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Abstract

The advent of cloud computing has given rise to a plethora of work on
verifiable delegation of computation. Homomorphic signatures are powerful
tools that can be tailored for verifiable computation, as long as they are effi-
ciently verifiable. The main advantages of homomorphic signatures for veri-
fiable computation are twofold: (i) Any third party can verify the correctness
of the delegated computation, (ii) and this third party is not required to have
access to the dataset on which the computation was performed. In this paper,
we design a homomorphic signature suitable for multivariate polynomials of
bounded degree, which draws upon the algebraic properties of eigenvectors
and leveled multilinear maps. The proposed signature yields an efficient ver-
ification process (in an amortized sense) and supports online-offline signing.
Furthermore, our signature is provably secure and its size grows only linearly
with the degree of the evaluated polynomial.

1 Introduction

The problem of verifiable computation has attracted increasing interest with the
rise of cloud computing. Thanks to the various computational and financial advan-
tages of cloud technology, companies are keen to delegate their computation tasks
to powerful servers. Yet, since such servers are considered to be potentially mali-
cious, one major challenge is to empower cloud customers to efficiently verify the
correctness of the requested computations. Homomorphic signatures are one of the
cryptographic tools that perfectly address this challenge, so long as their underly-
ing verification algorithm is efficient (in the amortized sense) and can be used by
lightweight clients. In this paper, we focus on homomorphic signatures that allow
the verification of multivariate polynomials of bounded degree. As shown in [7],
such signatures could be used to enable verifiable delegation of a wide range of
statistical computations: Namely mean, standard deviation or least squares fit. In
the same vein, Graepel et al. [33] discussed how some machine learning algorithms
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that go beyond mere statistics’ computation can be approximated using polynomial
functions.

While all existing homomorphic signature designs rely on the use of either
polynomials [15] or lattices [9, 32], in this paper, we propose a new approach
that leverages the algebraic properties of eigenvectors to achieve homomorphism
in signatures. Within this new solution, a homomorphic signature is mapped to
a (2, 2)-matrix admitting a “predefined” eigenvalue with respect to some secret
vector ~u (~u defines the signing key). This mapping can be easily shown to be
homomorphic: The eigenvalue of the sum (product resp.) of two matrices is equal
to the sum (product resp.) of the eigenvalues of each matrix. More specifically,
our homomorphic signature encodes each component of the (2, 2)-matrix in the
exponent. Since such an encoding preserves the addition operation, this signature
is additively homomorphic. On the other hand, in order to support multiplication,
the proposed solution uses a leveled multilinear map. Thanks to this new design,
the signature verification is more efficient and the size of the signature is reduced
compared to [15].

Additionally, our solution also features an online/offline signing procedure. By
pre-computing “offline” signatures over a pre-defined random dataset, the actual
“online” signature operation becomes much cheaper.

The major contributions of this paper are:

• A new and original primitive for homomorphic signatures which combines
the use of eigenvectors with leveled multilinear maps to support multivariate
polynomials.

• The solution is provably secure under the multilinear Diffie-Hellman inver-
sion (MDHI) assumption [10]: Similarly to existing work, we first propose a
weakly sound solution that we later transform into an adaptively sound one.
Our transformation consists of replacing the message to be-signed with the
evaluation of a one-degree polynomial at a secret point.

• Because the signature is mapped to a matrix, the size of the weakly sound
signature is constant. Moreover, our adaptively sound solution results in sig-
natures whose size grows only linearly in the degree of the evaluated poly-
nomial.

• Similarly to previous work, our signature enables online/offline verification.
Additionally, it supports online/offline signing: Namely, our solution allows
the signer to pre-compute signatures of a random dataset (offline), and when-
ever the “to-be-signed” dataset is generated, the signer applies cheap trans-
formations over the pre-computed signatures.

The rest of the paper is organized as follows: Section 2 formalizes the defini-
tion and the security properties of a homomorphic signature. The main building
blocks of the proposed solution are presented in Section 3. Section 4 introduces
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a first version of our solution and proves its security using a weak unforgeability
experiment. This solution is further transformed in Section 5 to provide adaptive
security. Finally, Section 6 reviews related work.

2 Background

2.1 Multi-labeled Programs

We first recall the definition of labeled programs, which by tying program inputs to
predefined labels enable the construction of homomorphic signatures (cf. [9, 25]).

Definition 1. A labeled program P evaluating an n-variate function f : In → I, is
defined by a tuple (f, τ1, τ2, ..., τn), where τi ∈ {0, 1}∗ is the label associated with
the ith variable of function f (i.e. the ith input of program P).

Given labeled programs P1, ...,Pt and a function g : It → I, we define the
composed (labeled) program PC = g(P1, ...,Pt) as the evaluation of function g
on the outputs of programs P1, ...,Pt. In this case, the labeled inputs of program
PC correspond to the distinctly labeled inputs of programs P1, ...,Pt. Namely, the
inputs of P1, ...,Pt associated with the same label will form one single input for
the composed program PC .

If we denote Iτ the identity program associated with the canonical identity
function I and label τ ∈ {0, 1}∗, then any labeled program P = (f, τ1, τ2, ..., τn)
can be expressed as the composition of identity programs Iτ1 , ..., Iτn and function
f , i.e. P = f(Iτ1 , ..., Iτn).

Similarly to the work of [15], in this paper, we focus on multi-labeled pro-
grams which give way to the construction of efficiently verifiable homomorphic
signatures. In a nutshell, a multi-labeled program assigns labels not only to pro-
gram inputs, but also to the dataset to which these inputs belong (cf. Definition
2).

Definition 2. A multi-labeled program P∆ is defined by a pair of dataset identifier
∆ ∈ {0, 1}∗ and a labeled program P. As such, P∆ indicates that program P

operates on inputs from dataset ∆.
Also multi-labeled programs associated with the same dataset identifier sup-

port composition. Notably, given multi-labeled programs (P1,∆), ..., (Pt,∆) shar-
ing the same dataset identifier ∆, and a function g : It → I, we define the com-
posed multi-labeled program PC∆ = g ((P1,∆), ..., (Pt,∆)) by the pair (PC ,∆),
where PC is the composed program g(P1, ...,Pt).

Moreover, we define the multi-labeled identity program I(∆,τ) by the pair (Iτ ,∆).
Consequently, if P∆ = (P,∆), where P is the labeled program defined as (f, τ1, ..., τn),
then P∆ can be expressed as the composition of function f and the multi-labeled
identities I(∆,τ1), ..., I(∆,τn), i.e. P∆ = (f(Iτ1 , ..., Iτn),∆).
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2.2 Efficient Homomorphic Signatures for Multi-labeled Programs

According to the work of [15], a homomorphic signature for multi-labeled pro-
grams consists of the following algorithms:

• KeyGen(1κ,L)→ (SK,VK, param): It is a randomized algorithm that takes
as input a security parameter 1κ and the label space L, and outputs a secret
key SK, the matching public verification key VK, and a set of public parame-
ters param describing the set of admissible inputs I and the set of admissible
functions F.

• Sign(SK,∆, τ,m) → σ: On inputs of secret key SK, a dataset identifier
∆, a label τ ∈ L, and an input message m ∈ I, algorithm Sign outputs a
signature σ. By definition, signature σ authenticates m as the output of the
identity program (Iτ ,∆).

• Eval(VK, f, ~σ) → σ: On input of verification key VK, an n-variate func-
tion f : In → I, and a vector ~σ = (σ(1), ..., σ(n)) of n signatures, algo-
rithm Eval outputs a new signature σ. If each signature σ(i) authenticates
a message m(i) as the output of a multi-labeled program (Pi,∆), then by
definition, signature σ authenticates the output of the composed program
(f(P1, ...,Pn),∆).

• Verify(VK,P∆,m, σ) → b: It is a deterministic algorithm that takes as in-
puts public verification key VK, a multi-labeled program P∆ = (P,∆), a
message m ∈ I, and a signature σ. It accordingly verifies using signature
σ, whether m is the output of program P when executed on previously au-
thenticated labeled messages belonging to dataset ∆; and it outputs b = 1,
if it decides that m was computed as the output of program P, and b = 0
otherwise.

To be deemed secure, a homomorphic signature should ensure the properties
of correctness and soundness.

2.2.1 Correctness

Correctness in homomorphic signatures is captured through two requirements. The
first is authentication correctness which ensures that the output of a correct execu-
tion of algorithm Sign is always accepted by algorithm Verify. The second require-
ment is evaluation correctness which assures that algorithm Eval always yields
outputs that are accepted by algorithm Verify.

Definition 3. A homomorphic signature provides authentication correctness iff,
for any tuple of keys and public parameters (SK,VK, param) ← KeyGen(1κ,L)
and any signature σ ← Sign(SK,∆, τ,m):

Pr[Verify(VK, I(∆,τ),m, σ)→ 1] = 1
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Definition 4. A homomorphic signature ensures evaluation correctness iff, for any
tuple of keys and public parameters (SK,VK, param)← KeyGen(1κ,L), and any
set of tuples {((Pi,∆),m(i), σ(i))}ni=1 such that Verify(VK, (Pi,∆),m(i), σ(i))→
1 (i.e. m(i) is the output of labeled program Pi when executed on inputs from ∆),
if we denote m the output of the composed program PC∆ = (f(P1, ...,Pn),∆) (i.e.
m = f(m(1), ...,m(n))) and ~σ the vector (σ(1), ..., σ(n)), then we get the following
equality:

Pr[Verify(VK,PC∆,m, σ)→ 1 | Eval(VK, f, ~σ)→ σ] = 1

2.2.2 Soundness

We say that a homomorphic scheme is sound, if the only way to make algorithm
Verify accept a tuple (P∆,m, σ) comprising a mutli-labeled program P∆ evalu-
ating an n-variate function f on dataset ∆, a message m and a signature σ (i.e.
Verify(VK,P∆,m, σ)→ 1), is by computing m as the outcome of an execution of
program P∆ on some inputs m(1), ...,m(n) belonging to dataset ∆, and having σ
equal the output of Eval when called with function f and vector ~σ = (σ(1), ..., σ(n))
composed of the signatures authenticating messages m(i).

In accordance with previous work on homomorphic signatures [15], we for-
malize soundness by way of an unforgeability experiment. During this experiment,
an adversary A is allowed not only to run algorithms Verify and Eval, but also to
access the output of algorithms KeyGen and Sign through the following oracles:

• OKeyGen: When queried with a security parameter 1κ and a label space L,
this oracle generates a set of public parameters param, a secret key SK and
the corresponding verification key VK; and returns the pair (VK, param).

• OSign: When called with a verification key VK, a dataset identifier ∆ ∈
{0, 1}∗, a label τ ∈ L and a message m, oracle OSign retrieves the se-
cret key SK matching verification key VK, executes algorithm Sign on input
(SK,∆, τ,m), and finally outputs the resulting signature σ.

As depicted in Algorithm 1, adversary A enters the unforgeability experiment
by querying the oracle OKeyGen with security parameter 1κ and label space L. In
turn, OKeyGen outputs a verification key VK and a set of public parameters param
that will be used throughout the experiment. Later, adversary A adaptively picks s
dataset identifiers ∆i. For each dataset identifier ∆i, adversary A submits t adaptive
queries to oracle OSign: Namely, adversary A, selects t pairs of label and message
(τ(i,j),m

(i,j)) such that for all l 6= j, τ(i,j) 6= τ(i,l). Notice that in this manner, we
take into account the fact that adversary A can only submit one signature query per
pair of dataset identifier ∆ and label τ .

Eventually, adversary A produces a challenge tuple of multi-labeled program
P∆ = (P,∆), message m and signature σ. To conclude the experiment, algorithm
Verify is called with the challenge tuple (P∆,m, σ).
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Algorithm 1: The unforgeability experiment of homomorphic signatures

(VK, param)← OKeyGen(1κ,L);
# A can do the following in any interleaved order
# A picks up to s dataset identifiers

A → ∆i;
# For each dataset ∆i, A queries OSign up to t times

A → (τ(i,j),m
(i,j)); # if l 6= j, then τ(i,j) 6= τ(i,l)

σ(i,j) ← OSign(VK,∆i, τ(i,j),m
(i,j));

# A outputs the tuple on which it is going to be challenged
A → (P∆,m, σ); # P∆ = (P,∆)
b← Verify(VK,P∆,m, σ);

Without loss of generality, we denote b the output of this execution of algorithm
Verify, and we assume that program P evaluates an n-variate function f and is
associated with labels (τ1, ..., τn).

Consequently, we say that adversary A succeeds in breaking the unforgeability
experiment, iff b = 1 and one of the following conditions holds:

• Adversary A never submitted a query involving dataset identifier ∆ to oracle
OSign. In this case, we say that the tuple (P∆,m, σ) returned by adversary A
is a forgery of Type I.

• Adversary A submitted signature queries to oracle OSign for dataset identifier
∆ and pairs (τl,m

(l)), 1 ≤ l ≤ n, that is: ∆ = ∆i for some i ∈ {1, ..., s},
and {(τl,m(l))}nl=1 ⊂ {(τ(i,j),m

(i,j)}tj=1. Yet, m is not the correct output
of the labeled program P when executed on messages {m(l)}nl=1, i.e. m 6=
f(m(1), ...,m(n)). In such a case, we say that adversary A provides a forgery
of Type II.

• Adversary A submitted signature queries to oracle OSign for dataset identi-
fier ∆, namely: ∆ = ∆i for some i ∈ {1, ..., s}, however, {τ1, ..., τn} 6⊂
{τ(i,1), ..., τ(i,t)}. This case corresponds to a forgery of Type III.

Definition 5. Let ΠA
(s,t) denote the probability that adversary A succeeds in the

unforgeability experiment.
A homomorphic signature scheme is (s, t)-sound iff, ΠA

(s,t) ≤ ε(κ), where 1κ

is the security parameter and ε is a negligible function.

2.2.3 Efficiency

In addition to the classical security properties of correctness and soundness, a ho-
momorphic signature should be efficient as well. Namely, in accordance with pre-
vious work [15, 32], a homomorphic signature should be succinct and support
efficient verification.
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Succinctness Succinctness entails that the size of the signature of a program should
not depend on the number of inputs to that program. More precisely, we con-
sider a homomorphic signature succinct if, for a fixed security parameter 1κ,
the output size of algorithm Eval for any function f does not depend on the
size of the inputs of f .

Efficient Verification This property can be implemented by dividing the verifica-
tion algorithm into two phases. An offline phase, during which the verifier
is provided with verification key VK and a labeled program P so as to com-
pute a concise verification key VKP. The computed key is then used in an
online phase, to verify signatures involving program P and any dataset ∆
efficiently. In the context of this paper, “efficiently” means that the cost of
verifying signatures is much less than computing program P, and that con-
cise verification key VKP is reused indefinitely. This implies that the cost of
computing the concise key VKP is amortized over the unlimited number of
verifications that one can carry out for program P on different datasets.

Formally, efficient verification is achieved by dividing the algorithm Verify into
two sub-algorithms:

• OffVerify(VK,P) → VKP: This algorithm takes as inputs a verification key
VK and a description of labeled program P, and computes a concise verifica-
tion key VKP which will be used later to verify signatures related to program
P.

• OnVerify(VKP,∆,m, σ)→ b: It is a deterministic algorithm, which given a
concise verification key VKP, a dataset identifier ∆, a message m ∈ I and a
signature σ, outputs a bit b ∈ {0, 1} such that: b = 1, if algorithm OnVerify
decides that m is the correct output of multi-labeled program (P,∆). If not,
then b = 0.

3 Preliminaries

The starting point of our proposal is the fact that if a vector ~u is an eigenvector
of a matrix M , then there exists a scalar λ such that M~u = λ~u. In light of this
equality, we can easily show that for any pair of matrices M (1),M (2) admitting
vector ~u as an eigenvector and having λ1 and λ2 as the corresponding eigenvalues,
the following equalities hold:

• (M (1) +M (2))~u = (λ1 + λ2)~u, meaning that (λ1 + λ2) is the eigenvalue of
matrix (M (1) +M (2)) associated with eigenvector ~u;

• similarly, M (1)M (2)~u = M (2)M (1)~u = (λ1λ2)~u, which entails that λ1λ2 is
the eigenvalue of matrices M (1)M (2) and M (2)M (1), associated with eigen-
vector ~u;
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On account of these two observations, we map the homomorphic signature of a
pair of message m and label τ to a matrix M such that:

M =

[
m γ
0 λ

]
where λ is computed as function of τ , and γ is generated in such a way that λ is
the eigenvalue of matrix M associated with a secret vector ~u = (x, y)ᵀ.

Therefore, the homomorphic signature of m(1) + m(2) is mapped to matrix
M (1) + M (2), and the verification of such a signature consists of checking that
λ1 + λ2 is the eigenvalue of matrix M (1) + M (2) associated with eigenvector ~u.
Along the same lines, the homomorphic signature ofm(1)m(2) is mapped to matrix
M (1)M (2), and the verification of this signature is performed by verifying whether
λ1λ2 is the eigenvalue of matrix M (1)M (2) associated with vector ~u. More pre-
cisely, we define the homomorphic signature of a pair (m, τ) as a tuple (m,Λ1,Γ1),
where Λ1 = gλ1 and Γ1 = gγ1 . It follows that the signature of m(1) + m(2) is
straightforward and defined as:

(m(1) +m(2),Λ
(1)
1 Λ

(2)
1 ,Γ

(1)
1 Γ

(2)
1 )

whereas the signature of m(1)m(2) involves a a leveled multilinear map e and cor-
responds to:

(m(1)m(2), e(Λ
(1)
1 ,Λ

(2)
1 ), e(gm

(1)

1 ,Γ
(2)
1 )e(Γ

(1)
1 ,Λ

(2)
1 ))

We note that this homomorphic signature is weakly sound against Type II forg-
eries. Namely, it is secure against adversaries that issue their signature queries
before receiving the public verification key (cf. Section 4.3). In order to make this
signature adaptively sound against Type II forgeries, the signer is required to do
the following whenever she wants to sign a pair (m, τ): (i) Generate a random
number θ1 and evaluate polynomial T (z) = θ1z + m at a secret point α; (ii) sign
(T (α), τ) using the weakly secure signature to get the tuple (T (α),Λ1,Γ1); (iii) set
the homomorphic signature of (m, τ) to ([m, θ1],Λ1,Γ1).

Finally, the signer thwarts Type I forgeries by signing dataset identifiers us-
ing a digital signature, while she counters Type III forgeries by using aggregate
signatures to authenticate input labels.

Before moving on to the description of our signature, we first provide a short
overview on multilinear maps and aggregate signatures.

3.1 Leveled Multilinear Maps

Definition 6. Let G1, G2, ..., and Gd be d groups of large prime order p, gener-
ated on input of a security parameter 1κ (p > 2κ) and d. Let Pi be a canonical
generator of group Gi.

8



A d-leveled multilinear map is a set of bilinear maps ei,j : Gi × Gj → Gi+j

whereby i ≥ 1, j ≥ 1 and i+ j ≤ d, with the following property:

∀α, β ∈ Fp, ei,j(Pαi , P
β
j ) = Pαβi+j

For the sake of better readability, we omit the indices i and j from ei,j . We also
assume that all generators Pi are computed from P1 using bilinear maps repeatedly:
Pi = e(P1, Pi−1).

We hereby state the assumption on which the security of our solution relies.

Definition 7 (MDH Inversion Assumption [10]). Let G1, G2, ...,Gd+1 be d + 1
groups of large prime order p, generated on input of a security parameter 1κ (p >
2κ) and d.

Let P1 be a canonical generator of group G1, e a (d + 1)-leveled multilinear
map, and ∀1 ≤ i ≤ d, Pi+1 = e(P1, Pi).

We say that multilinear Diffie-Hellman inversion (MDHI) assumption holds, if
given (P1, P

α
1 ) ∈ G1 × G1, where α ∈ F∗p, the probability of finding Pα

−1

d+1 is
negligible, that is:

Pr[A → Pα
−1

d+1 |(P1, P
α
1 )] ≤ ε(κ)

where ε is a negligible function.

Security of Multilinear Maps Boneh and Silverberg [10] were the first to illus-
trate the great interest of multilinear maps as a cryptographic tool. Namely, they
showed that in case a secure multilinear map exists, then as a by-product one can
easily implement one-round multipartite Diffie-Hellman key exchange and efficient
broadcast encryptions. This result led to a few attempts to design secure multilinear
maps, with the first plausible construction being proposed by [23]. This construc-
tion is a leveled multilinear map that uses ideal lattices. More precisely, it works in
the polynomial ring R = Z[X]/(Xn + 1) and yields noisy encodings for the ele-
ments in a quotient ring R/I where I is a principal ideal. This means that contrary
to bilinear pairings where an encoding of an element a ∈ Zp is deterministic and
corresponds to ga, the encoding of an element A ∈ R/I in this scheme is random-
ized with a small noise. This noise is added using subset sum of encodings of 0 and
is chosen in such a way that does not deter the computation of the multilinear map.
Given the randomized nature of the encoding, the solution of [23] comes with a
zero test parameter that allows verifying whether two encodings refer to the same
element in R/I or not.

Capitalizing on the same ideas, Coron et al. [18] proposed a leveled multilinear
map that has as a setting the ring of integers instead of the ring of polynomials.
By working in the ring of integers, this scheme promises better performance and
simpler instantiation. Also, Gentry et al. [31] proposed a construction of Graph-
induced multilinear maps from standard lattices in which the authorized operations
on the encodings are restricted using a directed acyclic graph.
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Unfortunately, all these schemes are prone to zeroizing attacks [17, 20, 35], in
which the attacker exploits the (public) parameters such as the zero test parameter
and encodings of zeros to either break multilinear Diffie-Hellman assumption in
the case of [23] and [31], or recover the secret parameters and hence fully break
the multilinear map in the case of [18] and the follow-up fix [20].

Luckily, Albrecht et al. [1] proposed a multilinear map based on indistinguisha-
bility obfuscation (iO) and proved its security using standard assumptions. With
this positive result, the work of Albrecht et al. [1] paved the way for a new line
of research that envisages designing multilinear maps from iO schemes. Never-
theless, existing iO candidates themselves rely on leveled multilinear maps, which
raises the legitimate question of how much trust can be placed in these construc-
tions. This question was discussed in [19] in which the authors show that when
iO is based on the Barrington’s theorem or dual-input straddling sets, zeroizing at-
tacks seem not to be applicable [19]. However, in a more recent work, Miles et al.
[38] introduce a new class of attacks termed “annihilation attacks” and demonstrate
how these attacks can be leveraged to break some of the proposed iO schemes. On
the upside, they proved that the iO candidate presented in [24] withstands their at-
tacks; yet as rightly pointed out by the authors, further cryptanalysis is needed to
establish whether [24] is actually secure and cannot be broken in the future.

In view of the foregoing discussion, it can be concluded that the design of
multilinear maps is still in its infancy, and the most promising avenue to implement
our homomorphic signature is the constructions based on iO, notably the work of
[1].

3.2 Aggregate Signatures

We provide herein a quick overview of a simplified variant of the aggregate sig-
nature proposed in [11]. Similarly to the signature of [11], this simplified variant
comprises four algorithms:

KeyGenAgg(1κ)→ (SKAgg,PKAgg, paramAgg) On input of a security parameter
1κ, algorithm KeyGenAgg proceeds as follows:

• It picks two groups G and GT of a large prime order p that admit a
bilinear pairing ê : G×G→ GT .

• It selects a secret key SKAgg ∈ F∗p, chooses a random generator P of
group G, and sets public key PKAgg to P SKAgg .

• It selects a cryptographic hash function H : {0, 1}∗ → G and defines
paramAgg as (p,H,G,GT , ê, P ).

SignAgg(SKAgg, µ)→ Ψ Given a message µ ∈ {0, 1}∗, algorithm SignAgg outputs
a signature Ψ = H(µ)SKAgg .

AggregateAgg(~Ψ)→ Ψ Given a vector of n signatures ~Ψ = (Ψ(1), ...,Ψ(n)), al-
gorithm AggregateAgg outputs aggregate signature Ψ =

∏n
i=1 Ψ(i).
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VerifyAgg(PKAgg, ~µ,Ψ)→ b ∈ {0, 1} When provided with public key PKAgg, a
vector of messages ~µ = (µ(1), ..., µ(n)), and an aggregate signature Ψ, VerifyAgg
checks whether the following equality holds:

ê(Ψ, P ) = ê(
n∏
i=1

H(µ(i)),PKAgg)

If so, then VerifyAgg accepts the aggregate signature and accordingly outputs
b = 1; otherwise, it rejects the signature and outputs b = 0.

Using a similar argument to [11]’s, one can easily show that this variant of aggre-
gate signatures is adaptively secure in the random oracle model, under the co-CDH
assumption in G.

4 A Weakly Secure Homomorphic Signature

The homomorphic signature we propose in this paper is suitable for programs that
evaluate multivariate polynomials over a finite field Fp. Such programs can be ex-
pressed using arithmetic circuits. An arithmetic circuit is composed of addition and
multiplication gates, such that each addition (multiplication resp.) gate takes two
inputs and returns the sum (the product resp.) of these two inputs. Furthermore, we
recall that arithmetic circuits have a measure called degree that is assigned to the
inputs/outputs of their gates. Namely, constants in the circuit are assigned a degree
0, whereas initial inputs of the circuits has a degree 1. Moreover, the degree of an
addition gate (resp. multiplication gate) is defined as the maximum of the degree
of its inputs (resp. the sum of the degree of its inputs). Accordingly, the degree of
an arithmetic circuit is defined as the degree of the output gate of the circuit. This
entails that the degree of an arithmetic circuit evaluating a d-degree polynomial is
d.

4.1 Description

In this section, we provide the detailed description of the algorithms underlying
our weakly secure homomorphic signature.

KeyGen(1κ, d,L)→ (SK,VK, param) Given a security parameter 1κ, an upper-
bound d of the degree of circuits supported by the signature, and a set of
admissible labels L = {τ1, ..., τN}1 in {0, 1}∗, algorithm KeyGen proceeds
as follows:

• It selects (d + 1)-leveled linear groups G1, ..., Gd+1 of prime order p.
We denote elements lying in group Gi with capital letters and subscript
i. Moreover, for any element P1 ∈ G1, we denote by Pi the element

1Since |L| = N , the size of datasets supported by our signature cannot exceed N .
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e(P1, Pi−1) ∈ Gi, 2 ≤ i ≤ d + 1, and namely, for all i, j ≥ 1 and
i+ j ≤ d+ 1, we let e(Pi, Pj) = Pi+j .

• It selects a random key K ∈ F∗p and a keyed hash function F : F∗p ×
{0, 1}∗ × {0, 1}∗ → F∗p.
• It picks a random generator P1 in G1, generates N random numbers
λi = F (K, τi, 0), 1 ≤ i ≤ N and computes Λ

(τi)
1 = P λi1 .

• It selects a pair of secret and public keys (SKDig,PKDig) for a digital
signature ΣDig.

• It selects two groups G and GT of the same prime order p that admit a
bilinear pairing ê : G × G → GT . Then it picks a random generator
P of G and a cryptographic hash function H : {0, 1}∗ → G. This
generator and cryptographic hash function will be used to implement
an aggregate signature ΣAgg as depicted in Section 3.2.

• Finally, it outputs the following:

SK = (F,K, SKDig)

VK = (PKDig, {Λ
(τi)
1 }

N
i=1)

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P )

Note that public parameters param implicitly specify the set of admis-
sible inputs I and the set of admissible functions F, which are respec-
tively the finite field Fp and the set of n-variate functions (n ≤ N) that
can be implemented using circuits of degree k ≤ d.

Sign(SK,∆, τ,m)→ σ In a nutshell, algorithm Sign computes three types of sig-
natures: A digital signature ΣDig to counter Type I forgery, an aggregate
signature ΣAgg to circumvent Type III forgery, and finally, a homomor-
phic signature ΣHom to preclude Type II forgery. Indeed, given secret key
SK = (F,K, SKDig), dataset identifier ∆, a label τ ∈ L, and a message
m ∈ Fp, algorithm Sign runs four subroutines:

• ∆KeyGen(F,K,∆): Given keyed hash function F , secret key K, and
dataset identifier ∆, ∆KeyGen proceeds as follows:

– It generates a secret key SKAgg ∈ F∗p for aggregate signature ΣAgg

by computing F (K,∆, 1). Once secret key SKAgg is produced,
∆KeyGen computes the corresponding public key PKAgg = P SKAgg .

– It computes F (K,∆, 2) and F (K,∆, 3) to generate the secret key
SKHom = (x, y) ∈ F∗p × F∗p for a homomorphic signature ΣHom.
After the generation of this secret key, ∆KeyGen computes X1 =
P1

x and Y1 = P1
y and defines the public key of homomorphic

signature ΣHom as PKHom = (X1, Y1).

12



• ΣDig(SKDig,∆,PKAgg,PKHom): On inputs of secret key SKDig, dataset
identifier ∆, public key PKAgg, and public key PKHom, this subroutine
computes a digital signature Ω of tuple (∆,PKAgg,PKHom).

• ΣAgg(F,K, SKAgg, τ): This subroutine uses secret key SKAgg to com-
pute signature Ψ = H(Λ1)SKAgg ∈ G, for Λ1 = P λ1 where λ =
F (K, τ, 0).

• ΣHom(SKHom,Λ1,m): Given SKHom = (x, y), this subroutine com-
putes

Γ1 =

(
Λ1

P1
m

)xy−1

and finally, defines the homomorphic signature of tuple (m, τ,∆) as
Υ = (m,Λ1,Γ1).

Remark 1. Assume that Λ1 = P1
λ and Γ1 = P1

γ , for (λ, γ) ∈ F∗p × Fp.

Since Γ1 =
(

Λ1
P1
m

)xy−1

, we can easily show that λ is an eigenvalue of matrix

M =

[
m γ
0 λ

]
associated with vector ~u = (x, y)ᵀ, that is:

M~u = λ~u

This remark comes in handy when we prove evaluation correctness in the
following section.

Algorithm Sign terminates by outputting a signature σ = (param∆,Ω,Ψ,Υ),
where

param∆ = (∆,PKAgg,PKHom)

Eval(VK, f, ~σ)→ σ On inputs of public verification key VK, an n-variate function
f , and a vector ~σ of n homomorphic signatures σ(l) = (param∆,Ω,Ψ

(l),Υ(l))
whereby each signature σ(l) authenticates a message m(l) for all 1 ≤ l ≤ n,
algorithm Eval computes signature σ = (param∆,Ω,Ψ,Υ) in two steps:

Computation of homomorphic signature Υ: Eval computes Υ by evalu-
ating the arithmetic circuit Cf of function f on input (Υ(1), ...,Υ(n)). This
evaluation of circuit Cf is achieved by running the following subroutines:

• GateEval+(Υ(1),Υ(2))2: Without loss of generality, we assume that
Υ(1) = (m(1),Λ

(1)
i ,Γ

(1)
i ) ∈ Fp × G2

i and Υ(2) = (m(2),Λ
(2)
i ,Γ

(2)
i ) ∈

2For ease of exposition, we abuse the notations here and we denote by Υ(1) and Υ(2) the inputs
of GateEval+,×,c.
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Fp × G2
i . In other words, we assume that Υ(1) and Υ(2) are inputs to

GateEval+ of the same degree i 3.
Algorithm Eval invokes GateEval+ when it encounters an addition gate.
Therefore, given (Υ(1),Υ(2)), GateEval+ computes m = m(1) +m(2)

and

Λi = Λ
(1)
i Λ

(2)
i ; Γi = Γ

(1)
i Γ

(2)
i

At the end of its execution, GateEval+ outputs Υ = (m,Λi,Γi).

• GateEvalc(Υ
(1), c): Algorithm Eval calls GateEvalc when it wants to

evaluate a gate for multiplication by a constant. On inputs of a homo-
morphic signature Υ(1) = (m(1),Λ

(1)
i ,Γ

(1)
i ) ∈ Fp×G2

i and a constant
c, GateEvalc computes m = cm(1) and

Λi = (Λ
(1)
i )c ; Γi = (Γ

(1)
i )c

Later, GateEvalc returns Υ = (m,Λi,Γi).

• GateEval×(Υ(1),Υ(2)): Here we assume that Υ(1) = (m(1),Λ
(1)
i ,Γ

(1)
i ) ∈

Fp × G2
i and Υ(2) = (m(2),Λ

(2)
j ,Γ

(2)
j ) ∈ Fp × G2

j . This means that
Υ(1) and Υ(2) are inputs of degree i and j respectively to GateEval×.
Algorithm Eval executes GateEval× when it wants to evaluate a mul-
tiplication gate. Hence, given (Υ(1),Υ(2)), GateEval× computes m =
m(1)m(2) and

Λi+j = e(Λ
(1)
i ,Λ

(2)
j )

Γi+j = e(Pi
m(1)

,Γ
(2)
j )e(Γ

(1)
i ,Λ

(2)
j )

GateEval× then outputs Υ = (m,Λi+j ,Γi+j).

Computation of aggregate signature Ψ: Algorithm Eval computes the ag-
gregate signature Ψ corresponding to function f by evaluating a modified
circuit C̃f on inputs of aggregate signatures (Ψ(1), ....,Ψ(n)). The modified
circuit C̃f is generated from circuit Cf as follows:

• Each multiplication and addition gate in circuit Cf is transformed into
a multiplication operation in G in circuit C̃f ;

• a multiplication by a constant in circuit Cf is omitted in circuit C̃f .

3Note that Υ(1) and Υ(2) could be inputs of different degrees i and j respectively, that is, Υ(1) =

(m(1),Λ
(1)
i ,Γ

(1)
i ) ∈ Fp × G2

i and Υ(2) = (m(2),Λ
(2)
j ,Γ

(2)
j ) ∈ Fp × G2

j respectively. Still, if

we assume that j < i, we can transform Υ(2) into an input of degree i by computing Λ
(2)
i =

e(Λ
(2)
j , Pi−j) and Γ

(2)
i = e(Γ

(2)
j , Pi−j).
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Algorithm Eval concludes its work by outputting

σ = (param∆,Ω,Ψ,Υ)

OffVerify(VK,P)→ VKP This algorithm takes as inputs verification key VK =
(PKDig,

{Λ(τ1)
1 , ...,Λ

(τN )
1 }) and labeled program P = (f, τ1, ..., τn). Here we assume

that function f is implemented as a circuit Cf of degree k.

Algorithm OffVerify first evaluates the arithmetic circuit Cf on tuple (Λ
(τ1)
1 , ...,Λ

(τn)
1 ).

More precisely, OffVerify transforms Cf into a circuit C̄f that operates on el-
ements from Gi, 1 ≤ i ≤ d+ 1, as follows:

• Addition gates of degree i in circuit Cf are replaced by multiplications
in Gi in circuit C̄f ;

• gates of degree i for multiplication by a constant in circuit Cf are trans-
formed in circuit C̄f into exponentiations in Gi by the same constants;

• finally, multiplication gates with inputs of degree i and degree j in cir-
cuit Cf are expressed in circuit C̄f as bilinear maps between elements
lying in Gi and Gj .

In the rest of the paper, we denote by f(Λ
(τ1)
1 , ...,Λ

(τn)
1 ) the output of circuit

C̄f when evaluated on tuple (Λ
(τ1)
1 , ...,Λ

(τn)
1 ).

Next, algorithm OffVerify evaluates the modified circuit C̃f (cf. Algorithm
Eval) on inputs (H(Λ

(τ1)
1 ), ...,H(Λ

(τn)
1 )) ∈ Gn. This yield an aggregated

hash HP.

At the end of its execution, algorithm OffVerify outputs concise verification
key

VKP = (PKDig, HP, f(Λ
(τ1)
1 , ...,Λ

(τn)
1 ))

OnVerify(VKP,∆,m, σ)→ b On input of concise verification key VKP, dataset
identifier ∆, message m ∈ Fp, and signature σ = (param∆,Ω,Ψ,Υ),
OnVerify proceeds as follows:

• It parses VKP as (PKDig, HP, f(Λ(τ1), ...,Λ(τn))), homomorphic signa-
ture σ as (param∆,Ω,Ψ,Υ), and dataset parameters param∆ as (∆,PKAgg,PKHom).

• Using public key PKDig, algorithm OnVerify checks whether Ω is a
valid signature of message param∆. If not, then OnVerify returns b =
0.

• Otherwise, given public key PKAgg, algorithm OnVerify checks whether
the following equality holds:

ê(HP,PKAgg) = ê(Ψ, P ) (1)
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If the above equality is not satisfied, then OnVerify returns b = 0.
Otherwise, it moves on to the next step.

• Since program P is implemented as a circuit of degree k, algorithm
OnVerify parses homomorphic signature Υ as a tuple (m,Λk,Γk) ∈
Fp × G2

k, and given public key PKHom = (X1, Y1) ∈ G2
1, it verifies

whether the following equalities are true:

Λk = f(Λ
(τ1)
1 , ...,Λ

(τn)
1 ) (2)

e(X1,Λk) = e(X1, Pk)
me(Y1,Γk) (3)

If both equalities hold, then OnVerify outputs b = 1; otherwise it out-
puts b = 0.

4.2 Correctness

In this section, we demonstrate that our solution satisfies the properties of authen-
tication correctness and evaluation correctness.

Theorem 1. The homomorphic signature described above ensures authentication
and evaluation correctness.

Sketch. Since authentication correctness directly follows from the description of
the signature, we only focus here on showing evaluation correctness.

Let ~σ = (σ(1), ..., σ(n)) be a vector of n homomorphic signatures, such that
each signature σ(l) successfully authenticates a message m(l) ∈ Fp as the output of
some multi-labeled program (Pl,∆), 1 ≤ l ≤ n.

For ease of exposition, we assume that Pl = (fl, τ1, ..., τn) for all 1 ≤ l ≤ n.
That is, each Pl evaluates an n-variate function fl and is associated with n labels
(τ1, ..., τn). We also assume that function fl is a circuit Cfl of degree k, and we let:

σ(l) = (param∆,Ω,Ψ
(l),Υ(l))

Υ(l) = (m(l),Λ
(l)
k ,Γ

(l)
k ) ∈ Fp ×G2

k

Since σ(l) successfully authenticates message m(l), we conclude the following:

• Ω is a valid digital signature of param∆.

• Ψ(l) is a valid aggregate signature for program Pl, and thereby verifies the
equation ê(HPl ,PKAgg) = ê(Ψ(l), P ), where HPl is the aggregate hash of
program Pl (cf. Algorithm OnVerify, Section 4.1).

• Finally, Υ(l) is a correct homomorphic signature, namely:

Λ
(l)
k = fl(Λ

(τ1)
1 , ...,Λ

(τn)
1 )

e(X1,Λk) = e(X1, Pk)
m(l)

e(Y1,Γk)
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We demonstrate now that if algorithm Eval is executed correctly on inputs
(VK, f, ~σ), then the output σ = (param∆,Ω,Ψ,Υ) returned by algorithm Eval
is going to be accepted by algorithm Verify (i.e. the combination of algorithms
OnVerify and OffVerify).

Correctness of digital signature Ω: Since algorithm Eval does not change sig-
nature Ω, the latter will always verify as a valid signature for the tuple param∆ =
(∆,PKAgg,PKHom).

Correctness of aggregate signature Ψ: We remind the reader that aggregate
signature Ψ is obtained by evaluating a modified circuit C̃f on input (Ψ(1), ...,Ψ(n)).

Since for all 1 ≤ l ≤ n, Ψ(l) is a valid aggregate signature for program Pl, we
know that Ψ(l) = H

SKAgg

Pl
, which entails:

Ψ = C̃f (Ψ(1), ...,Ψ(n)) = C̃f (H
SKAgg

P1
, ...,H

SKAgg

Pn
)

Moreover, since circuit C̃f comprises only multiplication operations, it satisfies
the following:

C̃f (H
SKAgg

P1
, ...,H

SKAgg

Pn
) = C̃f (HP1 , ...,HPn)SKAgg

and hence: Ψ = C̃f (HP1 , ...,HPn)SKAgg = H
SKAgg

P , where HP is the aggregate
hash of multi-labeled program (P,∆) defined as the composition of function f
and programs (Pl,∆), 1 ≤ l ≤ n.

From the preceding equation, we deduce that Equality 1 always holds for the
aggregate signature Ψ returned by algorithm Eval.

Correctness of homomorphic signature Υ: We prove here that the output
Υ of GateEval+,c,× always verifies Equations 2 and 3. We only show here the
correctness of GateEval×. A similar argument can be used to prove the correctness
of GateEval+ and GateEvalc.

Let Υ(1) = (m(1),Λ
(1)
i ,Γ

(1)
i ) ∈ Fp × G2

i and Υ(2) = (m(2),Λ
(2)
j ,Γ

(2)
j ) ∈

Fp ×G2
j .

Our goal is to show that the output Υ = (m,Λi+j ,Γi+j) of GateEval× satis-
fies Equations 2 and 3. Accordingly, we remind the reader that: m = m(1)m(2),
Λi+j = e(Λi,Λj), and Γi+j = e(Pi

m(1)
,Γ

(2)
j )e(Γ

(1)
i ,Λ

(2)
j ).

Correctness of Λi+j . GateEval× computes Λi+j as a bilinear map e(Λ(1)
i ,Λ

(2)
j ),

which matches the evaluation of a multiplication gate in the modified circuit C̄f (cf.
Algorithm OffVerify, Section 4.1). Hence, if we assume that Λ

(1)
i and Λ

(2)
j satisfy

Equation 2, then Λi+j will also satisfy that equation.
Correctness of Γi+j . Assume that Γ

(1)
i = Pi

γ1 , Γ
(2)
j = Pj

γ2 , Λ
(1)
i = Pi

λ1 , and

Λ
(2)
j = Pj

λ2 , for γ1, γ2, λ1, λ2 ∈ Fp.
If we assume that Υ(l), l ∈ {1, 2}, verifies Equation 3, then λl is an eigenvalue

of matrix Ml associated with eigenvector ~u = (x, y)ᵀ (cf. Remark 1), where

Ml =

[
m(l) γl

0 λl

]
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Algorithm 2: The weak unforgeability experiment of homomorphic signa-
tures

param← OKeyGen(1κ,L);
# A picks up to s dataset identifiers

A → ∆i;
# For each dataset ∆i, A generates t signature queries

A → (τ(i,j),m
(i,j)); # if l 6= j, then τ(i,j) 6= τ(i,l)

# OKeyGen returns the verification key
VK← OKeyGen(1κ,L);

# OSign generates the signatures for A’s queries
σ(i,j) ← OSign(VK,∆i, τ(i,j),m

(i,j));
# A outputs the tuple on which it is going to be challenged

A → (P∆,m, σ); # P∆ = (P,∆)
b← Verify(VK,P∆,m, σ);

and consequently, λ1λ2 is also an eigenvalue of matrix

M = M1M2 =

[
m(1)m(2) m(1)γ2 + γ1λ2

0 λ1λ2

]
and it is associated with vector ~u = (x, y)ᵀ. This implies that M~u = λ1λ2~u.
Namely, we have x(m(1)m(2)) + y(m(1)γ2 + γ1λ2) = x(λ1λ2), and Equality 3
ensues as a result.

4.3 Soundness

We first define our experiment of weak unforgeability in Algorithm 2.
The difference between this experiment and the experiment depicted in Algo-

rithm 1 is that adversary A receives the verification key VK after submitting its
signature queries 〈∆i, τ(i,j),m

(i,j)〉.
We say that adversary A breaks the weak unforgeability experiment if it pro-

vides a successful forgery of either Type I, Type II, or Type III (cf. Section 2.2.2).
Similarly to Definition 5, we say that a homomorphic scheme is (s, t)-weakly

sound iff, the probability that adversary A succeeds in breaking the weak unforge-
ability experiment is negligible.

Theorem 2. If the digital signature ΣDig and the aggregate signature ΣAgg are
secure, then the homomorphic signature introduced in Section 4.1 is (s, t)-weakly
sound under the MDHI assumption.

Proof. Assume there is an adversary A that breaks the (s, t)-weak soundness of
our homomorphic signature with a non-negligible advantage εA . In the following,
we demonstrate that given the security of digital signature ΣDig and aggregate sig-
nature ΣAgg, there exists another adversary B that breaks the MDHI assumption,
with a non-negligible advantage εA/s.
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Indeed, to break the soundness of our scheme, adversary A might output either
a forgery of Type I, a forgery of Type II or finally a forgery of Type III.

If digital signature ΣDig is secure, then it is infeasible for adversary A to suc-
cessfully provide a valid Type I forgery. Similarly, the security of aggregate sig-
nature ΣAgg assures that it is infeasible for adversary A to output a valid Type
III forgery. These two facts entail that A breaks the (s, t)-weak soundness of our
signature by providing a Type II forgery.

Below, we show how adversary B exploits the Type II forgery returned by
adversary A to break the MDHI assumption:

First B queries the oracle OMDHI with security parameter 1κ and a degree d+ 1
of multilinear map e. Upon query, oracle OMDHI returns the description of d + 1
multilinear groups G1, ...,Gd+1 of prime order p, a leveled multilinear map e :
Gi ×Gj → Gi+j , i, j ≥ 1 and i+ j ≤ d+ 1, and a pair (P1, P1

α) ∈ G2
1 for some

randomly chosen α ∈ F∗p.
We recall that the goal of B is to output (Pd+1)α

−1 ∈ Gd+1. To this effect,
B simulates the weak unforgeability experiment depicted in Algorithm 2 as shown
below:

• B simulates oracle OKeyGen and publishes the public parameters

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P )

• A submits st signature queries 〈∆i, τ(i,j),m
(i,j)〉, 1 ≤ i ≤ s, 1 ≤ j ≤ t,

such that ∆i ∈ {0, 1}∗, τ(i,j) ∈ {τ1, ..., τN}, τ(i,j) 6= τ(i,l) for l 6= j, and
m(i,j) ∈ Fp.

• After receiving the signature queries 〈∆i, τ(i,j),m
(i,j)〉, B computes secret

key SK and verification key VK as follows:

– It selects a pair of secret and public keys (SKDig,PKDig) for digital
signature ΣDig. Then it chooses a keyed hash function F and a secret
key K.

– It randomly picks a dataset identifier ∆̃ from {∆i}si=1. Without loss
of generality, we denote 〈∆̃, τj ,m(j)〉tj=1 the signature queries corre-
sponding to dataset identifier ∆̃. Next B generates γj ∈ F∗p asF (K, ∆̃, τj),

1 ≤ j ≤ t, and defines the generators Λ
(τj)
1 as:

Λ
(τj)
1 = P1

(m(j))(P1
α)γj 4 (4)

Later, it picks N − t random generators Λ
(τj)
1 ∈ G1, t+ 1 ≤ j ≤ N .

4Note that the probability that Λ
(τj)

1 = 1 is equal to 1
p

, which is negligible. Still, in the unlikely

event of Λ
(τj)

1 = 1, adversary B computes α = −m
(j)

γj
.
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– Finally, it defines SK and VK as:

SK = (F,K, SKDig)

VK = (PKDig, {Λ
(τ1)
1 , ...,Λ

(τN )
1 })

• After determining the pair (SK,VK), B returns verification key VK to A.

• Afterwards, on a query 〈∆i, τ(i,j),m
(i,j)〉, B simulates the responses of ora-

cle OSign as follows:

If ∆i 6= ∆̃, then B follows the signing algorithm Sign depicted in Section
4.1.

If ∆i = ∆̃, then 〈∆i, τ(i,j),m
(i,j)〉 = 〈∆, τj ,m(j)〉 and B acts as following:

– It generates the pair of keys (SKAgg,PKAgg) as explained in algorithm
Sign.

– It computes digital signature Ω of param∆̃ = (∆̃,PKAgg,PKDig), and

aggregate signature Ψ(j) of the generator Λ
(τj)
1 associated with label

τj .

– It generates x = F (K, ∆̃, 1) in F∗p, computes X1 = P1
x and Y1 =

(P1
α)x, and lets PKHom = (X1, Y1).

– It sets homomorphic signature Υ to (m(j),Λ
(τj)
1 ,Γ

(j)
1 ), where Γ

(j)
1 =

P1
γj and γj = F (K, ∆̃, τj).

Note that by construction Λ
(τj)
1 = (P1)m

(j)
(Γ

(j)
1 )α (cf. Equation 4),

therefore Υ is a valid signature as it verifies equation 3 for (X1, Y1) =
(P1

x, P1
αx).

– Finally, B returns homomorphic signature σ(j) = (param∆̃,Ω,Ψ
(j),Υ(j)).

At the end of the weak unforgeability experiment, A outputs a multi-labeled
program P∆ = (P,∆), and a Type II forgery σ. Without loss of generality, we
assume that P = (f, τ1, ..., τt) and that f is a t-variate arithmetic circuit of degree
k ≤ d.

On receiving the description of P∆, B checks whether ∆ = ∆̃. If not, B aborts
the experiment.

If ∆ = ∆̃ and A succeeds in breaking the weak unforgeability experiment, then
σ = (param∆̃,Ω,Ψ,Υ) such that:

Υ = (m,Λk,Γk) ∈ Fp ×G2
k

Λk = f(Λ
(τ1)
1 , ...,Λ

(τt)
1 )

e(X1,Λk) = e(X1, Pk)
me(Y1,Γk) (5)

Hence, to break the MDHI assumption, B first runs algorithm Eval on input of
(f, ~σ), where ~σ = (σ(1), ..., σ(t)), and for all 1 ≤ j ≤ t, σ(j) is the homomorphic
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signature of messagem(j) belonging to dataset ∆̃ under label τj . In turn, algorithm
Eval outputs a tuple (param∆̃,Ω,Ψ, Ϋ). If we let Ϋ = (m̈,Λk, Γ̈k) ∈ Fp × G2

k,
then by definition m̈ = f(m(1), ..,m(t)) and

e(X1,Λk) = e(X1, Pk)
m̈e(Y1, Γ̈k) (6)

Since (m,σ) is a forgery of Type II, thenm 6= m̈ and B breaks the MDHI assump-
tion by outputting:

(Pd+1)α
−1

= e

(
Γk

Γ̈k
, Pd+1−k

) 1
m̈−m

Indeed, from Equation 5 and Equation 6, we deduce the following:

e(X1, Pk)
m̈e(Y1, Γ̈k) = e(X1, Pk)

me(Y1,Γk) = e(X1,Λk)

e(X1, Pk)
m̈−m = e

(
Y1,

Γk

Γ̈k

)
e(P1

x, Pk)
m̈−m = e

(
P1

αx,
Γk

Γ̈k

)
e(P1

x, Pk) = e

(
P1

αx,
Γk

Γ̈k

) 1
m̈−m

Since x ∈ F∗p, e(P1, Pk) = e

(
P1

α,
(

Γk
Γ̈k

) 1
m̈−m

)
, which means that

(
Γk
Γ̈k

) 1
m̈−m

=

Pk
α−1

.
We thus conclude that if adversary A breaks the weak unforgeability experi-

ment with a non-negligible advantage εA , then adversary B breaks the MDHI as-
sumption as long as it does not stop the unforgeability experiment.

We now quantify the advantage εB of adversary B.
Let EB be the event that adversary B succeeds in breaking the MDHI assump-

tion, and let E be the event that adversary B does not stop the unforgeability exper-
iment.

We know that Pr(E) = 1
s and Pr(EB | E) = εA , and also that:

εB = Pr(EB) = Pr(EB ∩ E) + Pr(EB ∩ E)

= Pr(EB | E) Pr(E) + Pr(EB | E) Pr(E)

=
εA

s
+ Pr(EB | E) Pr(E) ≥ εA

s

Therefore, the advantage εB of adversary B in breaking the MDHI assumption is
greater than εA

s and thus non-negligible, which leads to a contradiction.
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5 An Adaptively Secure Homomorphic Signature

We hereby transform the solution described in Section 4.1 into an adaptively secure
signature. This transformation is performed in three steps: (i) generate a one-
degree polynomial T whose free coefficient is m, i.e. the original message to
be signed; (ii) evaluate polynomial T at a secret point α; (iii) and finally, sign
T (α) using the weakly secure signature. In Section 5.3, we show that this simple
transformation yields an adaptively secure fully homomorphic signature under the
MDHI assumption.

5.1 Description

KeyGen∗(1κ, d,L)→ (SK∗,VK∗, param) Given a security parameter 1κ, an upper-
bound d of the degree of circuits supported by the signature, and the set of
labels L = {τ1, ..., τN} ⊂ {0, 1}∗, algorithm KeyGen∗ first runs KeyGen
which in turn yields a tuple (SK,VK, param). Algorithm KeyGen∗ addi-
tionally selects a secret key α ∈ F∗p, computes A1 = Pα1 and outputs the
following:

SK∗ = (SK, α) = (F,K, SKDig, α)

VK∗ = (VK, A1) = (PKDig, {Λ
(τi)
1 }

N
i=1, A1)

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P )

Sign∗(SK∗,∆, τ,m)→ σ∗ On input of signing key SK∗ = (SK, α), dataset iden-
tifier ∆, a label τ ∈ L, and a message m ∈ Fp, algorithm Sign∗ generates
a random number θ1 ∈ F∗p, and computes the polynomial T (z) = m + θ1z.
Using secret key SK, this algorithm executes algorithm Sign over the tuple
(∆, τ, T (α)), (i.e. algorithm Sign signs message T (α)). This results in a
signature σ = (param∆,Ω,Ψ,Υ) with Υ = (T (α),Λ1,Γ1). Thereafter,
algorithm Sign∗ defines the homomorphic signature Υ∗ of tuple (m, τ,∆)
as:

Υ∗ = ([m, ~θ],Λ1,Γ1)

whereby [m, ~θ] = [m, θ1, ..., θd] represents an at most d-degree polynomial
T (z) = m+

∑d
r=1 θrz

r (i.e. the free coefficient ism). In the current setting,
the degree of T is 1 and hence: Υ∗ = ([m, θ1, 0, ..., 0],Λ1,Γ1).

At the end, Sign∗ returns the homomorphic signature:

σ∗ = (param∆,Ω,Ψ,Υ
∗)

Eval∗(VK∗, f, ~σ∗)→ σ∗ When provided with an n-variate function f and a vector
~σ∗ of n homomorphic signatures σ∗(l) = (param∆,Ω,Ψ

(l),Υ∗(l)), such that
each signature σ∗(l) authenticates a message m(l) for 1 ≤ l ≤ n, algorithm
Eval∗ proceeds – similarly to Eval – in two steps:
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Computation of aggregate signature Ψ. This aggregate signature is ob-
tained by evaluating the same circuit C̃f defined in algorithm Eval, on inputs
of aggregate signatures (Ψ(1), ....,Ψ(n)) (see Section 4.1).

Computation of homomorphic signature Υ∗. In this step, algorithm Eval∗

evaluates the circuit C∗f of function f on inputs (Υ∗(1), ...,Υ∗(n)) using the
following subroutines:

• GateEval∗+(Υ∗(1),Υ∗(2)): Without loss of generality, let assume that
for l ∈ {1, 2}, Υ∗(l) = ([m(l), ~θ(l)],Λ

(l)
i ,Γ

(l)
i ) ∈ Fd+1

p × G2
i . Accord-

ingly whenever, an addition gate is encountered, GateEval∗+ outputs
Υ∗ = ([m, ~θ],Λi,Γi) such that:

[m, ~θ] = [m(1), ~θ(1)] + [m(2), ~θ(2)]

Λi = Λ
(1)
i Λ

(2)
i ; Γi = Γ

(1)
i Γ

(2)
i

• GateEval∗c(Υ
∗(1), c): This subroutine is called in order to evaluate a

gate for multiplication by a constant. Accordingly, on inputs of a ho-
momorphic signature Υ∗(1) = ([m(1), ~θ(1)],Λ

(1)
i ,Γ

(1)
i ) ∈ Fd+1

p × G2
i

and a constant c, GateEvalc outputs Υ∗ = ([m, ~θ],Λi,Γi) where:

[m, ~θ] = c[m(1), ~θ(1)]

Λi = (Λ
(1)
i )c ; Γi = (Γ

(1)
i )c

• GateEval∗×(Υ∗(1),Υ∗(2)): Assume here that Υ∗(1) = ([m(1), ~θ(1)],Λ
(1)
i ,Γ

(1)
i ) ∈

Fd+1
p × G2

i , and Υ∗(2) = ([m(2), ~θ(2)],Λ
(2)
j ,Γ

(2)
j ) ∈ Fd+1

p × G2
j . This

means that (i) Υ∗(1) and Υ∗(2) are inputs of degree i and j respectively;
and that (ii) ~θ(1) = [θ

(1)
1 , ...θ

(1)
i , 0, ...0] and ~θ(2) = [θ

(2)
1 , ...θ

(2)
j , 0, ...0].

To multiply message m(1) with message m(2) and produce the match-
ing homomorphic signature, GateEval∗× first generates an (i+j)-degree
polynomial T by multiplying the two polynomials T (1)(z) = m(1) +∑i

r=1 θ
(1)
r zr and T (2)(z) = m(2) +

∑j
r=1 θ

(2)
r zr. The coefficients

of the resulting polynomial T are denoted by vector [m(1)m(2), ~θ] ∈
Fd+1
p , and ~θ is denoted by vector [θ1, ..., θi+j , 0, ..., 0]. GateEval∗× then

evaluates:

Λi+j = e(Λ
(1)
i ,Λ

(2)
j )

and recursively computes the parameters Ar+1 and Bi,r, for all 1 ≤
r ≤ i− 1, as follows:

Ar+1 = e(Ar, A1) ; Bi,r = e(Pi−r, Ar)
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Given these parameters, GateEval∗× computes:

Γi+j = e(Pm
(1)

i A
θ
(1)
i
i

i−1∏
r=1

Bθ
(1)
r
i,r ,Γ

(2)
j )e(Γ

(1)
i ,Λ

(2)
j )

GateEval∗× finally outputs Υ∗ = ([m, ~θ],Λi+j ,Γi+j).
Algorithm Eval∗ concludes its execution by outputting:

σ∗ = (param∆,Ω,Ψ,Υ
∗)

OffVerify∗(VK∗,P)→ VK∗P We assume here that P evaluates an n-variate func-
tion f whose circuit is of degree k. Hence, given VK∗ = (VK, A1), algo-
rithm OffVerify∗ first computes VKP using OffVerify (i.e. VKP ← OffVerify(VK,
P)), and generates the parameters:

Ar+1 = e(Ar, A1) ; Bk,r = e(Pk−r, Ar); 1 ≤ r ≤ k − 1

Finally, algorithm OffVerify∗ outputs:

VK∗P = (VKP, Ak, {Bk,1, ..., Bk,k−1})

where VKP = (PKDig, HP, f(Λ
(τ1)
1 , ...,Λ

(τn)
1 )).

OnVerify∗(VK∗P,∆,m, σ
∗)→ b On input of concise verification key VK∗P, dataset

identifier ∆, message m and signature σ∗ = (param∆,Ω,Ψ,Υ
∗), algorithm

OnVerify∗ proceeds as following:

• It parses VK∗P as (VKP, Ak, {Bk,1, ..., Bk,k−1}), dataset parameters param∆

as (∆,PKAgg,PKHom), and signature σ∗ as (param∆,Ω,Ψ,Υ
∗).

• Similarly to OnVerify, it uses VKP to incrementally check the valid-
ity of digital signature Ω and aggregate signature Ψ. If any of these
signatures is not valid, then OnVerify∗ returns b = 0.

• Finally, it parses homomorphic signature Υ∗ as a tuple ([m, ~θ],Λk,Γk) ∈
Fd+1
p ×G2

k, and given the value f(Λ
(τ1)
1 , ...,Λ

(τn)
1 ), public key PKHom =

(X1, Y1) ∈ G2
1 and (Ak, {Bk,1, ..., Bk,k−1}) ∈ Gk

k verifies whether the
following equalities hold:

Λk = f(Λ
(τ1)
1 , ...,Λ

(τn)
1 ) (7)

e(X1,Λk) = e(X1, P
m
k A

θk
k

k−1∏
r=1

Bθr
k,r)e(Y1,Γk) (8)

If both equalities hold, then OnVerify∗ outputs b = 1; otherwise it
outputs b = 0.
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5.2 Correctness

Theorem 3. The adaptively secure homomorphic signature described above en-
sures authentication and evaluation correctness.

Sketch. Due to the close similarity with the proofs of correctness of the weakly
secure homomorphic signature, we only provide a proof sketch for evaluation cor-
rectness. A similar argument can be used to prove authentication correctness.

Let the inputs of algorithm Verify be:

• A multi-labeled program P∆ = (P,∆) evaluating f(P1, ...,Pn) using a cir-
cuit of degree k;

• a message m = f(m(1), ...,m(n)), whereby m(l) is the output of program
Pl;

• and a signature σ∗ = (param∆,Ω,Ψ,Υ
∗) such that Υ∗ = ([m, ~θ],Λk,Γk)

and ~θ = [θ1, ..., θk, 0, ..., 0].

Also, let σ∗(l) be the signature corresponding to messagem(l) and [m(l), ~θ(l)] =

[m(l), θ
(l)
1 , ..., θ

(l)
i , 0, ..., 0] be the vector from signature σ∗(l).

Finally, let T = m+
∑k

r=1 θrz
r denote the polynomial associated with vector

[m, ~θ], and T (l)(z) = m(l) +
∑i

r=1 θ
(l)
r zr the polynomial associated with vector

[m(l), ~θ(l)].
To show evaluation correctness, we rely on two observations:

(i) The first is that f(T (1)(α), ..., T (n)(α)) = f(T (1), ..., T (n))(α), which means
that f(T (1)(α), ..., T (n)(α)) = m+

∑k
r=1 θrα

r = T (α).

(ii) The second is that (T (α),Λk,Γk) is a valid weakly secure signature. More
precisely, it can be viewed as the output of algorithm Eval (from Section 4.1)
on inputs of (T (l)(α),Λ

(l)
i ,Γ

(l)
i ).

Thus by correctness of our weakly homomorphic signature, Equation 3 is ver-
ified for signed message T (α). From this we can see that Equation 8 holds for
vector [m, ~θ]. Indeed, we have for all k ≥ 2 and for all 1 ≤ r ≤ k − 1:
Ak = Pα

k

k and Bk,r = Pα
r

k . Hence, Equation 8 could be rewritten as e(X1,Λk) =

e(X1, P
T (α)
k )e(Y1,Γk), which corresponds to Equation 3 when the signed message

is T (α).

5.3 Soundness

Theorem 4. If the digital signature ΣDig and the aggregate signature ΣAgg are
secure, then our homomorphic signature is (s, t)-sound under the MDHI assump-
tion.
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Sketch. Assume there is an adversary A that breaks the (s, t)-soundness of our
homomorphic signature with a non-negligible advantage εA . Similarly to the proof
of Theorem 2, since ΣDig and ΣAgg are secure, the only way A can succeed in
breaking the (s, t)-soundness is through a Type II forgery. Given the existence of
a Type II forgery by A, we show that either there exists an adversary B that breaks
our weakly secure homomorphic signature, or that adversary A breaks the MDHI
assumption.

To break our weakly secure homomorphic signature, adversary B simulates the
unforgeability experiment as follows:

• First, B enters the learning phase of Algorithm 2 and receives public param-
eters param whereby

param = (p, {τi}Ni=1, H, e, ê, {Gi}d+1
i=1 ,G,GT , P1, P )

Further, it submits sN signature queries 〈∆i, τ(i,j),m
(i,j)〉 for randomly gen-

erated and pairwise distinct messages m(i,j), 1 ≤ i ≤ s and 1 ≤ j ≤ N , so
that to receive verification key VK and signatures σ(i,j) such that:

VK = (PKDig, {Λ
(τ1)
1 , ...,Λ

(τN )
1 })

σ(i,j) = (param∆i
,Ω(i),Ψ(i,j),Υ(i,j))

param∆i
= (∆i,PK

(i)
Agg,PK

(i)
Hom)

Ψ(i,j) = H(Λ
(τ(i,j))

1 )SK
(i)
Agg

Υ(i,j) = (m(i,j),Λ
(τ(i,j))

1 ,Γ
(i,j)
1 )

B keeps these signatures in a table T to further use them during its simula-
tion.

• When A queries oracle OKeyGen∗ , B generates (α,A1 = Pα1 ) ∈ F∗p × G1,

sets VK∗ = (PK∗Dig, {Λ
(τi)
1 }Ni=1, A1) where PK∗Dig is its own public key, and

finally returns (param,VK∗).

• When A calls oracle OSign∗ with tuple 〈∆∗i , τ∗(i,j),m
∗(i,j)〉, B first fetches the

public parameters (∆i,PK
(i)
Agg,PK

(i)
Hom) of dataset ∆i in table T , and signs

param∆∗
i

= (∆∗i ,PK
(i)
Agg,PK

(i)
Hom) using secret key SK∗Dig matching public

key PK∗Dig. This results in a signature Ω∗(i).

Further, B finds in table T the message in dataset ∆i that was signed un-
der label τ∗(i,j), Here, we assume that this message corresponds to m(i,j) (i.e.

τ∗(i,j) = τ(i,j)). B then retrieves signature σ(i,j) = (param∆i
,Ω(i),Ψ(i,j),Υ(i,j)),

and lets Υ∗(i,j) = ([m∗(i,j), θ
(i,j)
1 ],Λ

τ(i,j)
1 ,Γ

(i,j)
1 ), whereby θ(i,j)

1 is computed
so thatm(i,j) = m∗(i,j)+θ

(i,j)
1 α. Finally, B returns σ∗(i,j) = (param∆∗

i
,Ω∗(i),Ψ(i,j),Υ∗(i,j)).
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Eventually, A outputs a multi-labeled program P∆∗
i

= (P,∆∗i ) for 1 ≤ i ≤ s, and
a pair (m∗, σ∗).

We suppose here that P = (f, τ(i,1), ..., τ(i,t)), with f being a t-variate function
of degree k.

Accordingly, σ∗ = (param∆∗
i
,Ω∗(i),Ψ(i),Υ∗(i)) where

Υ∗(i) = ([m∗, ~θ],Λk,Γk)

~θ = [θ1, ..., θk, 0, ..., 0]

In order to break our weakly secure signature, B runs Eval∗ on inputs of function f
and signatures σ∗(i,j) with 1 ≤ j ≤ t.

This results in a vector [m̈∗,
~̈
θ] ∈ Fd+1

p , where

m̈∗ = f(m∗(i,1), ...,m∗(i,t))

~̈
θ = [θ̈1, ..., θ̈k, 0, ..., 0]

Since A’s output is a Type II forgery, we know that m∗ 6= m̈∗. Now depending
on whether m∗ +

∑k
r=1 θrα

r equals m̈∗ +
∑k

r=1 θ̈rα
r, we show that either B

breaks the weak unforgeability of our scheme, or that A is able to break the MDHI
assumption.

• Ifm∗+
∑k

r=1 θrα
r 6= m̈∗+

∑k
r=1 θ̈rα

r, then adversary B breaks our weakly
secure signature by outputting multi-labeled program P∆i = (P,∆i) and the
pair (m,σ) whereby:

m = m∗ +
k∑
r=1

θrα
r

σ = (param∆i
,Ω(i),Ψ(i),Υ(i))

Υ(i) = (m,Λk,Γk)

Indeed, by construction:

m̈∗ +
k∑
r=1

θ̈rα
r = f(m∗(i,1) + αθ

(i,1)
1 , ...,m∗(i,t) + αθ

(i,t)
1 )

= f(m(i,1), ...,m(i,t))

and thus, m 6= f(m(i,1), ...,m(i,t)).

• If m∗ +
∑k

r=1 θrα
r = m̈∗ +

∑k
r=1 θ̈rα

r, then we can show that A breaks
the MDHI assumption. Namely, it can compute Pkα

−1
from (P1, A1 = Pα1 )

5. Indeed:

P
m∗+

∑k
r=1 θrα

r

k = P
m̈∗+

∑k
r=1 θ̈rα

r

k

5Since the messagesm(i,j) = m∗(i,j) +θ
(i,j)
1 α are randomly generated and pairwise distinct, we

can safely assume that vectors [m∗(i,j), θ
(i,j)
1 ] provided by adversary B during the simulation leaks

no information to adversary A about α beyond (P1, A1).
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Pm
∗−m̈∗

k = P
∑k
r=1 θ̈rα

r−
∑k
r=1 θrα

r

k

For the sake of clarity, we simplify the formula by replacing the subtraction
of the two polynomials with one polynomial:

Pm
∗−m̈∗

k = P
∑k
r=1 θ̂rα

r

k

Pk = P

∑k
r=1 θ̂rα

r

m∗−m̈∗
k = P

α
∑k
r=1 θ̂rα

r−1

m∗−m̈∗
k

This implies that A breaks the MDHI assumption by first computing Pα
r−1

k ,
1 ≤ r ≤ k, using P1, A1 and bilinear pairing e, and then outputting:

Pα
−1

k =

(
k∏
r=1

P θ̂rα
r−1

k

)(m∗−m̈∗)−1

Consequently, if our weakly secure signature is sound under the MDHI assumption,
so is our adaptively secure solution.

5.4 Efficiency

In the following, we briefly discuss the efficiency of our homomorphic signature.
Online-Offline Signing. We point out that the signature we describe in Sec-

tion 5 supports online-offline signatures. Similarly to previous work on online-
offline signatures [34], the signer could sign a random and secret dataset ∆̈ =
(m̈(1), ..., m̈(n)) offline, using the weakly secure signature. This yields param∆̈ =

(∆̈, P̈KAgg, P̈KHom), a digital signature Ω̈, n aggregate signatures Ψ̈(i) and n ho-
momorphic signatures Ϋ(i) = (m̈(i), Λ̈

(i)
1 , Γ̈

(i)
1 ). Later when a dataset ∆ = (m(1), ...,m(n))

is available, the signer proceeds as following:

• The signer uses secret key α to find for each messagem(i) the coefficient θ(i)
1

verifying: m̈(i) = αθ
(i)
1 + m(i), and sets the corresponding homomorphic

signature Υ(i) to ([m(i), θ
(i)
1 ], Λ̈

(i)
1 , Γ̈

(i)
1 );

• she defines aggregate signature Ψ(i) of message m(i) as Ψ̈(i);

• she defines the public parameters of dataset ∆ as param∆ = (∆, P̈KAgg, P̈KHom)
and signs these public parameters using her public key PK.

It should be noted however that for the scheme to remain secure, we should ensure
that the elements of the randomly generated datasets are kept secret and that they
are pairwise distinct with all but a negligible probability; otherwise the secret value
α can be retrieved. In order to counter this issue, we suggest that for all m̈(i) ∈ ∆̈,
m̈(i) be computed as F (K ′, ∆̈, i) where F is the keyed hash function in the public
parameters and K ′ is a component of the signer’s secret key.
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Table 1: Complexity of the algorithms OnSign, OffSign and Eval given a dataset of
size n and a program that is implemented using r addition gates, s multiplication-
with-a-constant gates and t multiplication gates.

Sign
Eval

OnSign OffSign

O(1) digital signatures O(n) aggregate signatures O(r + t) multiplications in G
O(n) subtractions in Fp O(n) exponentiations in G1 O(r) multiplications in Gd
O(n) inversions in Fp O(n) PRF evaluations O(s+ d) exponentiations in Gd

O(d2 + t) bilinear pairings

Adaptive Security Transformation. Authors in [15] and [32] independently
proposed generic transformations that make any weakly secure homomorphic sig-
nature into an adaptively secure one. While it is possible to leverage any of these
transformations to define our adaptively secure signature, it was more practical and
more simple to opt for a dedicated transformation. For instance, compared to what
is proposed in [15], our transformation yields shorter signatures: The evaluation of
a circuit Cf of degree k results in a signature of size ' k when using our transfor-
mation, rather than a signature of size' 3(d+1)6 in the case of the transformation
in [15]. Additionally, we note that if we use any of these transformations, then we
lose the online-offline signing feature.

Finally, it is worth mentioning that although our transformation is not generic,
it can be used to make the weakly secure signature of [15] adaptively secure and
as a by product make it online-offline. On the other hand, our transformation as
is cannot be applied to the signature in [32] since the latter operates in standard
lattices.

Performance Figures. As discussed previously, our scheme benefits from the
features of online-offline signing and online-offline verification. These two features
render the scheme more attractive performance-wise: The online-offline signing
is particularly useful in scenarios in which the signer has to sign large datasets,
whereas the online-offline verification enables the verifier not only to compute the
most expensive operation beforehand – which consists of computing for each pro-
gram P the matching verification key VKP – but to reuse that key indefinitely.

Tables 1 and 2 depict the performances of the algorithms composing our sig-
nature. The reader can see that the online algorithms at the signer and the verifier
are more lightweight compared to their offline counterparts.

Without loss of generality, we assume that the signer signs a dataset of size n
and that the verifier wishes to check the correctness of a program P that can be
evaluated using a circuit composed of r addition gates, s multiplication-with-a-
constant gates and t multiplication gates7.

6We recall here that d is the upper bound of the degree of the arithmetic circuits supported by the
homomorphic signature.

7Here we consider the worst-case scenario in which the computations are performed in the bilin-
ear group Gd.
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Table 2: Complexity of the algorithms OnVerify and OffVerify given a program
that can be evaluated using r addition gates, s multiplication-with-a-constant gates
and t multiplication gates.

Verify

OnVerify OffVerify

O(1) digital signature verifications O(r + t) multiplications in G
O(1) aggregate signature verifications O(r) multiplications in Gd

O(1) bilinear pairings O(s) exponentiations in Gd
O(d) multiplications in Gd O(t+ d) bilinear pairings
O(d) exponentiations in Gd

6 Related Work

Eigenvalues and Eigenvectors in Cryptography. Gentry et al. [30] propose a
fully-homomorphic encryption in standard lattices that is based on eigenvalues and
eigenvectors. Roughly speaking, the encryption of a message is a square matrix
that accepts that message as an eigenvalue associated with an eigenvector that de-
fines the encryption secret key. It should be precised however that for security pur-
poses the size of the encryption matrix depends on the security parameter and that
Gentry et al. [30] do not use eigenvectors per se but what they term approximate
eigenvector which could be seen as noisy eigenvectors. While our signature as well
leverages the algebraic properties of eigenvalues and eigenvectors to get additive
and multiplicative homomorphisms, it is compact in the sense that the size of the
matrix does not depend on the security parameter and it uses actual eigenvectors
instead of noisy ones.

Verifiable Delegation of Computation. The advent of cloud computing has
spurred interest in verifiable delegation of computation [21, 27, 39, 40]. The main
concern of this line of work is to ensure that the verification of computation calls
for less computational resources than the delegated function. However, verifiable
computation requires a preprocessing stage that depends on the delegated function;
homomorphic signatures on the other hand, are to some extent8 agnostic to the
function to be computed

Succinct Non-interactive ARguments of Knowledge. SNARKs [5, 6, 28] are
a powerful tool to verify computation correctness. Generally speaking, SNARKs
allow anyone to generate a proof for any NP statement. In particular, given a value
y and a function f , one can employ SNARKs to prove that there exists a witness x
that verifies y = f(x). While SNARKs give way to relatively efficient verification
procedures, their soundness is only ensured under non-falsifiable assumptions [5,
29].

Additively Homomorphic Signatures. First attempts to design homomorphic
signatures focused on authenticating linear functions, cf. [2, 4, 8, 12, 22, 37].
The motivating applications for this type of homomorphic signatures are namely:

8We recall that while our homomorphic signature supports only polynomial functions, it is still
more flexible than verifiable computation schemes.
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secure network coding [3, 12, 26, 36] which enables the authentication of messages
forwarded in the network, and proofs of retrievability [2, 41] which provide means
to efficiently verify the availability of data stored at untrusted servers.

Homomorphic MACs. Gennaro and Wichs [25] proposed one of the first
homomorphic symmetric authenticators dedicated to Boolean circuits. The pro-
pounded solution builds upon homomorphic encryption and assumes that the ad-
versary does not have access to the results of the MAC verification (i.e. an ad-
versary cannot know whether a pair of message and signature is valid or not). To
overcome this caveat, Catalano and Fiore [13] introduced a solution that leverages
the algebraic properties of the ring of polynomials to homomorphically authenti-
cate messages. Briefly, the idea of [13] is to represent the MAC as a polynomial of
degree 1 in which the free term corresponds to the signed message. In this manner,
the proposed MAC is much more efficient than the work of [25] and is suitable for
arithmetic circuits. The issue however with this solution is that program composi-
tion yields MACs whose size grows with the degree of the circuit. As a followup,
Catalano et al. [14] exploited multilinear maps to devise a homomorphic MAC that
supports efficient program composition.

Homomorphic Signatures. One of the first solutions for homomorphic signa-
tures was devised by [9]. The proposed solution uses ideal lattices to authenticate
the evaluation of multivariate polynomials. However, this scheme is shown to be
secure in the random oracle model only. To address this shortcoming, Catalano
et al. [15] build upon their previous work [13, 14] and design a homomorphic
signature that is suitable for multi-variate polynomial functions and secure in the
standard model. Similarly to the work presented here, the signature in [15] relies
on multilinear maps, however our solution outperforms it in terms of both size
and computation. In a more recent work, Gorbunov et al. [32] introduced leveled
fully-homomorphic signatures from standard lattices, which contrary to our signa-
ture and the signatures in [9, 15], authenticate arbitrary functions. The proposed
signature relies on dedicated homomorphic trapdoor functions and is shown to be
adaptively secure in the standard model. Nevertheless, the signature in [32] does
not take Type III forgeries into account.

Note that if similarly to [15], we consider in our soundness definition only mul-
tivariate polynomials of degree d verifying d/p < 1/2, then the signature presented
in 4.1 can be shown to be weakly-secure in the standard model. Indeed, according
to Proposition 2 in [14], Type II and Type III forgeries are equivalent for poly-
nomial functions of degree d so long as d/p < 1/2. This entails that there is no
need for aggregate signatures whose security is proved in the random oracle model.
Still, we emphasize that using aggregate signatures to thwart Type III forgeries is
of independent interest as it can be employed in other more generic homomorphic
signatures to resist Type III forgeries (for e.g. [32]).

Finally, we remark that our solution is the first homomorphic signature for
polynomial functions that features an online-offline signing process. This capabil-
ity is advantageous especially in contexts where mobile devices (smart-phones,
tablets...etc.) are prevalent. Although not explicitly mentioned, both Freeman
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[22] and Catalano et al. [16] propose linearly-homomorphic signatures that sup-
port online-offline signing.

7 Conclusion

In this paper, we introduced a new construction for homomorphic signatures suit-
able for multivariate polynomials of bounded degree. By tailoring the algebraic
properties of eigenvectors and leveled multilinear maps, the proposed construction
allows efficient verification in the amortized model and enables online-offline sign-
ing. Besides, our solution yields signatures whose size grows only linearly in the
degree of evaluated polynomials, and we show it to be provably secure under the
MDHI assumption.
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