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Abstract—This paper targets the promising area of unmanned
aerial vehicle (UAV)-assisted wireless networking, by which
communication-enabled robots operate as flying wireless relays
to help fill coverage or capacity gaps in the networks. In order
to feed the UAV’s autonomous path planning and positioning
algorithm, a radio map is exploited, which must be, in practice,
reconstructed from UAV-based measurements from a limited
subset of locations. Unlike existing methods that ignore the
segmented propagation structure of the radio map, this paper
proposes a machine learning approach to reconstruct a finely
structured map by exploiting both segmentation and signal
strength models. A data clustering and parameter estimation
problem is formulated using a maximum likelihood approach,
and solved by an iterative clustering and regression algorithm.
Numerical results demonstrate significant performance advan-
tage in radio map reconstruction as compared to the baseline.

I. INTRODUCTION

The exploitation of aerial robots (UAVs) is a promising
technology for future wireless cellular communication net-
works. In dense urban areas, where wireless signals may
be blocked by buildings, or where high user data demand
exists, UAVs can serve to carry wireless relays to boost the
link quality between the base station (BS) and the users.
As such, much of the system gain hinges on the ability to
optimally position the UAV as a function of user locations,
base station location, and propagation conditions. The latter
is known to be determined by a complex arrangement of path
loss, shadowing and signal blockage, which ultimately depends
on the fine-grained terrain/building topology. In principle, such
information can be captured by a radio map, which describes
the average signal strength for all combinations of BS-UAV-
user locations.

There have been interesting recent works on UAV position-
ing for wireless capacity extension [1]–[7]. Some prior results
on UAV position optimization assumed homogeneous path loss
models and did not account for the local blockage between
the UAV and the user [1]–[3]. However, the presence of the
ground obstacles may block the propagation between the UAV
and the user, and hence critically affect the performance. To
address this issue, the works [4]–[7] established a simplified
stochastic model to capture the probability of the line-of-sight
(LOS) propagation of the UAV-user channel as a function

of the elevation angle at the user and the distribution of
the buildings. However, these methods only depend on the
macroscopic terrain information, but cannot exploit the fine
grained structure of the propagation conditions. Specifically,
they cannot capture the fact that a small change of the UAV
position may result in a huge difference in the channel gain.
For example, the UAV may travel from a LOS location to a
NLOS location near a building edge.

To determine the best UAV position, we propose to exploit
a finely structured radio map that captures both the signal
strength and the propagation conditions. The main difficulty
is that the radio map is not easy to obtain, because it may have
a complex structure due to the irregular shapes of the terrain
and the random locations of the buildings. To circumvent this
challenge, we aim at establishing a machine learning approach
to reconstruct the radio map from a limited number of signal
strength measurements obtained at a subset of locations. In
principle, the goal is to train a channel predictor, interpolate
the channel gain, and identify the propagation conditions for
every UAV-user position.

In related works, a method based on artificial neural network
for channel gain prediction was proposed in [8], but it required
the input of terrain information such as vegetation type and
vegetation density to train the channel predictor. In [9], support
vector regression was applied to perform path loss prediction,
and in [10], a kernel-based nonparametric algorithm was
studied for power map reconstruction from quantized power
measurements. However, the main limitation of these works
is that they did not exploit the underlying segmented structure
in the radio map, which is induced by the terrain or building
topology. As a result, they cannot predict the propagation
condition. In addition, the work [8] depends on a terrain
model, which may be inaccurate or unavailable.

In this paper, we develop a radio map learning and recon-
struction approach that both exploits and reveals the topology-
induced structure. To this end, we formulate a joint clustering
and regression problem using a maximum likelihood approach.
An iterative algorithm is derived, which clusters map points
according to propagation model differences and learns the re-
gression model parameters for each cluster. It is demonstrated
that the proposed method requires almost as few as 1/10 of



Figure 1. An urban city map where a UAV tries to find a LOS location to
the ground user.

training samples for the same reconstruction performance as
a k-nearest neighbor (KNN) baseline does.

II. SYSTEM MODEL

A. Geographical Topology

Consider a (possibly dense) urban area, where a user located
at xU is surrounded by a number of buildings as illustrated in
Fig. 1. Consider a UAV hovering over the city to relay the
wireless signal for the user. Denote the position of the UAV
as xD. For exposition purpose, assume that the UAV moves
at a fixed height HD above the ground, i.e., xD = (x̄D, HD),
where x̄D ∈ R2 and HD is larger than the maximum height of
the buildings. In addition, we focus on UAV-user link channel
reconstruction and assume a fixed user position xU.1

B. Channel Model

Classically, the channel gain in dB can be modeled as

γ = β − 10α log10 d+ ξ

where α is the path loss exponent, d is the transmitter-to-
receiver distance, β can be measured as the average channel
gain at the reference point d = 1 meter, and ξ is usually
modeled as a Gaussian random variable N (0,σ2

SF) to capture
the shadowing effect. In addition, the set of parameters α, β,
and σ2

SF depend on the propagation scenario, such as LOS or
non-line-of-sight (NLOS) propagations.

In this paper, we exploit the spatial structure of the shad-
owing component ξ, where it may be spatially correlated due
to common obstacles and reflectors in a local area. As a
result, the random variable ξ may follow different distributions
in different areas. Towards this end, consider a general K-
segment ray-tracing model for the UAV-user channel. Let
D ⊆ R6 be the domain of all possible UAV-user position
pairs. Consider a partition of D into K disjoint segments:

1The extension to varying height of the UAV and varying position of the
user are relatively straight forward. In addition, the method studied in this
paper can be applied to BS-UAV link channel reconstruction.

D = D1 ∪ D2 ∪ · · · ∪ DK , where Dk ∩ Dj = ∅, for k ̸= j.
The UAV-user channel gain in dB is further modeled as

γ(xD) =
K
∑

k=1

(

βk − 10αk log10 d(xD) + ξk
)

I{(xD,xU) ∈ Dk}

(1)
where d(xD) = ∥xD − xU∥ is the distance between the UAV
and the user, and I{A} is an indicator function taking value 1
if A is true, and 0 otherwise. In addition for (xD,xU) being
in the kth propagation segment, αk represents average path
loss exponent, βk represents the average channel gain at the
reference point at d = 1 meter, and ξk is modeled as N (0,σ2

k)
to capture the local shadowing effect.

Remark 1 (Motivation of the segmented ray-tracing model):
Traditional channel models usually classify the propagation
into only two scenarios, LOS and NLOS. Yet, there may
be a scenario where the direct path penetrates some light
obstacles, such as foliage. In this case, the resulting channel
gain is stronger than the NLOS case, but weaker than the LOS
case. This is characterized as obstructed LOS propagation in
[4]. Based on a measurement campaign for the air-to-ground
channel in the city center of Bristol in UK reported in [4],
it was shown that if the propagation is classified into three
segments, LOS, obstructed LOS, and NLOS, the shadowing
standard deviation σSF is roughly 1, 3, and 5 dB, respectively.
Such observation gives us the insight that if we can identify
more propagation segments, the variance of ξk in (1) will
decrease, and hence a K-segmented channel model can make
prediction of the channel with high precision.

C. Radio Map

Define the radio map as

γ̄(xD) =
K
∑

k=1

(

βk − 10αk log10 d(xD)
)

I{(xD,xU) ∈ Dk} (2)

where we drop the shadowing component ξk in (1) and treat
ξk as observation noise to γ̄(xD). Note that when the variance
σ2
k of ξk is small, γ̄(xD) yields a good approximation of the

actual channel γ(xD) in (1).

We focus on reconstructing γ̄(xD) from a few training sam-
ples collected from offline channel measurements at different
locations. Existing methods, such as support vector regression,
artificial neural networks, and the matrix completion, do not
explicitly exploit the segmented structure of γ̄(xD) modeled
in (2), and hence are not suitable for radio map reconstruc-
tion. Such a reconstruction problem is challenging, because
the channel measurement data does not directly contain the
segment information. Instead, the system needs a clustering al-
gorithm to partition the training data into K groups according
to group-specific models with unknown parameters αk and βk

to be learned. In the following sections, a segmented regression
method is proposed for radio map reconstruction.



III. LEARNING THE SEGMENTED MODEL VIA

SEGMENTED REGRESSION

Consider a set of measurement samples {(x(l), y(l)) : l =
1, 2, . . . , N}, where x(l) = x

(l)
D represents the UAV position

and y(l) represents the channel gain measured at position x(l).2

According to the segmented propagation model (2), each data
sample is to be classified into one of the K segments. Let

z(l) = (z(l)1 , z(l)2 , . . . , z(l)K ) be the label for the data sample

(x(l), y(l)), where z(l)k = 1 means that (x(l), y(l)) belongs

to the kth propagation segment, and z(l)k = 0 otherwise.
The labels z(l) are not observed but to be determined by the
training algorithm.

Given that (x, y) belongs to the kth propagation segment,
the observation model can be written as

y = αkg(x) + βk + ξk (3)

where g(x) = −10 log10(∥xD − xU∥2) and ξk ∼ N (0,σ2
k) is

the observation noise. Note that the variance σ2
k is not known

prior to the training.

The joint probability density function (PDF) for (x, y)
conditioned on zk = 1 is thus given by

pk(x, y) =
1√
2πσk

exp

{

− (y − αkg(x)− βk)2

2σ2
k

}

(4)

and the joint PDF of (x, y, z) can be written as

p(x, y, z) = P{X = x, Y = y
∣

∣Zk = 1}P{Zk = 1}
= pk(x, y)πk

=
K
∏

k=1

pk(x, y)
zk ×

K
∏

k=1

πzk
k . (5)

where

πk ! P{Zk = 1}

is the marginal probability of a data sample (x, y) belonging
to the kth propagation segment. Note that

K
∑

k=1

πk =
K
∑

k=1

P{Zk = 1} = 1.

A. A Maximum Likelihood Approach

Let θ = {αk,βk,σk,πk}Kk=1 be the collection of parame-
ters. Based on the measurement samples and the set of labels
{x(l), y(l), z(l)}, the likelihood function of the parameter θ is
given by

L(θ) =
N
∏

l=1

p(x(l, y(l), z(l)
∣

∣θ) (6)

2As a straight forward extension, one can consider a general case of varying

the user position as well: x(l) = (x(l)
D ,x

(l)
U ).

and a maximum likelihood estimation (MLE) of θ can be
obtained as the solution to the following problem

maximize
θ,{z(l)}

N
∏

l=1

p(x(l, y(l), z(l)
∣

∣θ) (7)

subject to

K
∑

k=1

πk = 1 (8)

Maximizing the likelihood function in (6) is equivalent to
maximizing the log-likelihood function logL(θ). Using the
joint PDF p(x, y, z) in (5), the log-likelihood function can be
computed as follows

logL(θ) =
N
∑

l=1

K
∑

k=1

z(l)k

[

log πk + log pk(x
(l), y(l))

]

. (9)

Note that the exact expression of log-likelihood function

logL(θ) is not available, since the segment labels z(l)k are

unknown. However, the statistics of z(l)k can be computed can
be computed in terms of the parameter θ and the samples
{x(l), y(l)}. Specifically, we have

z̄(l)k (θ) ! E{Z(l)
k

∣

∣x
(l), y(l), θ}

= P

{

Z(l)
k = 1

∣

∣x
(l), y(l), θ

}

=
pk(x(l), y(l)

∣

∣θ)P
{

Z(l)
k = 1

∣

∣θ
}

∑K
j=1 pj(x

(l), y(l)
∣

∣θ)P
{

Z(l)
j = 1

∣

∣θ
}

=
pk(x(l), y(l)

∣

∣θ)πk
∑K

j=1 pj(x
(l), y(l)

∣

∣θ)πj

. (10)

Therefore, we consider to maximize the expected log-
likelihood E

{

logL(θ)
}

given by

E
{

logL(θ)
}

=
N
∑

l=1

K
∑

k=1

z̄(l)k (θ)
[

log πk + log pk(x
(l), y(l))

]

. (11)

As a result, the MLE problem (7) can be relaxed into

maximize
θ

E
{

logL(θ)
}

(12)

subject to

K
∑

k=1

πk = 1.

B. The Iterative Segmented Regression Algorithm

The expected MLE problem (12) is non-convex, and hence
it is difficult to find the optimal solution. Therefore, we focus
on an efficient iterative search for a sub-optimal solution to
(12). In particular, the following two properties of the objective

function (11) can be exploit: first, the z̄(l)k (θ) is easy to

compute using (10), and second, by fixing z̄(l)k , the objective
function (11) is concave in πk, αk, βk, and σk , respectively.

Let θ(t) be the collection of parameters at the tth iteration.
We have

z̄(l)k (θ(t)) =
pk(x(l), y(l)

∣

∣θ(t))π(t)
k

∑K
j=1 pj(x

(l), y(l)
∣

∣θ(t))π(t)
j

. (13)



The objective function (11) then becomes

Q(·
∣

∣θ(t))

=
N
∑

l=1

K
∑

k=1

z̄(l)k (θ(t))

[

log πk

+ log
( 1√

2πσk

exp
{

− (y − αkg(x)− βk)2

2σ2
k

})

]

.

Denote the function Q(α,β
∣

∣θ(t)) as Q(·
∣

∣θ(t)) by fixing

all the variables as θ(t) except for {αk,βk}; i.e., σk = σ(t)
k

and πk = π(t)
k . Similar notations apply to Q(σ

∣

∣θ(t)) and

Q(π
∣

∣θ(t)). We update the set of parameters θ(t+1) as the
solutions to the following problems

maximize
{αk,βk}

Q(α,β
∣

∣θ(t)) (14)

maximize
{σk}

Q(σ
∣

∣θ(t)) (15)

and

maximize
{πk}

Q(π
∣

∣θ(t)) (16)

subject to

K
∑

k=1

πk = 1.

The optimization problems (14)–(16) are convex. They can
be solve by Lagrangian methods and the solutions are given
as follows.

Proposition 1 (Update equations): The solutions to the
maximization problems (14)–(16) are given by

[

α(t+1)
k

β(t+1)
k

]

= A
−1

b (17)

σ(t+1)
k =

√

√

√

√

∑N
l=1 z̄

(l)
k (θ(t))(y(l) − α(t)

k g(x(l))− β(t)
k )2

∑N
l=1 z̄

(l)
k (θ(t))

(18)
and

π(t+1)
k =

1

N

N
∑

l=1

z̄(l)k (θ(t)) (19)

respectively, where

A =

⎡

⎢

⎢

⎢

⎢

⎣

N
∑

l=1

z̄(l)k g(x(l))2
N
∑

l=1

z̄(l)k g(x(l))

N
∑

l=1

z̄(l)k g(x(l))
N
∑

l=1

z̄(l)k

⎤

⎥

⎥

⎥

⎥

⎦

and

b =

⎡

⎢

⎢

⎢

⎢

⎣

N
∑

l=1

z̄(l)k g(x(l))y(l)

N
∑

l=1

z̄(l)k y(l)

⎤

⎥

⎥

⎥

⎥

⎦

.

Proof: Problems (14)–(15) can be solved by setting the
partial derivatives ∂

∂αk
Q(α,β

∣

∣θ(t)), ∂
∂βk

Q(α,β
∣

∣θ(t)), and

∂
∂σk

Q(σ
∣

∣θ(t)) to zero. Problem (16) can be solved by first
forming the Lagrangian function

L(π,λ
∣

∣θ(t)) = Q(π
∣

∣θ(t)) + λ
(

K
∑

k=1

πk − 1
)

(20)

and computing the solutions to the Karush-Kuhn-Tucker
(KKT) conditions ∂

∂πk
L(π,λ

∣

∣θ(t)) = 0, λ(
∑K

k=1 πk−1) = 0,
and λ ≥ 0.

As a result, the iterative segmented regression algorithm
proceeds as computing update equations (13), (17)–(19) in a
recursive way until convergence.

Remark 2 (Initialization): An easy initialization is to first
partition the set of measurement samples {(x(l), y(l))} into K
groups using K-means algorithm purely based on the channel

gain y(l). The initial values z̄(l)k (θ(−1)) is then assigned as 1,
if the lth data sample is clustered into the kth group, and
0 otherwise. The initial values θ(0) are then computed by
(17)–(19).

Remark 3 (Convergence): If the variances σk are given, the
recursive algorithm specified by steps (13), (17), and (19) is
an expectation-maximization (EM) algorithm. This is because
with fixed σk , the function Q(α,β,π

∣

∣θ(t)) is concave jointly
in (α,β,π), and hence (17) and (19) give the optimal solution
to maximizing Q(α,β,π

∣

∣θ(t)). It is known that an EM type
algorithm converges to a local maximum of the expected log-
likelihood E{logL(θ)}.

IV. RADIO MAP RECONSTRUCTION

To reconstruct the radio map γ̄(x), we need to classify
each position x into one of the K segments based on the
parameter θ learned from the segmented regression algorithm,
and apply the segmented model {αk,βk,σk}Kk=1 to compute
the predicted channel gain y = γ̂(x).

There are many methods to build a classifier, such as logistic
regression, support vector machines, artificial neural networks,
and kernel estimation. Note that the goal of this paper is not
to find the best classifier for radio map reconstruction, but to
demonstrate the concept of the segmented learning approach
in radio map reconstruction. For exposition purpose, we illus-
trate a simple classification method using KNN approach as
follows.

For a given position x, define the index set of the M -nearest
neighbors of x as

N (x) ! argmin
S⊆{1,2,...,N},|S|=M

∑

m∈S

∥x− x
(m)∥. (21)

The segment label at position x is given by

ẑ(x) = µ
∑

m∈N (x)

K(x,x(m))z̄(m) (22)

where

K(x,x(m)) = exp
{

− ∥x− x(m)∥2

s

}

(23)

is a kernel function to weight the data points
(x(m), y(m), z̄(m)) in the set TL indexed by the neighbor
set N (x), s > 0 is the kernel parameter, and µ > 0 is to



normalize ẑ(x) such that the components of ẑ(x) sum up

to 1; i.e.,
∑K

k=1 ẑk(x) = 1. The kernel function weights the
data samples m ∈ N (x) according to their distance to the
position x.3

Based on the reconstructed label ẑ(x) in (22), two re-
construction methods for the channel gain at position x are
considered.

Soft reconstruction: For UAV position x,

γ̂S(x) =
K
∑

k=1

(

βk − 10αk log10 d(x)
)

ẑk(x). (24)

Note that we have γ̂S(x) = E{γ̄(x)}, where the expectation
is taken over the estimated distribution of the segment label
ẑ(x).

Hard reconstruction: For UAV position x,

γ̂H(x) = βk̂ − 10αk̂ log10 d(x) (25)

where k̂ = argmaxk=1,2,...,K ẑk(x) is the most likely seg-
ment.

As compared to the hard reconstruction, soft reconstruction
γ̂S(x) may yield smaller reconstruction errors, since it is a
minimum mean-square error (MMSE) estimator of γ̄(x) based
on the estimated distribution ẑ(x). However, it violates the
segmented propagation model of the radio map in (2). By
contrast, the hard construction γ̂H(x) first makes a maximum

likelihood detection k̂ on the propagation segment, and then
applies the segmented propagation model (2) to compute the
channel gain. As a result, some UAV positioning algorithms
can still exploit the segmented propagation property to find
the best UAV position [11].

V. NUMERICAL RESULTS

The top view of the dense urban city is shown in Fig.
2, where the buildings, represented by bricks, are densely
distributed in a 1000×1000 m Manhattan-like area. The mean
height of the building is 22.5 m and the maximum building
height is 45 m. The UAV hovers over the city at a height of
50 m. There are four users randomly dropped in the city. We
consider two propagation segments for exposition: LOS and
NLOS. The model parameters are chosen as α1 = 2.27,β1 =
−40, α2 = 3.64, and β2 = −30 according to some appropriate
scenarios in the WINNER II channel model. The variances of
the observation noise are σ2

1 = 1 and σ2
2 = 3.

We first visualize the reconstructed radio map by the
proposed segmented regression algorithm. Fig. 4 shows the
true and reconstructed radio maps for four different user
locations indicated in Fig. 2. Measurement samples are col-
lected uniformly from N = 2500 UAV positions. The hard
reconstruction method in (25) is used to build the reconstructed
radio maps. The kernel parameter in (23) is chosen as s = 300,
based on cross-validations. It is observed that first, the two
propagation segments due to terrain topology are clearly
identified in the reconstructed radio maps. Note that such

3To determine the choice of kernel function and the parameter s are beyond
the scope of this paper. A standard way to choose s through cross-validations.
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Figure 2. A map of the buildings and the users, where the buildings are
represented by bricks, in which, dark bricks represent low buildings and light
bricks represent high buildings. User 4 is on the rooftop of the building.
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Figure 3. Reconstruction error versus number of training samples N .

map structure is shown to be important in UAV positioning
[11]. Second, within each segment, the radio maps are smooth
thanks to the log-distance model exploited by the algorithm.
Finally, the peaks of the radio maps reveal the user locations
as maximum power appears when the UAV is on top of the
user.

We then evaluate the system performance measured by the
root mean squared error (RMSE) defined as follows:

E =
√

E
{(

γ̂(x)− γ̄(x)
)2}

(26)

where the expectation is evaluated empirically over 2.4× 105

random test positions x. The radio map reconstruction error
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Figure 4. True radio maps γ̄(x) and the reconstructed radio maps γ̂H(x) for four different user locations. The propagation structures are clearly reconstructed.

from the proposed segmented regression algorithm is com-
pared over the KNN baseline:

γ̂KNN(x) =
∑

m∈N (x)

K(x,x(m))y(m)

where N (x) defined in (21) is the index set of the M -nearest
neighbor data samples of x.

Fig. 3 shows the RMSE versus the number of training
samples N over different observation noise variances σk in the
channel model (1). It is observed that the RMSE decreases as
the training size N increases. The proposed schemes achieve
the same RMSE using only 1/10 to 1/2 training samples
as required by the KNN baseline. In addition, the proposed
schemes are hardly affected by observation noise, especially
under large training sample size N . As a comparison, the
performance of the KNN baseline degrades a lot in presence
of large noise.

VI. CONCLUSION

This paper proposed a segmented regression approach to
learn the radio map of the air-to-ground channel for appli-
cations in UAV-aided wireless communications. Based on the
K-segment ray tracing model, a joint clustering and regres-
sion problem was formulated using the maximum likelihood
approach. An iterative clustering and regression algorithm
was developed to learn the segmented model from a few
training samples. The radio map was then reconstructed using
a kernel-based method. Numerical results demonstrated that
the proposed method achieves the same reconstruction error
using as few as 1/10 training samples as required by the
KNN baseline, and at the same time, is able to identify
the propagation segments, which are useful for optimal UAV
positioning.
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