration process for heterogeneous connections by using a 

light-weight and convenient connector template and supports the 

common set of protocols. Interoperability with other such 

implementations is preserved using ongoing IoT standardization. 

Index Terms—Cloud Computing; Industrial Internet of 

Things; Interoperability; System-Generated Connector. 

I. INTRODUCTION 

The Internet has fundamentally transformed the way 
humans interact. Over the next decade, the Internet of Things 
(IoT) will revolutionize manufacturing, energy, agriculture, 
transportation and other industrial segments of the economy 
which are estimated to be in the range of $2.7 - $6.2 trillion by 
2025 [1]. This significant development accompanies with the 
increase in equipment manufacturers, Internet service 
providers, and application developers. By the end of 2020, 212 
billons IoT smart objects are expected to be deployed 
worldwide [2]. Machine-to-Machine (M2M) traffic flows will 
constitute up to 45% of the whole internet traffic in 2022 [3], 
[4]. Additionally, the Industrial Internet (IIoT, Industry 4.0) is 
predicted to create about $1279 billion in 2020 according to 
Wikibon report [5]. 

While Industrial IoT offers infinite potentials and 
opportunities for current industries and their process 
transformation, achieving interoperability is still a major 
challenge due to lack of uniform standards. One of the 
emerging technologies to overcome this challenge is IoT 
middleware. It is a software system implemented as a middle 
layer between device and application layers. The IoT 
middleware provides a set of programming abstraction to cover 
the heterogeneous things and low-level communication 
between IoT devices and end-user applications [6]. Global 
Sensor Network (GSN), Xively, Paraimpu, ThingWorx are 
some of the major middleware solutions used in similar 
context. These systems share a common objective of achieving 
seamless integration of heterogeneous things into the Internet 

with different approaches. For example, GSN uses a concept 
named wrapper to handle the connection from sensor hardware 
to middleware. Hydra, ThingWorx offer a Device Development 
Kit to create the applications on device side. However, these 
approaches require programming skill and a lot of effort to 
establish and configure connectivity for new IoT object, which 
do not appropriate for non-specialist users. In case of GSN, in 
order to establish the connection from sensors to middleware, 
we must build an executable file named wrapper and a 
corresponding configuration file for every sensor using 
provided library.  

Due to heterogeneity in IoT environment, each IoT object 
such as sensor and actuator provides different software 
interfaces and communicating configuration to exchange data 
and control information with cloud-base middleware. 
Furthermore, these interfaces and configuration are non-
standardized and frequently changing, expecially in a Low 
Power Wide Area Network (LPWAN) senario. Moreover, to 
retrieve the monitoring data from IoT devices using LoRa1 
connection, we have to configure an HTTP callback following 
special format which is defined by a network provider. 
However, each provider has various configuration formats and 
frequently changes that lead to a giant gap in syntactical 
interoperability and stability.  

In the IoT era, data processing plays a tremendous role in 
analysis, prediction and context-awareness. Along with the 
exponential growth of the open data services (ODS), 
interoperating between these services and IoT middleware is 
challenged by heterogeneity. Most of the ODS follow a client-
server model built using RESTful web service. However, each 
service provider offers a diverse HTTP configuration (path, 
method, header), data format (JSON, XML) and data syntax. 
For example: “Accuweather”, a weather data sharing service, 
configures identification key as a parameter in the URL namely 
“apikey”. However, “Openweather” service configures 
identification key in the HTTP header. Therefore, a new 
mechanism to deal with heterogeneity syntax of IIoT 
connectivity should be considered. 

In this paper, we propose a novel Industrial IoT framework 
to support automatic establishment and configuration process 
for heterogeneous connectivity by using a system-generated 
connector. The connector is a specific code segment that 
performs the data acquisition process from a specific type of 
connection using protocols like HTTP, MQTT. Our framework 
also provides APIs to perform full “create, read, update, 
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delete”, CRUD operation on the connectors. Furthermore, 
automating connectivity mechanism assists end-user in quickly 
retrieving data from various data sources via self-defined 
connectors. These connectors also allow explicitly specifying 
the information to be collected. For example, we can create a 
connector to retreive only current temperature and humility 
amongs deverse data of open weather data sources. Thus, this 
mechanism enables the middleware to accelerate data 
acquisition process. Especially, our proposed framework is 
extremely fit for LPWAN scenario which lacks of uniform data 
and interoperation between network provider. Moreover, 
sensing data of LPWAN devices is restricted due to low data 
rate and bandwidth. Thus, enriching data from open data 
sources is extremely necessary for this scenario to gain 
maximum benefit from data analysis and context-awareness. 
To demonstrate the capability of this framework, we integrated 
it into an existing middleware to evaluate the performance. The 
main our contributions are: 

• Identifying current middleware limitations for connectivity 
and automatic configuration for IIoT. 

• Proposing a novel and lightweight framework to accelerate 
the connecting process for heterogeneous things. 

• Utilizing the proposed framework to speed up the data 

acquisition from open data sharing web services. 

• Simplifying connectivity management by wrapping 

connectivity object in a RESTful web service. 

• Implementing and evaluating the proposed framework. 

The remainder of this paper is constructed as follows: 
Section 2 reviews the existing platforms and highlights 
limitations. Our proposed framework is introduced in detail in 
Section 3. Section 4 focuses on experiment and performance 
evaluation. Finally, we summarize the paper and present future 
works in Section 5. 

II. STATE-OF-THE-ART 

In this section, we review the connectivity mechanism for 
IoT device in some current frameworks. We also identify their 
limitations to motivate to deliver a novel IIoT framework that 
simplifies the establishing and configuring connectivity to IoT 
things using the system-generated connector. 

A. FIWARE 

FIWARE [7], [18] is cloud-based middleware platform that 
provides an infrastructure to effectively reduce the cost of 
creation and delivery IoT services by sharing and re-using 
Generic Enablers (GE). All API and GE specifications are 
public and royalty-free for all developer. These documents 
contain the necessary information to create an IoT product that 
can interoperate with other developed GE in FIWARE 
community. The other innovative aspect of FIWARE is that all 
IoT things are covered behind OMA Next Generation Service 
Interface (NGSI) entities. Therefore, developers just need to 
learn and work with the NGSI API used in FIWARE regardless 
the complexity of IoT technologies and deployment. To handle 
messages from the IoT devices and gateway, FIWARE 
provides an element namely IoT Agent. The main 

responsibility of this element is receiving and translating the 
messages to a uniform format. Currently, FIWARE IoT Agent 
supports HTTP and MQTT [8]. However, creating a new IoT 
Agent involves a lot of effort to understand the FIWARE 
framework2 which is only used by developer. Regarding 
integration with data sharing service, FIWARE proposes 
Cygnus, a connector between Orion Context Broker to certain 
FIWARE storages such as CKAN, HADOOP, DynamoDB. 
Cygnus is based on Apache Flume3 which supports collecting 
data via persistence agents. Basically, Cygnus only supports 
some specific HTTP Flume agents. That means, FIWARE is 
able to integrate with a few supported data sources. 

B. Global Sensor Network 

The Global Sensor Network (GSN) is a platform aimed to 
provide a flexible integration with different type of sensors. 
GSN facilitates the connecting process of heterogeneous sensor 
devices to an application by implementing a corresponding 
wrapper and an XML file [9]. This XML file defines the basic 
configuration information for the sensor such as the type of 
data will be sent to GSN, parameters, and the corresponding 
wrapper. The wrapper acts as a sensor driver to establish a 
connection from sensor hardware to GSN. These two elements 
must be created for every sensor which demands to connect to 
GSN. Currently, creating the wrapper and establishing the 
connectivity are complicated tasks and require high 
programming skill [10]. Another critical drawback of GSN is 
that all sensor data is stored in an SQL database. This leads to a 
limitation in performance and scalability. 

C. Hydra 

Hydra middleware project aims to develop a service-
oriented middleware for physical devices in a distributed 
architecture, also known as Link Smart [11]. This framework is 
developed based on Service Oriented Architecture (SoA), 
which uses web services for seamless integration of 
heterogeneous physical devices into applications regardless 
connectivity technologies. Hydra also provides a dedicated 
access control mechanism to ensure the authorization and 
privacy for all IoT services and devices. The Hydra IoT devices 
are described by using semantic technologies. Thus, the new 
devices can be discovered automatically in the Hydra Network 
using peer-to-peer network technology. Hydra also provides 
the set of development resource to create an application on both 
device and end-user side including the Software Development 
Kit (SDK) and the Device Development Kit (DDK). But, both 
SDK and DDK are complicated to be used by end-user. In 
addition, creating a new device template or Hydra IoT 
Application must be implemented by a programmer. Therefore, 
this middleware is not suitable for the end user to quickly 
create or deploy the IoT devices, services or applications. The 
other limitation of Hydra is that the Hydra device application 
interacts with middleware using web service. Thus, this 
application is too heavy to run on constraint IoT devices which 
limit to memory size and processor. 
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D. Kaa platform 

Kaa project is open-source IoT middleware platform with a 
lot of IoT features that allow the users build the complete end-
to-end IoT solution including data management, data 
connection and configuration management [12]. Kaa 
middleware uses data scheme and configuration scheme to 
configure IoT devices in term of data structure and device 
configuration. These schemes are created and managed by 
Common Type Library (CTL). It also provides a SDK to create 
the embedded application for IoT device in several 
programming languages such as C, C++, java and Objective C. 
However, the limitation of Kaa middleware is that the endpoint 
SDK only supports few specific IoT devices and the 
interoperation with other data sources is not mentioned. 

E. Xively 

Xively is a cloud-based platform using a central message 
bus to route the message from devices to another platform 
components. This platform provides many development tools 
and resources supporting developer connect and obtain data 
from their sensors. The IoT sensors can connect to Xively via 
MQTT, HTTP and Web Socket protocol [13]. However, the 
principal purpose of Xively is just to simplify the connecting 
from the sensors to Xively’s Cloud. Therefore, in case we need 
an additional service, we need to develop a new one or reuse 
compatible service with Xively. Adding a new sensor to Xively 
is supported to be uncomplicated, but the provided API is hard 
to use, especially for the unsupported sensor. Furthermore, 
there is no the function using to integrate with open data 
sources via web service. These limitations lead to the restricted 
usage for inexpert users. 

F. ThingWorx 

ThingWorx platform addresses IoT application integration 
that monitors, manages and controls connected devices through 
model driven development. All sensors, applications, and 
services are treated as data sources and inter-connected via 
virtual bus [14]. The platform supports several connection 
protocols including CoAP, MQTT, REST/HTTP and Web 
Socket. It also supports integrating with other sharing data 
sources via web services including open weather services, 
social data providers. However, ThingWorx only supports a 
few web services, and not allow the user to establish the 
integration to new web service. The other limitation of 
ThingWorx is that devices only allow connecting to 
ThingWorx’s Cloud by using the applications to be 
implemented by ThingWorx SDK [15]. 

G. Limitations 

Most of the studied platforms limit the type of sensor that 
can be connected and request a specific application installed on 
device side. For example, to connect Kaa, Xively and 
ThingWorx cloud, the IoT device must be installed application 
developed by their library. However, such libraries only 
support a few sensor types. Also, adding a new sensor to the 
platforms is complex and require advanced programming skills 
to develop, install and configure a device application. In case of 
unsupported devices, this work is much more complex. There 

is no mechanism to deal with the rapid changes things in term 
of software interface, connectivity protocol and data format. 
Moreover, reviewed frameworks do not support the end-user to 
establish connection and collect data on their own from open 
data sources via HTTP, MQTT, CoAP or WS protocol. Our 
framework has been designed and developed to overcome with 
these limitations. 

III. AUTOMATION CONNECTOR FRAMEWORK 

This section concentrates on our middleware architecture, 
connector management mechanism and connector generation 
process along with its elements. At the end of the section, we 
describe different deployment scenarios to emphasize its high 
compatibility with various parts of IoT system. 

A. System Architecture Overview 

Our framework simplifies the creation and management 
process for heterogeneous connectivity. Our approach is to 
wrap the complex establishing and connecting functionalities in 
the RESTful web services which are easily handled by end-
user. Fig. 1 depicts the proposed framework which is composed 
of three different layers described below.  

• Service Enablement Layer – This layer consists of several 
web services which allow the end-user a direct interaction 
with the framework. The supported operations are (i) 
discovering connector, (ii) CRUD operations on connector 
and connector template, (iii) activating, de-activating 
connector and (iv) access control based on session token. 
There are four main services are connector management, 
connector discovery, access control and connector template 
management. These services allow the end user to establish 
and manage connectivity to IoT devices as well as various 
data source simply regardless the complexity of protocol 
and configuration process through RESTful web service. 
This capability is essential and important for adapting to the 
lack of standardization and the rapid changes of IoT thing. 
However, it is not supported by the reviewed IoT platforms. 

• Processing and Storage Layer – This layer contains the 
databases and primary functions to generate the connectors 
as well as pre-process data. It also carries a database to 
store generated connector, connector template, and 
connector status. The connector creation process is 
performed and managed by connector generation service. 
This service generates the connector from connector 
template which is configured and sent by the end user via 
connector management service.  

• Connection Layer – This is composed of many generated 
connectors that have the responsibility to handle the 
connection to IoT things. Currently, our framework 
supports two types of connectors - ‘Connector In’ and 
‘Connector Out’. They are analogous to ‘proxy-in’ and 
‘proxy-out’ concepts introduced in [16]. Each type of 
connector supports HTTP, MQTT, CoAP and WebSocket 
(WS) connectivity respectively to retrieve data from sensor, 
actuator, gateway and open data sharing services. This is 
extending the “collection proxies” concept presented in 
[17]. This layer also keeps tracking the connector status via 



connector management module. The end user can manage 
this status by calling the appropriate web service. 

  

Fig. 1.  The overview of framework architecture 

B. Connector Generation Elements 

To facilitate the connectivity generation for end-user, we 
propose the Connectivity Configuration Template (CTT) file, 
contains the vital information of seeking connectivity such as 
connection properties, data description. This file is encoded 
under XML format which provides simplicity, openness, and 
extensibility. The CTT’s content is coherent and convenient for 
both human and machine. Moreover, the structure of CTT is 
roughly equivalent to a network packet corresponding to the 
supported connection. Fig. 3 illustrates an example of complete 
CTT file to establish an HTTP connection to acquire the data 
from Accuweather4, an open data sharing service about weather 
information. 

From Fig. 2, the necessary connection properties are a host 
address, port number, connection method, path address. The 
header element defines the operating information of HTTP 
transaction such as content type, authentication information and 
HTTP parameters. The next element describes the carrying 
payload in the HTTP packet. Each data in the payload is 
defined by one “infor” tag that has three attributes including (i) 
“place” which describes the HTPP object storing the payload 
such as HTTP body or HTTP header, (ii) “type” which 
describes the type of the data such as string or number, (iii) 
“path” which defines a specific location of data in the payload. 

The connector is a piece of JavaScript code, which has a 
responsibility to open connectivity and perform data 
acquisition. It is also able to annotate the raw data by using 
define vocabulary which increases the interoperability. The 
connector structure consists of three distinct parts with the 
different responsibility to (i) open the connection based on the 
received in the CTT file, (ii) de-capsulate and process the data 
from the received network packet and (iii) manage the 
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connector status via web service. The connector functionalities 
are not only triggered by incoming network packet but also by 
defined interval time to obtain data from open data sharing 
services. In order to facilitate the management process, the 
framework uses a brief and a unique name to identify 
connector. In case multiple devices connect to the same 
connector, these devices are identified by their ID. The position 
of device ID is configurable in connector. For example, in Fig, 
2, device ID will be retrieve via “device” parameter in HTTP 
header. The connector is created by combining CTT and 
Connector Template (CT). CT is a composed script with the 
marked position which is filled by the extracted information 
from CTT to create the connector. Each type of connector has 
different CT. 

 
Fig. 2.  An example of Connection Template. 

C. The Framework Process 

The primary task of our framework is presented in Fig. 3. In 
order to create and effectively manage the connector, the end-
user must follow these steps. Firstly, they send the connectivity 
protocol used (e.g., HTTP, MQTT) to the framework via 
RESTful web service and then the framework response a CTT 
file corresponding with their demand. Secondly, the end-user 
fills received CTT file with connectivity configuration 
information such as host address, port number and send this 
CTT file to framework to trigger the connector generation 
process. Finally, the framework automatically generates the 
connector base on CTT file from user and response generating 
status along with connector name to the user. After generating, 
this connector is available to receive or obtain data from IoT 
things as well as be managed via web services. 

 
Fig. 3.  The framework in operation. 

D. Connector Generation Process 

The connector generation is triggered when receiving a 
creating connectivity requisition from end-user via Service 



Enablement Layer. This request carries the CTT file which 
contains the necessary configuration to establish connection 
encoding under XML format. CCT can be delivered to end-
users in advance by RESTful web service to supports the non-
specialist end-user in creating connectivity. The framework 
extracts the vital information in received CTT and assigned this 
information to an array following a certain order. The next 
operation is to inject these values into the correct positions in 
CTT file. After successfully creating, the new connector is 
stored in database and register with connection layer to be 
available. The overall process is illustrated in Fig. 4. 

  
Fig. 4.  The operational diagram. 

E. Connector Management 

In order to control the connectors from end-user, we 
propose Connector Management Component (CMP) which is 
located in Connection Layer. CMP manages all existing 
connectors following Resource Oriented Model.  Each 
connector is identified via unique connector name which 
allows connector resources to be discovered by “Connector 
discovery” component in Service Enablement Layer.  

At first declaration, the framework will automatically 
register the new connector with CMP by its name. After 
successful registration, CMP will allocate a set of RESTful web 
services to registered connector. Our framework supports basic 
management actions on a connector including CRUD, 
activation and deactivation. For instance, after successful 
creating, a connector is associated with “active” status and 
ready for operating. The end-user can deactivate the connector 
by triggering “deactivate” action.  

F. Deployment Scenarios 

Our framework is implemented using Node.js programming 
language, a JavaScript runtime built on Chrome's V8 
JavaScript engine using an event-driven, non-blocking I/O 
model. Therefore, it is extremely lightweight to be efficiently 
deployed in the wide range of the M2M objects such as a 
gateway, cloud-based system and even smartphone. This 
capability makes the framework are flexible to integrate into 
various parts of IoT ecosystem. For a large-scale enterprise 
using various technologies to communicate, our framework can 
be deployed to the gateway to facilitate the connection process 
for new devices and easily adapt to the changes of 
configuration from network providers and new coming 
connectivity standard. In the real scenario, the framework is 

deployed in a cloud-based system using to simplify 
connectivity to devices via LPWAN connectivity. In the other 
perspective, our framework can be implemented as a data 
acquisition layer in other frameworks such as SIGHTED [19] 
or as a proxy layer in a lightweight Framework for efficient 
M2M device management in oneM2M Architecture [20] to 
accelerate the connection process.  

IV. EVALUATION  

To evaluate our framework, we propose to measure the 
execution time of connector generation process including two 
main operations, namely connector creation and reloading 
framework: 

• Connector creation operation - The operation performs 
the combination of CTT uploading from end-user and CT 
storing in the database to generate the target connector. 

• Reloading framework operation - After the finish of 
connector generation process, this operation occurs to 
integrate new connector into the framework. 

 
We recorded the execution time in seconds of 50 times 

wrapper generation process with the wrapper configuration is 
852 bytes. The evaluation is performed on-device has the 
processor: Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz, 
2401 MHz, 2 Core(s), 4 Logical Processor(s), 4 GB of RAM 
and the operating system is 64-bit Windows 10. The acquired 
result is shown in Figure 6. According to that, reloading 
framework takes around 1.15 s to 2.91 s while the connector 
creation operation only consumes around 0.113 s to 1.4 s. 
Overall, the total execution time is from 1.265 s to 4.31 s. This 
performance satisfies the user experiment [21]. When the 
connector works as a “proxy out”, the time of establishing 
connection is extremely minor around 0.003ms comparing with 
the total time which is largely depended on the performance of 
the data sources. In addition, most of open data sources are 
limited in the performance and the number of request could be 
served per second. 

 

 
Fig. 5.  Connector generation performance. 

The size of connector for each M2M connectivity is less 
than 1 KB, and the requested memory of our framework is 
only a couple of megabytes of memory. Thus, our framework 
is satisfactory to deploy on the general IoT objects from cloud-
base middleware, M2M gateway and event smartphone with 



gigabytes of internal memory along with the powerful 
processor. It further demonstrates the ultra-lightweight of the 
proposed framework. In the other hand, the size of CTT only 
depends on the data section. However, this section is not 
processed or participated in connector generation process. 
Therefore, the performance of connector generation process is 
independent of the size of CTT. Furthermore, the connectors 
are developed Node JS Express framework5 supporting non-
blocking I/O model, and consequently, there is unlimited in 
the number of devices connecting to a connector. These 
properties make the framework more scalable and flexible to 
be deployed in the large-scale scenario. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we identify the limitations of some existing 
middleware solutions regarding the data acquisition and 
configuration connectivity. Motivating to bridge the gaps, we 
proposed a framework that can simplify the establishing 
connection process from IoT things to cloud-based middleware 
via a system-generated connector. Our platform also provides 
well-supplied management web services based on resource 
oriented model. It allows the end users to easily discovery and 
perform a wide range of management operation on the 
connector including creating, retrieving, updating and deleting 
as well as activating or de-activating. Another innovative 
aspect is that the connector can facilitate and speed up the data 
acquisition process from data sharing web services such as 
Accuweather, OpenSensorIO. In evaluation section, we 
demonstrate the scalability and flexibility of our platform via 
satisfactory performance, lightweight software implementation 
and low memory consuming. Regarding future works, we are 
working on integrating our platform into oneM2M architecture 
and implementing access control mechanism. 
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