Preconditioning Kernel Matrices
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Kernel Machines

@ Operate in a high-dimensional, implicit feature space
@ Rely on the construction of an n x n Gram matrix K
o E.g. RBF : k(x;,%;) = 0” exp (—3d?)

where d? = (x; — %) A(x; — )
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Solving Linear Systems

@ Involve the solution of linear systems Kz = v
@ Cholesky Decomposition

e K must be stored in memory!
o O(n?) space and O(n?) time - unfeasible for large n
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Solving Linear Systems

@ Involve the solution of linear systems Kz = v
@ Cholesky Decomposition

e K must be stored in memory!

o O(n?) space and O(n?) time - unfeasible for large n
o Conjugate Gradient

e Numerical solution of linear systems
o O(tn?) for t CG iterations - in theory t = n (possibly worse!)
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Solving Linear Systems

e Preconditioned Conjugate Gradient (henceforth PCG)

@ Transforms linear system to be better conditioned, improving
convergence

@ Yields a new linear system of the form P~1Kz = P~1v
e O(tn?) for t PCG iterations - in practice t < n
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CG PCG
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Preconditioning Approaches

@ Suppose we want to precondition Ky = K + A/
@ Our choice of preconditioner, P, should:

o Approximate K, as closely as possible
o Be easy to invert
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Preconditioning Approaches

@ Suppose we want to precondition Ky = K + A/
@ Our choice of preconditioner, P, should:

o Approximate K, as closely as possible

o Be easy to invert

@ For low-rank preconditioners we employ the Woodbury

inversion lemma:
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Preconditioning Approaches

@ Suppose we want to precondition Ky = K + A/
@ Our choice of preconditioner, P, should:

o Approximate K, as closely as possible

o Be easy to invert

@ For low-rank preconditioners we employ the Woodbury

inversion lemma:

e For other preconditioners we solve inner linear systems

once again using CG!
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Preconditioning Approaches

Nystrém P = Ky, KyliKyx + M where U C X
FITC P = KyyKyiKux + diag (K — Ky KiKux) + M
PITC P = Ky, KyiKyx + bldiag (K — Ky, Ky Kyx) + Al
Spectral Pj =2 Sm  cos [271s] (x; — x;)] + M

: _ T _ T
Partial SVD K = ANA = P= A[~,1:m]/\[1:m.1:m]A[l:m,-] + A
Block Jacobi P = bldiag (K) + A/
SKI P =WKyyWT + Al where Kyy is Kronecker

Regularization P=K+ X+l
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Comparison of Preconditioners vs CG
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Motivating Example - Gaussian Processes

GP prior GP regression example Inference result
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Gaussian Processes

@ Marginal likelihood

1 1
log[p(v|par)] = —5 log |Ky| — 5 Ky_1 + const.

@ Derivatives wrt par

Olog[p(ylpar)] _ 1., (K—l 9Ky ) L1 9Ky e

Opar; 2 Y Opar; 27 7Y gpar; Y
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Gaussian Processes - Stochastic Gradients

o Stochastic estimate of the trace - assuming E[rrT] = /, then

0K oK 0K
T (k125 ) -y (-t 2% g1 = B T 2%y
r( y 8par,-> ! <Ky 8pa,r,-E[rr ] ElrAy 8par,r

@ Stochastic gradient
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Gaussian Processes - Stochastic Gradients

o Stochastic estimate of the trace - assuming E[rrT] = /, then

0K oK, 0K
1 Yy 1 9%y T Tye—1 YNy
Tr (K > =Tr <Ky pa,r,-E[rr ]) =LK {r Ky par,-r]

Y Opar;

@ Stochastic gradient

Linear systems only!
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Gaussian Processes - Stochastic Gradients

o Stochastic estimate of the trace - assuming E[rrT] = /, then

0K oK 0K
-1 y _ -1 y T _ T -1 y
r <Ky 8par,-> =1 <Ky 8pa,r,-E[rr ]> =k {r Ky 8par,-r]

@ Stochastic gradient

Linear systems only!
Also applicable to non-Gaussian likelihoods!
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Experimental Setup

GP Kernel Parameter Optimization
@ Exact gradient-based optimization using Cholesky
decomposition (CHOL)
@ Stochastic gradient-based optimization (using ADAGRAD)
o Linear systems solved with CG and PCG
@ GP Approximations

o Variational learning of inducing variables (VAR)
o Fully Independent Training Conditional (FITC)
o Partially Independent Training Conditional (PITC)
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Results - ARD Kernel

Error Rate

Error Rate

Classification

Spam (n = 4061, d=57)

Regression

Power plant (n = 9568, d=4)
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Conclusions

o Contributions
e We provide an extensive discussion of preconditioning
e We incorporate preconditioning in GP models with both
Gaussian and non-Gaussian likelihoods
e We carry out exact GP inference at a fraction of the cost
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Conclusions

o Contributions
e We provide an extensive discussion of preconditioning
e We incorporate preconditioning in GP models with both
Gaussian and non-Gaussian likelihoods
e We carry out exact GP inference at a fraction of the cost

@ Ongoing work
e Extending this work to other kernel functions and models
o Implementation on a distributed framework
o Exploiting PCG in the solution of f(K)z=v
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Conclusions

o Contributions

e We provide an extensive discussion of preconditioning

e We incorporate preconditioning in GP models with both
Gaussian and non-Gaussian likelihoods

e We carry out exact GP inference at a fraction of the cost

@ Ongoing work
e Extending this work to other kernel functions and models
o Implementation on a distributed framework
o Exploiting PCG in the solution of f(K)z=v

Thank you!
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