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Kernel Machines

Operate in a high-dimensional, implicit feature space
Rely on the construction of an n × n Gram matrix K
E.g. RBF : k (xi , xj) = σ2 exp

(
−1

2d
2)

where d2 = (xi − xj)⊤ Λ (xi − xj)
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Solving Linear Systems

Involve the solution of linear systems Kz = v
Cholesky Decomposition

K must be stored in memory!
O(n2) space and O(n3) time - unfeasible for large n

Conjugate Gradient
Numerical solution of linear systems
O(tn2) for t CG iterations - in theory t = n (possibly worse!)
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Solving Linear Systems

Preconditioned Conjugate Gradient (henceforth PCG)
Transforms linear system to be better conditioned, improving
convergence
Yields a new linear system of the form P−1Kz = P−1v
O(tn2) for t PCG iterations - in practice t ≪ n

z

z0

CG

z

z0

PCG
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Preconditioning Approaches

Suppose we want to precondition Ky = K + λI

Our choice of preconditioner, P , should:
Approximate Ky as closely as possible
Be easy to invert

For low-rank preconditioners we employ the Woodbury
inversion lemma:

Ky = P =

P−1 =

For other preconditioners we solve inner linear systems
once again using CG!
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Preconditioning Approaches

Nyström P = KXUK
−1
UUKUX + λI where U ⊂ X

FITC P = KXUK
−1
UUKUX + diag

(
K − KXUK

−1
UUKUX

)
+ λI

PITC P = KXUK
−1
UUKUX + bldiag

(
K − KXUK

−1
UUKUX

)
+ λI

Spectral Pij =
σ2

m

∑m
r=1 cos

[
2πs⊤r (xi − xj)

]
+ λIij

Partial SVD K = AΛA⊤ ⇒ P = A[·,1:m]Λ[1:m,1:m]A
⊤
[1:m,·] + λI

Block Jacobi P = bldiag (K ) + λI

SKI P = WKUUW
⊤ + λI where KUU is Kronecker

Regularization P = K + λI + δI

Kurt Cutajar Preconditioning Kernel Matrices 6 / 13



Comparison of Preconditioners vs CG
Preconditioning Kernel Matrices

Concrete Dataset Power plant Dataset Protein Dataset
(n = 1030, d = 8) (n = 9568, d = 4) (n = 45730, d = 9)
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Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
# PCG iterations

# CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-

rank preconditioners (PITC, FITC and Nyström) achieve
significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this
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Motivating Example - Gaussian Processes

GP prior
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Gaussian Processes

Marginal likelihood

log[p(y|par)] = −1
2

log |Ky| −
1
2
yTK−1

y y + const.

Derivatives wrt par

∂ log[p(y|par)]
∂pari

= −1
2
Tr

(
K−1

y
∂Ky

∂pari

)
+

1
2
yTK−1

y
∂Ky

∂pari
K−1

y y
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Gaussian Processes - Stochastic Gradients

Stochastic estimate of the trace - assuming E[rrT] = I , then

Tr
(
K−1

y
∂Ky

∂pari

)
= Tr

(
K−1

y
∂Ky

∂pari
E[rrT]

)
= E

[
rTK−1

y
∂Ky

∂pari
r
]

Stochastic gradient

− 1
2Nr

Nr∑
i=1

r(i)
T
K−1

y
∂Ky

∂pari
r(i) +

1
2
yTK−1

y
∂Ky

∂pari
K−1

y y

Linear systems only!
Also applicable to non-Gaussian likelihoods!
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Experimental Setup

GP Kernel Parameter Optimization
Exact gradient-based optimization using Cholesky
decomposition (CHOL)
Stochastic gradient-based optimization (using ADAGRAD)

Linear systems solved with CG and PCG

GP Approximations
Variational learning of inducing variables (VAR)
Fully Independent Training Conditional (FITC)
Partially Independent Training Conditional (PITC)
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Results - ARD Kernel

Classification

Spam (n = 4061, d=57)
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Protein (n = 45730, d=9)
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Conclusions

Contributions
We provide an extensive discussion of preconditioning
We incorporate preconditioning in GP models with both
Gaussian and non-Gaussian likelihoods
We carry out exact GP inference at a fraction of the cost

Ongoing work
Extending this work to other kernel functions and models
Implementation on a distributed framework
Exploiting PCG in the solution of f (K ) z = v

Thank you!
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