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Abstract

Deep Gaussian Processes (DGPs) are probabilistic deep models obtained by stack-
ing multiple layers implemented through Gaussian Processes (GPs). Although
attractive from a theoretical point of view, learning DGPs poses some significant
computational challenges that arguably hinder their application to a wider variety
of problems for which Deep Neural Networks (DNNs) are the preferred choice.
We aim to bridge the gap between DGPs and DNNs by showing how random
feature approximations to DGPs can leverage the key strengths of DNNs, while
retaining a probabilistic formulation for accurate quantification of uncertainty. In
particular, we show how DGPs with arc-cosine kernels can be approximated by
DNNs with Rectified Linear Unit (ReLU) activation functions, leading to competi-
tive performance and faster inference compared to state-of-the-art DGPs inference
approaches.

1 Introduction

Deep Gaussian Processes (DGPs) [5] are deep probabilistic models obtained by stacking multiple
layers implemented through Gaussian Processes (GPs) [13]. This construction to model composition
of functions naturally resembles that of Deep Neural Networks (DNNs). The connection between
DGPs and DNNs has been extensively investigated in the literature, and DGPs with a variety of kernel
functions can be interpreted as DNNs with an infinite number of neurons at each layer and specific
activation functions (see, e.g., [6, 11]). In contrast to DNNs, DGPs provide an elegant way to deal
with the model-selection problem of determining a suitable number of neurons, as they are inherently
nonparametric learning machines. Furthermore, they allow for a principled probabilistic framework
to carry out learning of latent representations and hyper-parameters.

Although attractive from a theoretical point of view, learning DGPs poses some significant computa-
tional challenges that arguably hinder their application to a wider variety of problems. In contrast,
DNNs have been extremely successful in areas such as computer vision because of their amenability
to GPU and distributed computations, automatic differentiation tools, and mature developments of
regularization techniques, such as low-rank weight representations and dropout [14]. We aim to
bridge the gap between DGPs and DNNs by showing how DGPs can be learned at scale by borrowing
the key strengths of DNNs, while retaining a probabilistic formulation for accurate quantification of
uncertainty. We made a significant step in this direction in [4], by showing how random Fourier fea-
ture approximations for DGPs with Radial Basis Function (RBF) kernels lead to trigonometric DNNs
with low-rank weight matrices. We conveniently implemented stochastic variational inference [8] in
TensorFlow [1] to infer the parameters of such approximate DGPs.



In this paper, we aim to take this idea one step further by showing how DGPs with arc-cosine kernels
can be approximated by DNNs with Rectified Linear Unit (ReLU) activations. Such activation
functions are much cheaper to evaluate and differentiate than the trigonometric functions used in
the approximation of DGPs with RBF kernels, leading to faster DGP inference. We experimentally
validate this acceleration effect, while showing that the proposed approximation leads to competitive
performance compared with the approximation using trigonometric activations.

2 Random features for Deep Gaussian Processes with Arc-cosine Kernels

Let X = [x1, . . . ,xn]> be a set of input vectors associated with a set of labels Y = [y1, . . . ,yn]>,
where xi ∈ RDin and yi ∈ RDout . Let F (0) := X and consider a DGP where we define F (l)

as the multivariate latent representation at layer l, which is a collection of zero-mean GPs with
covariance k(·, ·;θ). Each layer of DGPs can be approximated based on a finite set of basis functions
F (l+1) = Φ(l)W (l), leading to a DNN representation of DGPs [4]. The set of basis functions Φ(l)

and the distribution of W (l) depend on the choice of the kernel (covariance) function. For example,
in the RBF case, Bochner’s theorem suggests an expansion using trigonometric functions as basis
functions [12] and W (l)

ij ∼ N (0, 1).

In [4], we explored the random feature approximation of RBF kernels using trigonometric functions.
Here we propose arc-cosine kernels to accelerate learning of DGPs with the random features flavor.
The arc-cosine kernel of order p is defined as:
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Let Θ(·) be the Heaviside function. Following [3], an integral representation of this kernel is:

k(p)arc (x,x′) = 2
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This integral formulation immediately suggests a random feature approximation for equation (1),
noticing that the kernel can be seen as an expectation of the product of the same function applied to
the inputs to the kernel. We can extend this by scaling the kernel with a σ2 parameter, and features
through Λ = diag(l21, . . . , l

2
d) for automatic relevance determination [9]. In the case p = 1, the

application of the random feature approximation of DGPs with arc-cosine kernels leads to DNNs
with ReLU activations:
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which are cheaper to evaluate and differentiate compared to trigonometric functions in the RBF
case. Similarly to [4], we learn an approximate posterior over all weight matrices Ω(l) and W (l) and
optimize kernel parameters (σ2)(l) and Λ(l) using stochastic variational inference.

3 Results

We follow the same experimental setup of [4], where we evaluate the performance of DGP approaches
on regression and classification tasks. We compare the approximate DGP with arc-cosine kernel
(DGP-ARC) with the approximate DGP with RBF kernel (DGP-RBF) [4], and the recently proposed
DGP model approximated using expectation propagation (DGP-EP) [2]. All models exploit mini-
batch-based stochastic gradient optimization. To ensure fairness in the comparison, we use the same
configurations across all models, namely one three-dimensional hidden layer, number of inducing
points/number of random features equal to 100 and same mini-batch size. An exception is made
for the MNIST case, where greater dimensionality and more inducing points/random features are
required (see [4]). We evaluate the error rate and mean negative log-likelihood (MNLL) on withheld
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Figure 1: Progression of RMSE and MNLL on test data over time for competing DGP models. Dashed
line indicates the accuracy obtained by the sparse variational GP [7] implemented in GPflow [10].

test data, and the results are averaged over 3 folds, except for the MNIST dataset where we used the
usual split between training and test set.

Figure 1 shows that, across all datasets, DGP-ARC outperforms other approaches in terms of
convergence speed, while leading to error values which are comparable to those obtained using
DGP-RBF (or considerably better in the case of the EEG dataset). While not illustrated in the figures,
we also assessed the performance of the arc-cosine kernel with degree two, but this case performed
poorly compared to the arc-cosine kernel of degree one. Finally, we note that for the the arc-cosine
kernel with degree zero, the activation functions are Heaviside functions that are unsuitable for our
inference scheme given that they yield systematically zero gradients.

Summarizing, we regard these results as a further step in the direction of bridging the gap between
DGPs and DNNs, hoping that this will foster a wider adoption of DGPs in applications.
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