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Abstract—This work deals with beamforming for the MaMISO
Interfering Broadcast Channel (IBC), i.e. the Massive Multi-
Input Single-Output (MaMISO) Multi-User Multi-Cell downlink
(DL). The novel beamformers are here optimized for the Expected
Weighted Sum Rate (EWSR) for the case of Partial Channel
State Information at the Transmitters (CSIT). Gaussian partial
CSIT can optimally combine channel estimate and channel
covariance information. We introduce the first large system
analysis for optimized beamformers with partial CSIT. In the
case of Gaussian partial CSIT, the beamformers only depend on
the means and covariances of the channels. The large system
analysis furthermore allows to predict the EWSR performance
on the basis of the channel statistics only.

Index Terms—Massive MIMO; multi-user; multi-cell; sum
rate; beamforming; partial CSIT; large system analysis

I. INTRODUCTION

In this work, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple User Equipments (UEs) simultaneously.
Two popular approaches for maximum Weighted Sum Rate
(WSR) beamformer (BF) optimization are the exploitation of
the WSR-WSMSE (Weighted Sum MSE) correspondence as
in [10] or the concave WSR minorization approach as in [9].
In the MISO case, the BF are proportional in both cases,
but the stream powers are optimized with an interference
aware waterfilling algorithm in [9] whereas [10] alternates
between DL and dual UL MMSE updates for Rx/Tx. In
the MIMO case, the BF in [9] are found as generalized
eigenvectors resulting from optimal Signal-to-Leakage-plus-
Noise (SLNR) considerations, whereas the DL/UL ping-pong
MMSE updates in [10] correspond to power method iterations
for these generalized eigenvectors.

However, Multi-User (MU) systems have precise require-
ments for CSIT which is more difficult to acquire than CSI at
the Rx (CSIR). Hence we focus here on the more challenging
downlink (DL) and we consider maximizing the Expected
WSR (EWSR) with partial CSIT. Earlier works have attempted
optimal partial CSIT designs for MU MIMO, e.g. the Expected
WSMSE (EWSMSE) approach applied in [1] for MIMO IBC
beamformer (BF) design, based on an extension of [10] to
the partial CSIT case. However, the EWSMSE approach is

suboptimal and cannot even be used in the zero channel
mean case (case of covariance CSIT only). In spite of that,
it has been mistakenly considered as optimal as recently as
in [2]. It is also desirable to have deterministic alternatives
to the cumbersome (though optimal) stochastic approximation
solution of [3]. We treat the Gaussian CSIT case, optimally
combining mean (channel estimate) and (channel) covariance
information. The Gaussian model allows to exploit both mean
(channel estimate) and covariance information, which are
actually the only statistics that matter in the large system
limit, regardless of actual channel (estimate) didstribution. The
goal here is to go beyond the extreme of Zero-Forcing (ZF)
and to introduce a meaningful BF design at finite SNR and
with partial CSIT. Over the last year or so, a number of
research works have proposed to exploit the channel hardening
in Massive MIMO (MaMIMO) to reduce global instantaneous
CSIT requirements to local instantaneous CSIT plus global
statistical CSIT. This only works for MISO systems [4] in
which all the work needs to be done by the transmitters. We
may remark that in the case of MIMO, in which UEs possess
a limited number of antennas which contribute actively (e.g. to
Zero-Forcing (ZF)/Interference Alignment (IA) at high SNR),
the interference subspace and hence the receiver at the UEs
does not harden.

A significant push for large system analysis in MaMIMO
systems appeared in [5]. It allows to obtain deterministic
(instead of fast fading channel dependent) expressions for
various scalar quantities, facilitating the analysis and design of
wireless systems. E.g. it may allow to evaluate beamforming
performance without computing explicit beamformers. The
analysis in [5] allowed e.g. the determination of the optimal
regularization factor in Regularized ZF (R-ZF) BF, both with
perfect and partial CSIT. A little known extension appeared
in [6] for optimal beamformers, but only for the perfect CSIT
MISO BC case. Some other extensions appeared recently in
[7] or [8] where MISO IBC is considered with perfect CSIT
and weighted R-ZF BF, with two optimized weight levels,
for intracell or intercell interference. The contributions of this
paper are (see also the Simulations and the Conclusions):

• A novel optimal (max EWSR) beamforming design for
MISO IBC with partial CSIT, an extension of the concave



WSR minorization approach in [9] to the partial CSIT
case. Whereas this approach finds BF’s as generalized
eigenvectors of higher rank matrices, also in the case of
MISO with partial CSIT, we propose Jacobi iterations for
reduced computational complexity and simplified large
system analysis.

• A novel large system analysis of the proposed BF de-
sign, that constitutes the first large system analysis of
optimized BF design with partial CSIT.

II. THE IBC SIGNAL MODEL

In the rest of this paper we shall consider a per stream
approach (which in the perfect CSI case would be equivalent
to per user). In an IBC formulation, one stream per user can be
expected to be the usual scenario. In the development below, in
the case of more than one stream per user, we shall treat each
stream as an individual user. So, consider again an IBC with
C cells with a total of K users. We shall consider a system-
wide numbering of the users. User k is served by BS bk. We
shall initially consider users equipped with Nk antennas but
the partial CSIT developments and associated large system
analysis will be valid only for the MISO case (Nk = 1). The
Nk × 1 received signal at user k in cell bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the Nk ×Mbk channel from BS bk to user
k. BS bk serves Kbk =

∑
i:bi=bk

1 users. We considering a
noise whitened signal representation so that we get for the
noise vk ∼ CN (0, INk

). The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user k
will apply a linear Rx filter fk to maximize the signal power
(diversity) while reducing any residual interference that would
not have been (sufficiently) suppressed by the BS Tx. The Rx
filter output is x̂k = fHk yk

x̂k = fHk Hk,bk gk xk +

K∑
i=1,6=k

fHk Hk,bi gi xi + fHk vk

= fHk hk,k xk +
∑
i 6=k

fHk hk,i xi + fHk vk

(2)

where hk,i = Hk,bi gi is the channel-Tx cascade vector.

III. MAX WSR WITH PERFECT CSIT

Consider as a starting point for the optimization the
weighted sum rate (WSR)

WSR = WSR(g) =

K∑
k=1

uk ln
1

ek
(3)

where g represents the collection of BFs gk, the ek = ek(g) are
the Minimum Mean Squared Errors (MMSEs) for estimating

the xk:

1

ek
=1+gHk H

H
k,bk

R−1

k
Hk,bkgk=(1−gHk HH

k,bk
R−1
k Hk,bkgk)−1

Rk = Hk,bkQkH
H
k,bk

+Rk , Qi = gig
H
i ,

Rk =
∑
i 6=k

Hk,biQiH
H
k,bi + INk

.

(4)
Rk, Rk are the total and interference plus noise Rx covariance
matrices resp. and ek is the MMSE obtained at the output
x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1
k Hk,bkgk . (5)

The WSR cost function needs to be augmented with the power
constraints ∑

k:bk=j

tr{Qk} ≤ Pj . (6)

In a classical difference of convex functions (DC program-
ming) approach, Kim and Giannakis [10] propose to keep the
concave signal terms and to replace the convex interference
terms by the linear (and hence concave) tangent approxi-
mation. Note that it is more appropriate to consider this
DC programming as an instance of a minorization approach
because whereas the linearization is carried out w.r.t. the Tx
covariance matrices Qk, the resulting problem then gets repa-
rameterized in terms of the BF’s gk, and the minorization is
insensitive to the parameterization. More specifically, consider
the dependence of WSR on Qk alone. Then

WSR = uk ln det(R−1

k
Rk) +WSRk ,

WSRk =
∑K
i=1,i6=k ui ln det(R−1

i
Ri)

(7)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion in Qk
around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = −
∂WSRk(Qk,Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑
i 6=k

uiH
H
i,bk

(R̂−1

i
−R̂−1

i )Hi,bk

(8)
Note that the linearized (tangent) expression for WSRk con-
stitutes a lower bound for it. Now, dropping constant terms,
reparameterizing the Qk = gkg

H
k , performing this linearization

for all users, and augmenting the WSR cost function with the
constraints, we get the Lagrangian WSR(g, ĝ, λ)

=

C∑
j=1

λjPj+

K∑
k=1

uk ln(1+gHk B̂kgk)−gHk (Âk+λbkI)gk (9)

where B̂k = HH
k,bk

R̂−1

k
Hk,bk . (10)

The gradient (w.r.t. gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!



And it allows an interpretation as a generalized eigenvector
condition

B̂k gk =
1 + gHk B̂kgk

uk
(Âk + λbkI)gk (11)

or hence g
′

k = Vmax(B̂k, Âk + λbkI) is the (normalized)
”max” generalized eigenvector of the two indicated matrices,
with max eigenvalue σk = σmax(B̂k, Âk + λbkI). Let σ(1)

k =

g
′H
k B̂kg

′

k, σ(2)
k = g

′H
k Âkg

′

k. The advantage of formulation (9)
is that it allows straightforward power adaptation: introducing
stream powers pk ≥ 0 and substituting gk =

√
pk g

′

k in (9)
yields

WSR=

C∑
j=1

λjPj +

K∑
k=1

{uk ln(1 + pkσ
(1)
k )− pk(σ

(2)
k +λbk)}

which leads to the following interference leakage (σ(2)
k ) aware

water filling

pk =

(
uk

σ
(2)
k + λbk

− 1

σ
(1)
k

)+

(12)

where the Lagrange multipliers are adjusted to satisfy the
power constraints

∑
k:bk=j pk = Pj . With σ(2)

k = 0 this would
be standard waterfilling. The minorization approach is crucial
for this waterfilling power optimization.

IV. JOINT MEAN AND COVARIANCE GAUSSIAN CSIT

In this section we drop the user index k for simplicity. The
separable MIMO correlation model is

H = H + C1/2
r H̃ C

1/2
t (13)

where H = EH , and C1/2
r , C1/2

t are Hermitian square-roots
of the Rx and Tx side covariance matrices

E(H −H)(H −H)H = tr{Ct} Cr
E(H −H)H(H −H) = tr{Cr} Ct

(14)

and the elements of H̃ are i.i.d. ∼ CN (0, 1). It is also of
interest to consider the total Tx side correlation matrix

St = EHHH = H
H
H + tr{Cr}Ct . (15)

V. MAMIMO LIMIT

If the number of Tx antennas M becomes very large, we
get a convergence for any quadratic term of the form

HQHH M→∞−→ EH HQHH = HQH
H

+ tr{QCt}Cr . (16)

and hence we get the following MaMIMO limit matrices

R̆k = INk
+

K∑
i=1

{
Hk,biQiH

H

k,bi + tr{QiCt,k,bi}Cr,k
}

R̆k = INk
+

K∑
i=1, 6=k

{
Hk,biQiH

H

k,bi + tr{QiCt,k,bi}Cr,k
}

(17)
B̆k = H

H

k,bk
R̆−1

k
Hk,bk + tr{Cr,kR̆−1

k
}Ct,k,bk (18)

Ăk =

K∑
i6=k

ui

[
H
H

i,bk

(
R̆−1

i
− R̆−1

i

)
Hi,bk

+tr{
(
R̆−1

i
− R̆−1

i

)
Cr,i}Ct,i,bk

]
.

(19)

It suffices now to replace the matrices Ak, Bk in the DC
programming approach of Section III by the matrices Ăk, B̆k
above to get a maximum EWSR design.

VI. THE MISO CASE

In this case Cr = 1 and we shall denote the matrices R̆,
HH as the scalar r̆ and the vector h. In the partial CSIT
case, the term hhH of the perfect CSIT case gets replaced
by the posterior correlation matrix S = hh

H
+ Ct. For the

optimization of gk, we get

WSR = uk ln(1 + gHk B̆kgk)− gHk (Ăk + λbkI)gk

with B̆k = r̆−1

k
Sk,bk , Ăk =

K∑
i 6=k

uidiSi,bk
(20)

and di = r̆−1

i
− r̆−1

i =
gHi Si,bk

gi
r̆ir̆i

. The gradient of (20) w.r.t.
gk yields

ak Sk,bk gk = (Ăk + λbkI) gk , ak =
uk/r̆k

1 + gHk B̆kgk
(21)

which leads to the generalized eigenvector solution
g

′

k =Vmax(Sk,bk , Ăk+λbkI) and associated generalized eigen-
value 1/ak = λmax(Sk,bk , Ăk + λbkI). Note that in the
MISO case with full CSIT, this g

′

k would just be proportional
to (Ăk + λbkI)−1hk,bk . However, in the MIMO case, or
in the MISO case with partial CSIT, a genuine eigenvector
computation is required (which in the WSMSE method gets
done iteratively using the power method). The following (Ja-
cobi style) iterative method avoids explicit (large dimension)
eigenvector computation and is amenable to large system
analysis. Assuming that hk,bk is non-zero (otherwise a random
vector can be taken), (21) can be rewritten as

ak hk,bkh
H

k,bk
gk = (Ăk + λbkI − ak Ct,k,bk) gk (22)

which leads to the following explicit solution

g
′

k = (Ăk + λbkI − ak Ct,k,bk)−1 hk,bk gk =
√
pkg

′

k . (23)

We will perform a large system analysis on this solution in the
next section. At this point, we should note that the expectations
in Section IV are in fact conditional expectations E.|H{.}.
Whereas the beamformers are determined for given H , the
resulting EWSR ultimately depends also on the distribution of
H . We shall assume, as in [5], that the covariance matrix of
H is also proportional to Ct so that we only have to consider
one covariance matrix for both H and H̃ (and even H). Hence
(13) can be rewritten as follows

h
H

k,bk
= (
√

1− τ2h
′H
k,bk

+ τ h̃Hk,bk)C
1
2

t,k,bk
(24)

where h
′

k,bk
and h̃Hk,bk are independent with i.i.d. elements and

hk,bk =
√

1− τ2C
1
2

t,k,bk
h

′

k,bk
represents the true channel.



VII. THE DETERMINSTIC EQUIVALENT OF THE SINR

The deterministic equivalents for scalar quantities that arise
here in MaMISO are basically a consequence of the law of
large numbers. We shall restrict the analysis to Mi ≡M . The
precoder for user k is expressed as the following:

g
′

k = (Ăk + λbkI − akCt,k,bk)−1hk,bk (25)

where Ăk is given in (20) is suitable for large system analysis.
However, in order to ease the procedure the Lagrangian
term λbk can be fixed optimally to λbk = tr

Dbk

ρbk
; Dbk =

diag(vec(Dbk)) with Dbk = {di;∀i : bi = bk} as in [10],
vec(Dbk) is the vector composed of all (diagonal) elements
of Dbk , di = (r̆−1

i
−r̆−1

i ) = −r̆−1

i
(hi,biQih

H

i,bi)r̆
−1
i = |fi|2 wi

[Lemma 2; [5]]; where fi and wi are the Rx filter and the
precoding weight respectively as in [6]; and ρbk =

Pbk

1 is the
signal-to-noise ratio.

In the following, a performance analysis is conducted for
the proposed precoder. The large-system limit is considered, in
which M and K go to infinity while keeping the ratio K/M
finite such that lim supM K/M <∞ and lim infM K/M > 0.
The procedure should be understood in the way that, for each
set of system dimension parameters M and K we provide
an approximate expression for the SINR γk, which becomes
more accurate as the system dimensions increase. The large
system analysis follows the DC programming iterations. The
precoders are initialized using Matched Filter (MF) precoders.
Let γMF

k be the SINR of user k under MF precoding then,
γMF
k − γMF

k
M→∞−−−−→ 0 [7], almost surely, with

γMF
k =

1

1
βbk

ρbk
+ 1

M2

K∑
i=1,i6=k

trΘk,biΘi,bi

(26)

where Θk,bi = Ct,k,bi∀i,∀k and ξbk is the BF normalization
parameter. For our precoder, a deterministic equivalent of the
SINR is provided in the following theorem:
Theorem 1: Let γk be the SINR of the kth user with the
precoder defined in (25). Then, a deterministic equivalent γ(j)

k

at iteration j > 0 and under MF initialization, is given by γ(j)
k

γ
(j)
k =

(1− τ2)m
(j) 2
k (1 +m

(j)
k )2

Υ
(j)

k + Υ̂
(j)

k + d
(j)

k

Ψ
(j)
bk

ρbk
(1 +m

(j)
k )2

(27)

where

m
(j)
k =

1

M
tr{Θ(j)

k Vk,bk} , Ψ
(j)

bk
=

1

M

K∑
i=1

e′i,bk (28)

Υ
(j)

k =
1

M

K∑
l=1,l 6=k

dk e
′
k,l,bk

(29)

Υ̂
(j)

k = dk
1

M
(1 +m

(j)
k )2

K∑
l=1

1

(1 +m
(j)
l )2

e′k,l,bl (30)

with Θk,bi = dkΘk,bi , ak = (1/dk), m
(j)
k,bi

=
1
M tr{Θ(j)

k,biVk,bi} and f
(j)

k , w
(j)
k and d

(j)

k are given by

f
(j)

k =
1√

P
(j−1)

k

γ
(j−1)
k

1 + γ
(j−1)
k

(31)

√
P

(j−1)

k =
1

d
(j−1)

k

√
Pbk

Ψ
(j−1)

bk

m
(j−1)
k (32)

w
(j)
k = (1 + γ

(j−1)
k ) ; d

(j)

k = w
(j)
k f

2,(j)

k . (33)

Let Vk,bi = (Fbi +λbiIM−akCt,k,bi +

K∑
j 6=k

djCt,j,bi)
−1 (34)

with λ
(j)

bk
=

trD
(j)
bk

Mρbk
, three systems of coupled equations have to

be solved. First, we need to introduce ek,bi∀{bi, k} ∈ {C,K}
(K is the set of all users) which form the unique positive
solutions of

ek,bi =
1

M
tr{Θk,biVk,bi}, (35)

Fbi =
1

M

K∑
j=1

Θj,bi

1 + ej,bi
. (36)

ek,bk and mk denote ek and mbk,k respectively. Secondly, we
need e′1, ..., e

′
1,K which form the unique positive solutions of

e′k =
1

M
trΘkVk,bk(F ′bk + IM )Vk,bk , (37)

F ′bk =
1

M

K∑
j=1

Θj,bke
′
j

(1 + ej,bk)2
. (38)

And finally, we provide e′k,i,bi∀{bi, k, i} ∈ {C,K,K}

e′k,i,bi =
1

M
tr{Θi,biVi,bi(F

′
i,bi + Θi)Vi,bi} (39)

F ′i,bi =
1

M

K∑
j=1

Θj,bie
′
i,j,bi

(1 + ej,bi)
2
. (40)

For j ≥ 1, define Γ
(j)
bk

= 1
MHH

bk
D

(j)
Hbk + λ

(j)

bk
IM , with

Hbk = [h1,bk , ..., hk−1,bk , hk+1,bk , ..., hK,bk ]H and D =
diag(D1, ...DC). The precoder at the end of iteration j is
given by

g
(j)
k =

ξ
(j)
bk

M
(Γ

(j)
bk

)−1hk,bk (41)

for each user k , where ξ(j)
bk

is

ξ
(j)
bk

=

√√√√ Pbk
1
M2 tr(Γ

(j)
bk

)−2HH
b̂k
A
H,(j)

bk
W

2,(j)

bk
A

(j)

bk
Hb̂k

=

√
Pbk

Ψ
(j)
bk

.

Hb̂k
= [Hbk,i for all i s.t. bi = bk]H . We derive

the deterministic equivalents of the normalization term ξ
(j)
bk

,
the signal power |gH,(j)k hk,bk |2 and the interference power∑K
i=1 h

H
k,bi

g
(j)
i g

H,(j)
i hk,bi similarly to [5] and [6]. The proof

is omitted due to lack of space.



VIII. NUMERICAL RESULTS

We plot the performance of the precoder in (25) with MF
initialization and compare it to the large system approximation
in Theorem 1. The channel correlation matrix is modeled as
in [9]. Figure 1 shows the performance of the precoder and
its approximation for i.i.d. channels for C = 2 cells. For the
simulations of (25), we have used 1000 channel realizations.
It can be observed that for i.i.d channels the approximation
is very accurate which validates our asymptotic approach.
Although the sum rate expression for the approximation ap-
proach (27) seems to be complex, we need to calculate it only
once per a given SNR (independent of channel realization).
In Figure 2 we consider the actual EWSR (averaged over

Fig. 1. Expected sum rate comparison for C = 2,K = 3,M = 10, N = 1,
Ct,k,bi = IM ∀i,∀k and τ2 = 1

10
.

1000 channel realizations) for another scenario, in which the
channels exhibit low channel covariance rank (few domi-
nating multipath), in which the covariance information adds
significant contributions to the channel estimate based CSIT.
We perceive an unlimited gain for the proposed MaMISO
asymptotic EWSR approach with respect to EWSMSE of [1]
in the case of low rank correlation matrices, as SNR increases,
though at medium SNR the order is slightly reversed for
reasons unexplained at the time of writing.

IX. CONCLUSION

In this work, we derived and presented an asymptotically
optimal beamforming algorithm for the case of partial CSIT
and its large system performance analysis. Important EWSR
gains have been illustrated over the naive approach in which
the true channels are replaced by their estimates in a perfect
CSIT approach, and also over the more sophisticated approach
which relates EWSR to EWSME. The gain over EWSMSE
comes from exploiting the channel covariance information also
in the signal power (and not only in the interference terms).
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