
On-the-fly QoE-Aware Transcoding in the Mobile Edge
Sunny Dutta1, Tarik Taleb 1, Pantelis A. Frangoudis 2, and Adlen Ksentini 3

1 Aalto University, Espoo, Finland
2 IRISA, Rennes, France

3 Eurecom Institute, Nice, France
Emails: {firstname.lastname}@aalto.fi; pantelis.frangoudis@irisa.fr; adlen.ksentini@eurecom.fr

Abstract— To enhance video streaming experience for
mobile users, we propose an approach towards Quality-of-
Experience (QoE) aware on-the-fly transcoding. The
proposed approach relies on the concept of Mobile Edge
Computing (MEC) as a key enabler in enhancing service
quality. Our scheme involves an autonomic creation of a
transcoding service as a Virtual Network Function (VNF)
and ensures dynamic rate switching of the streamed video
to maintain the desirable quality. This edge-assistive
transcoding and adaptive streaming results in reduced
computational loads and reduced core network traffic. The
proposed solution represents a complete miniature content
delivery network infrastructure on the edge, ensuring
reduced latency and better quality of experience.

I. INTRODUCTION
According to the Cisco Visual Networking Index [1], it is

estimated that by 2020, 75% of the global mobile data traffic
will be occupied by video streaming services. In the recent
years, user demand has also shifted from traditional
broadcasted video to dynamic on-demand live streaming and
to mobile video viewing. As these services are becoming an
integral part of the mobile users’ entertainment and social life,
user expectations towards high Quality of Experience (QoE)
are also increasing.

Traditional video streaming was designed considering a
stable Internet link and a limited type of end-user devices. But
with the typical link bandwidth variations in the present
mobile networks, along with an increase in diverse types of
end-user devices, the traditional technology has started to fall
behind. This resulted in poor video viewing experience due to
its non-scalable and maladaptive nature. At the media
encoding level, to address the scalability support for a diverse
range of devices, the Scalable Video Coding (SVC)
mechanism [2] is introduced. Media profiles with multiple
subsets (e.g., comprising various formats, screen resolutions,
and frame rates) are stacked as layers in a single media file.
The base layer is necessary to decode the video with minimum
quality, while enhancement layers add spatial and temporal
information to increase the delivered video quality. SVC can
be combined with adaptive bitrate streaming techniques (i.e.,
MPEG DASH and Apple HLS) to adapt to varying network
bandwidth.

Numerous advances have recently also taken place in the
content delivery infrastructure front. In a present day scenario,
thousands of video content items are uploaded daily to the
content provider’s network. This content is stored in large
volumes in the provider’s centralized content database, and is
then transcoded from source format to final delivery format.

After this computationally-intensive transcoding process, the
prepared content is then transferred to multiple streaming
servers (residing at the edge of the content provider’s network)
for further delivery to the users. To this extent, cloud
computing has played a key role. The on-demand provisioning
and auto-scaling features of the cloud supply service providers
with scalable resources, such as huge computing power and
storage, and facilitate service and infrastructure management.

Unlike some typical enterprise cloud applications, video
services are highly time-sensitive. Therefore, apart from
storage and transcoding functionality, they also require the
delivery of content in real-time. But with the present 4G and
cloud infrastructure support, users still experience buffering
delays and intermittent playback interruptions. The next
generation of mobile systems, commercially known as 5G,
aims at addressing these issues. Relying on technologies such
as Network Function Virtualization (NFV), Software Defined
Networking (SDN), and Mobile Edge Computing (MEC), 5G
promises to attain system flexibility, elasticity and agility. The
concept behind MEC is to provide storage and computation
resources from the network edge, in the proximity of users.
Accordingly, pushing data processing from remote cloud
locations to the edge and processing data “locally” can reduce
traffic bottlenecks in the core network.

There are high expectations on how MEC can empower
video streaming services. In this paper, we do not go deep in
optimizing transcoding techniques but, rather, we focus on
using transcoding as an enabling service at the mobile edge to
enhance video quality. This paper proposes a scheme to
achieve fine granularity in bitrate selection for adaptive
streaming based on real-time perceived video quality
monitoring, using QoE estimation techniques. Degradation in
perceived quality triggers an on-the-fly transcoding (OTFT)
service at the mobile edge to vary the bitrate of the stream, a
process which continues until optimal quality is achieved. Our
objective is to demonstrate how the QoE of a video service
can be maintained by enforcing transcoding as a requirement-
based Virtual Network Function (VNF).

The remainder of this paper is organized as follows. Section
II presents some related work. Section III describes our
proposed OTFT framework, along with its supporting
mechanisms. For the sake of performance evaluation, Section
IV portrays our experimental setup and discusses the obtained
results. We conclude the paper by summarizing our main
findings in Section V.

II. RELATED WORK
MEC has been proposed as an enabler for novel, low-

latency services in a mobile network. Considering its

potential, both industry and the research community are
working on maximizing the benefits and efficiency of the
MEC technology. As discussed in [3], [4], such decentralized
architecture with support for fault resiliency will enable new
services and promising business models, including those for
smart city [27].

In the context of video streaming, the proposed two-hop
edge architecture in [5] reflects the data transfer rate and
throughput of the edge in comparison with the remote cloud.
The research work in [6] introduces a network-assisted
adaptive streaming application to enhance QoE of the
delivered multimedia content. An architecture with distributed
parallel edges to increase QoE for content delivery has been
proposed by Zhu et al. in [7]. Chang et al. [4] deploy
independent small-scale datacenters at the network edges,
which are capable of performing video caching and streaming
on their own. Jararweh et al. [8] integrate caching with proxy
functionality at the edge to store media content. They also
enforce computation offloading to increase the lifetime of
mobile devices. In [26], the authors proposed solutions for
service mobility across datacenters to ensure the proximity of
services to mobile users regardless their mobility. The
solutions assume a distributed cloud federation and are easily
extensible to the case of edge computing.

Video transcoding in the cloud has recently received
significant research attention. Utilizing virtual instances of the
cloud to perform video transcoding upon request has been
proposed in [9], [10] as the simplest and straightforward use
case. The works in [11] and [12] propose cloud-assisted video
transcoding. Utilization of cloud resources to assist mobile
devices for customized transcoding services [13] and for
energy conservation on mobile devices [14] has also been
proposed. As an efficient way of video transcoding in the
cloud, an approach to reduce the bitrate of the transcoded
video by using a higher quantization parameter without
reducing the frame size or the frame rate has been proposed in
[15]. Transcoding only portion of a video to reduce the
transcoding time [16], [17] and distributed video transcoding
in the cloud to enhance efficiency have also been studied in
[18], [19]. Amazon in its recent development [20] has
introduced an elastic transcoder to reduce time of the intensive
transcoding service.

In all the above research works, MEC is deemed to be a
promising solution for handling video services, although
mainly focusing on streaming, caching and compression
techniques; the computationally-intensive transcoding
functionality has been generally proposed to be treated on the
cloud-based infrastructure. Energy-efficient video transcoding
as a network function at the edge has been proposed in [21]
for a Voice over Long Term Evolution (VoLTE) service. In
our prior work [22], we focused on the effects of processing
load on user experience, and proposed a QoE-driven
mechanism for elastic compute resource allocation in a cloud-
native 5G environment. In this work, we address issues that
pertain to network-related resources and effects. To the best of
the authors’ knowledge, QoE-aware on-the-fly transcoding
along-with bitrate variation in adaptive streaming at the
mobile edge for content delivery has not yet been considered.
In this paper, we describe and showcase an innovative
transcoding and streaming scenario leveraging the potential of
MEC.

III. PROPOSED OTFT SCHEME
A. Use Cases

In a real-life scenario, many use cases can be considered
involving video streaming from the edge. We here consider
two use cases where fine-grained on-the-fly transcoding will
enhance users’ video experience:
• Use case 1: Bob and Alice are two friends residing in the

same city in the vicinity of the same mobile edge node.
Bob has one high-end smart phone capable of taking
High Definition (HD) videos whereas Alice’s device
supports only Standard Definition (SD) quality. We
consider a situation where Bob takes a HD video of
some funny moments and wants to immediately share it
with Alice. He uploads the video to the nearest edge
tagging Alice. Alice, upon receiving the notification,
clicks to play the video. Due to unsupported resolution,
Alice will experience buffering when playing the
content. The edge, being smarter in this case, will make
use of its on-the-fly transcoding capabilities to convert
the high-bitrate source format to a lower bitrate one. This
will help Alice to view the video more smoothly. The
relevant operations, including uploading, transcoding,
and streaming, will take place in the edge without
involving the content provider’s backend cloud network.

• Use case 2: Bob is waiting for his next transit flight in a
busy airport and wants to watch some music video for
leisure. He connects to the nearby edge and starts
receiving the video stream. The edge server has adaptive
streaming enabled with content of only HD quality.
However, due to limited network bandwidth and the
unavailability of other low-bitrate profiles of the media
content, Bob will experience buffering delays and, thus,
reduced QoE. In such a situation, the edge will spin up
the transcoding service to create media content with a
lower bitrate than HD. Upon completion, the newly
prepared content will be streamed. Bob’s QoE will be
monitored, and this process of fine tuning will continue
in a recurring manner, until a smooth viewing experience
is achieved. This will both balance user experience and
improve network resource utilization and, thus, network
availability.

In this paper, we consider a lightweight, container-based
transcoding service to meet the requirements of the
aforementioned use cases, with more focus on fine bitrate
granularity and the on-the-fly transcoding aspect of Use Case
2.

B. Proposed OTFT Architecure
The proposed OTFT architecture, represented in Fig. 1, is

based on a two-tier principle. The content provider’s cloud-
based network consists of a centralized content database
(CCD), a transcoder, and a segmenter. The cloud has its own
orchestrator to manage its infrastructure and resources. The
uploaded content from the content producers is initially stored
in the CCD. The content is then sent to the transcoder to
perform H.264/AVC transcoding. Note that the use of SVC
technologies is an option that can offer storage advantages,
since all available video representations can be stored in a
single file. However, our design considers H.264/AVC
encoding, which is also more widely supported. The prepared
content is finally segmented in chunks and is prepared for
adaptive streaming by the segmenter. Streaming-ready
contents are then transferred to the streaming server (SS). The

SS is hosted in the MNO’s edge network node and is
responsible to further deliver the video stream to the end
user’s device. An additional component, the cloud controller
(CC), is considered. The CC is responsible for business-
related functionality and maintains the Service Level
Agreement (SLA) between the content provider and the
mobile network operator (MNO). This deals with the content
provider’s access rights over the MNO’s network to manage
the SS. The dotted line between CC and the Edge Orchestrator
(EO) represents agreement level connectivity.

The Edge Node (EN) is hosted on virtual machines on top
of existing hardware in the MNO’s edge network. The EN
runs its own compute and storage services. The compute one
is responsible for hosting container-based applications on the
edge, and the storage one is used to host the container image
templates. The EN and all its services are managed by the EO.
These services are hosted in containers inside the edge, and
the EO controls their deployment and management.

The primary service components considered here are:

Streaming Server: Part of the content provider’s network,
and a container-based application to perform adaptive
streaming to the client. In this scenario, we have considered
HTTP live streaming (HLS), so the pre-transcoded chunks of
media segments (sent from the segmenter) reside inside this
server. Upon a client request, the manifest file with the media
description and structure is first served, and sequentially the
chunks are delivered.

Fig. 1. Proposed OTFT Architecture.

Quality Assessor: It is responsible for assessing the quality of
the served video using the Pseudo-Subjective Quality
Assessment (PSQA) methodology. PSQA uses machine
learning techniques to train a Random Neural Network (RNN)
classifier on data from subjective tests with human subjects,
where specific parameters that affect QoE are monitored while
the viewer assesses the quality of test video sequences in the
scale from 1 (poor quality) to 5 (excellent quality). The
resulting RNN can then be used in real time, given that its
input parameters are measurable. In our case, we used the
PSQA tool of Singh et al. [23], which is trained to estimate
QoE for an adaptive streaming service of H.264/AVC-
encoded video. The authors have shown its QoE assessments
to correlate well with human users’ ratings. The input to this
tool is the number, frequency and duration of playout

interruptions in a 16-second video window, as well as the
average value of the Quantization Parameter (QP) (the input
values have to be appropriately normalized; for details see
[23]). Its output is an estimate of the Mean Opinion Score
(MOS), i.e., the expected quality rating in the 1-5 scale that a
panel of humans would give for a video under the specific QP
and interruption conditions. The “black-box” nature of this
tool makes it easy to integrate with our architecture.

The Quality Assessor receives real-time information of the
service status from the client. The status includes the ID of the
last downloaded segment and of the playing segment, the
playback interruption count and duration, and the QP value of
the video playing at the end-user device. Considering these
parameters, the PSQA model generates a QoE estimate in real-
time in an automatic manner and without any human
intervention. It also performs a check on the calculated MOS
value. It is under the QA’s scope to trigger the EO for
initiating the transcoding service.
Transcoder and mixer: It is a container-based virtual
transcoding service deployed by the EO. It is used to transcode
the source media format to another deliverable format with a
different bitrate. Once the newly prepared content is ready, the
mixer replaces the old content in the streaming server with the
new one. The triggering process to deploy the transcoder and
mixer service is assisted by the EO. Once the required
operation is done and the target QoE level is achieved, the
service is terminated and removed from the EN.

Referring to Use Case 2, the stepwise operational flow is
depicted in Fig. 2. For the purpose of demonstration, let us
consider that the streaming server stores HLS content with a
bitrate of R1 (high bitrate). Also, we consider here that the
application used to view the stream (e.g., VLC player) can
provide the information necessary for QoE estimation, i.e., the
ability to measure playout interruption and QP information
and the reporter functionality. The interruption logger
maintains a log of occurred interruptions count and
interruption duration of the played video segment. Similarly,
the QP logger tracks the QP value per picture macroblock of
the played video. The log values are finally handed over to the
reporter in real-time. The reporter also keeps information of
the downloaded segment ID, playing segment ID, and playout
start time.

To start the service, Bob connects to the edge and sends an
HTTP GET request to the server to fetch the playlist/manifest
file. Upon receiving the file, the end-user device starts sending
HTTP GET requests to fetch the media segments sequentially
one by one as detailed in the playlist/manifest. Once the initial
necessary playout buffer level is achieved the player starts
displaying the first segment and automatically moves on to the
second one, as soon as the first segment is over. At the end of
every segment, the reporter sends the whole set of information
to the QA. The QA performs a real-time calculation of the
MOS value at fixed intervals. If the desired value is above the
optimal, it reports that the QoE of the video is acceptable and
no further action is required until the next calculation time
instance. On the other hand, if the value decreases, the QA
triggers the EO to spin up the transcoder and mixer service.

The container is started (using template image from the EN)
and the transcoding of the media content is performed. The
bitrate is reduced to R2 (R2<R1), one step lower than the
current bitrate. Once the newly-built media content is ready,
the EO performs a check to get information on the last
downloaded segment ID. Upon confirmation, the EO then

triggers the mixer to replace the old segments (which are not
yet fetched by the client) with the new ones. Once the
operation is finished, the EO waits for the next QA
information. If no information is received within a certain
interval, the EO considers that the target MOS is achieved,
and discards the service and stops the container. However, if
the QoE still remains low, the same operation is performed
again reducing the bitrate to R3 (R3<R2). This stepwise
recurring operation continues until a target optimal QoE is
achieved at the client end.

It is worth noting that the proposed solution not only
ensures QoE, but also transforms the edge into a complete
video delivery solution. Performing transcoding on-the-fly
incurs compute-intensive load only for a limited time.
Furthermore, storage overhead can be reduced, as pre-
transcoded multiple versions are not required from the
beginning and can be generated on-demand. Moreover, by
serving the content locally (i.e., from the edge), the solution
ensures reduction in core network traffic and reduced end-to-
end latency.

Fig. 2. Signaling diagram.

C. Potential Enhancements
Considering a mobile network, where network conditions

are dynamically changing due to user mobility, high
sensitivity towards transient events may lead to a “ping pong”
effect, where transcoding will be initiated every now and then
with the varying conditions of the network. Instead, the
triggering should be done only if the network conditions have
actually degraded. However, still the tradeoff between
responsiveness and avoiding the ping pong effect exists.
Maintaining a sliding window of QoE scores to decide on
whether to initiate transcoding or not based on a running
average of the MOS (within that window) can help address
this issue.

Various further performance enhancements are also
possible. For example, the cross-layer mobility, bandwidth
[24], and QoE [25] prediction mechanisms that we have
studied in our prior work in similar contexts can be applied to
this end. Such an ability to predict the conditions at the client
end can assist in identifying the optimal time to initiate
transcoding.

Depending on the resource availability in the EN, the
transcoding service can be initiated in parallel to support
multiple end-user requests. Considering it as a compute-
intensive task, and in case of limited resources in the serving
Edge, it is the EO's responsibility to select another nearby
edge (taking into account response time and resource
availability) to perform the transcoding-only operation,
leveraging the shared infrastructure concept of MEC.

 The concept can be further enhanced by introducing smart
algorithms in the selection of the steps for bitrate variation.
Also, introducing advanced transcoding techniques may reduce
the delay incurred from triggering till completion. Moreover, if
the video is almost towards the end (i.e., the remaining video
time is less than the transcoding time), the service initiation
may simply be omitted.

IV. PERFORMANCE EVALUATION
In this section, we describe the testbed environment which

we have built to simulate the proposed edge-based transcoding
and streaming service. The content provider’s cloud-based
network is not simulated, as we have considered that the
media content for adaptive streaming is ready and is already
stored in the streaming server. For this purpose, the authors’
framework proposed for providing slices of Content Delivery
Networks as a Service (CDNaaS) can be used [28]. The
simulation environment mostly focuses on assessing the
performance of the edge. Our testbed is simulated with two
laptops (with Ubuntu 14.04.3 LTS desktop OS), where one is
the edge node and the other is the client.

The client was simulated using a version of the VLC player
which we modified to implement QP and interruption
monitoring. The reporter functionality was implemented in a
python script, which retrieves the required information, filters
it, and passes it on to the QA database residing in the EN. On
the edge side, two VirtualBox VMs were used. VM1 was used
as a gateway for the entire network to access the Internet.
DHCP with authentication was also set up inside VM1 to
configure the whole network using a single subnet (for ease of
the simulation). VM2 was configured using the Proxmox
Virtual Environment to act as the EN. We use OpenVZ
containers to host the services of our architecture in our
testbed. The streaming server functionality was achieved using
an Ubuntu cloud minimal image using Nginx as the webserver
inside an Openvz container. Nginx was also configured for
HLS streaming. The content for initial streaming was pre-
transcoded and prepared using ffmpeg, and the video codec
used was H.264/AVC. The same container is used as storage
for the media files. The QA was configured to receive
interruption and QP information periodically from the
database and appropriately normalize/transform them to be
used as input to the PSQA tool to calculate the expected MOS
values. The same QA script was responsible for the evaluation
of the MOS values and triggering the EO. The automated
orchestration was performed with a script serving the
functionality of EO for spinning up the container which
provides the transcoding service. The transcoding container
template was built with a Ubuntu minimal image and had
ffmpeg installed. This service was configured to start on boot.
The mixer functionality was created with a script residing
inside the same container. Finally, to ensure that the laptop
acted as an edge access point, its wireless LAN interface was
configured using hostapd in IEEE.802.11 master mode. Also,
Netem and Wondershaper tools were used to simulate a
cellular environment.

It is worth recalling that the objective of these tests is to
advocate the use of MEC to ensure on-the-fly transcoding and
achieve results on its responsiveness. Responsiveness is the
measured delay from the time of triggering the service to the
actual QoE enhancement time. This responsiveness check was
performed in two ways:

a. The container is already active with pre-transcoded
media files. Only the mixer functionality is used, and,
thus, taken into account in the delay measurement.

b. Using the full functionality of on-the-fly transcoding by
booting a container, initiating the service, transcoding
the media file and then performing the mixing.

The media file used for this test purpose was 9 minutes 56
seconds long with 298 segments in total, each comprising of
2s of video. The reporter information was sent exactly after 2s
of video had been played (considering video play-time). To
perform QA operation, the tool requires the information of 16s
of played video. Therefore, the MOS calculation was
performed only after information of a total of 8 segments were
received. The MOS values are represented in a scale of 1 to 5.
The value below 3.5 was considered low and was used to
trigger the EO.

Case a. is represented in Fig. 3, where initially the MOS
value was high. With time, it degraded and as soon as it
reached below the predefined threshold, mixing was initiated.
In this scenario, pre-transcoded low bitrate files were copied
to the streaming server’s desired location and replaced the
existing ones. To save time, only the segments which were yet
to be downloaded by the client were replaced. The
replacement occurs in a sequential manner. As a result,
although the mixing time was approximately 26s, the QoE
started enhancing as soon as few segments were delivered.

Fig. 4 depicts the full functionality as mentioned in case b.
‘Ti’ represents the time when container initiation started. The
time difference between the QA triggering the EO and the EO
starting the creation of the container is in the milliseconds
range. The container boots up with the already prepared
transcoder image template (within 3s). Once it is ready, the
EO signals to start the transcoding with the mentioned rate.
Having limited resources (2 vCPU & 1024MB RAM) the
container performs this total operation in approximately 1
minute 10 seconds. The mixer operation starts as soon as the
transcoding is over. In-between, the EO sends the information
of the last downloaded file to indicate from which segment the
mixing will start. The mixer operation takes almost similar
time as mentioned before (in case a.) and depends on the
number of segments to be transferred and replaced.

Fig. 3. MOS vs Time (with pre-transcoded media files). (Ms: mixing

start time; Mc: mixing completion time).

Fig. 4. MOS vs Time (full functionality). (Ti: transcoding container

initiated; Tc: transcoding completed; Ms: mixing started; Mc: mixing
completed).

In Fig. 5, the segment buffering time (Δt) is the time a
downloaded segment spends in the buffer waiting for playout.
In other words, it is the time difference between the instant its
playout started and the instant it was fully downloaded. It is
clear that initially the segment buffering time was high, which
indicates that the segments were downloaded in advance. As a
result, the immediate next few segments were already
downloaded and ready before it was being played. Therefore,
there was no buffering delay, and thus no playout
interruptions, hence the MOS was high (if compared with Fig.
4). When we introduced a degradation in network conditions,
emulating congestion due to significant background traffic, the
downloading segment time increased because of a reduction in
the available bandwidth. At a point when the difference (Δt)
was almost zero, the video experienced buffering delays as it
had to wait until the downloading of a segment is complete.
However, after transcoding to a lower-bitrate video, the
segment size, as well as the segment download time, reduced.
Consequently, adapting video bandwidth demands to the
current network traffic conditions leads to timely video
segment downloads, and minimized playback buffering time.
This positively impacted the overall MOS.

From Fig. 4, it is evident that with the degradation in
network conditions, the MOS value started reducing and at a
certain point it reached 3 (below the acceptable QoE
threshold). In such a situation, if OTFT was not enforced, the
client would have experienced the video with a reduced
quality for the entire remaining duration (486 secs). However,
enforcing OTFT has enabled the client to experience the low
quality video only for a limited amount of time (from
detection of MOS degradation until the end of transcoding and
mixing i.e. 96 s), after which the viewing experience of the
remaining video (390 s) has improved.

We should further note that the PSQA tool helped to an
extent to deal with a potential “ping-pong” effect, where
transient variations in the mobile network conditions would
lead to frequent bitrate/quality switches, since it outputs one
“average” QoE value every 16s. Enhancements to our scheme
are also possible. For instance, finer granularity can be
achieved by properly setting the QoE threshold, by increasing
the intelligence of the EO in terms of variety of bitrates and
finally by advanced lightweight transcoding techniques with
less startup latency.

Fig. 5. Segment buffering time (∆t) vs Segment ID. (Ti: transcoding
container initiated; Tc: transcoding completed; Ms: mixing started;

Mc: mixing completed; when Segment buffering time = ‘0’,
corresponding segments are not downloaded in advance).

V. CONCLUSION
In this paper, we proposed a scheme that reflects QoE in

deciding, in an autonomic manner, when to enforce transcoding
in an edge environment to increase the service quality. The
proposed scheme features a cognitive way in selecting the best
suitable media profile by utilizing the concept of on-the-fly-
transcoding, as one of the future applications of MEC. Instead
of accepting the pre-selected bitrate of the streamed video from
the content provider’s end, this framework enforces the edge to
customize the content based on the user’s expectation. The
framework was validated using a real life testbed, and
interesting results were obtained on response times. Based on
the obtained result, it can be concluded that MEC awaits a
lightweight transcoding functionality, which can convert this
proof-of-concept to reality. This defines one of the authors’
future research directions in this area.

ACKNOWLEDGMENT
This work was partially supported by the TAKE 5 project

funded by the Finnish Funding Agency for Technology and
Innovation (TEKES) and in part by the Finnish Ministry of
Employment and the Economy. It is also partially supported by
the European Union’s Horizon 2020 research and innovation
programme under the 5G! Pagoda project with grant agreement
No. 723172.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2015–2020,” [Online] http://
www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/ mobile-white-paper-c11-520862.pdf, February
2016.

[2] H. Schwarz, D. Marpe and T. Wiegand, “Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard,” IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 17,
No. 9, Sept. 2007, pp. 1103-1120.

[3] European Telecommunications Standards Institute (ETSI), “Executive
Briefing – Mobile Edge Computing (MEC) Initiative –Issue 1”, [Online]
https://portal.etsi.org/portals/0/tbpages/ mec/docs/mec%20ex-
ecutive%20brief%20v1%2028-09-14.pdf, Sep. 2014.

[4] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman,"Bringing the cloud
to the edge," in Proc. IEEE Conf. on Computer Communications
Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, May 2014.

[5] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of Cloudlets
on Interactive Mobile Cloud Applications,” in Proc. IEEE 16th Int’l
Conf. on Enterprise Distributed Object Computing Conference (EDOC),
Beijing, China, Sep. 2012.

[6] J. Fajardo, I. Taboada, and F. Liberal, “Improving content delivery ef-
ficiency through multi-layer mobile edge adaptation”, in IEEE Net-work
Mag., Vol. 29, No. 6, Dec. 2015, pp. 40-46.

[7] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia Cloud Compu-ting ,“
in IEEE Signal Processing Mag., Vol. 28 , No. 3, May 2011, pp. 59-69.

[8] Y. Jararweh, L.Tawalbeh, F. Ababneh, and F.Dosari, “Resource
Efficient Mobile Computing Using Cloudlet Infrastructure,” in Proc.
IEEE 9th Int’l. Conf. on Mobile Ad-hoc and Sensor Networks (MSN),
Dalian, China, Dec. 2013.

[9] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-Assisted Live Media
Streaming for Globalized Demands with Time/Region Diversities,” in
Proc. IEEE Conf. on Computer Communications (INFOCOM), Orlando,
Florida, Mar. 2012

[10] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, and P. Huang, “Meeting Service
Level Agreement Cost-Effectively for Video-on-Demand Applications
in the Cloud,” in Proc. of IEEE Conf. on Computer Communications
(INFOCOM), Toronto, Canada, May 2014.

[11] R. Cheng, W. Wu, Y. Lou, and Y. Chen, “A Cloud-Based Transcoding
Framework for Real-Time Mobile Video Conferencing System,” in
Proc. of 2nd IEEE Intl. Conf.on Mobile Cloud Computing, Services, and
Engineering (MobileCloud), London, UK, April 2014.

[12] Y. Wu, C. Wu, B. Li, and F. C. Lau, “vSkyConf: Cloud-assisted
Multiparty Mobile Video Conferencing,” in Proc. of the 2nd ACM
SIGCOMM Workshop on Mobile Cloud Computing, Hong Kong,
China, Aug. 2013.

[13] M. Chen, “AMVSC: A Framework of Adaptive Mobile Video
Streaming in the Cloud,” in Proc. of IEEE Global Communications
Conference (GLOBECOM), Anaheim, California, Dec. 2012.

[14] W. Zhang, Y. Wen, and H.-H. Chen, “Toward Transcoding as a Service:
Energy-Efficient Offloading Policy for Green Mobile Cloud,” IEEE
Network, Vol. 28, No. 6, Nov. 2014, pp. 67–73.

[15] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit Rate Reduction
Video Transcoding with Distributed Computing,” in Proc. of 20th Intl.
Conf. on Parallel, Distributed and Network-Based Processing (PDP),
Garching, Germany, Feb. 2012.

[16] F. Lao, X. Zhang, and Z. Guo, “Parallelizing Video Transcoding Using
Map-Reduce-Based Cloud Computing,” in Proc. of IEEE Intl.
Symposium on Circuits and Systems (ISCAS), Seoul, Korea, May 2012.

[17] G. Gao, W. Zhang, Y. Wen, Z. Wang, W. Zhu, and Y. P. Tan, “Cost
Optimal Video Transcoding in Media Cloud: Insights from User
Viewing Pattern,” in Proc. of IEEE Intl. Conf. on Multimedia and Expo
(ICME), Chengdu, China, July 2014.

[18] A. Heikkinen, J. Sarvanko, M. Rautiainen, and M. Ylianttila,
“Distributed Multimedia Content Analysis with MapReduce,” in Proc.
of 24th IEEE Intl. Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC), London, UK, Sept. 2013.

[19] M. Kim, S. Han, Y. Cui, H. Lee, H. Cho, and S. Hwang, “CloudDMSS:
Robust Hadoop-Based Multimedia Streaming Service Architecture for a
Cloud Computing Environment,” Cluster Computing, Vol. 17, No. 3,
Sept. 2014, pp. 605–628.

[20] Amazon, “Amazon Elastic Transcoder,” [Online] https://
aws.amazon.com/elastictranscoder/

[21] M. T. Beck, S. Feld, A. Fichtner, C. L. Popien and T. Schimper, “ME-
VoLTE: Network functions for energy-efficient video transcoding at the
mobile edge ,” in Proc. of 18th Intl. Conf. on Intelligence in Next
Generation Networks (ICIN), Paris, France, Feb. 2015.

[22] S. Dutta, T. Taleb, and A. Ksentini, “QoE-aware Elasticity Support in
Cloud-Native 5G Systems,” in Proc. IEEE ICC’16, Kuala Lumpur,
Malaysia, May 2016.

[23] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of experience
estimation for adaptive HTTP/TCP video streaming using H.264/AVC,”
in Proc. IEEE Consumer Communications and Networking Conference
(CCNC), Las Vegas, NV,USA, Jan. 2012.

[24] A. Nadembega, A. Hafid, and T. Taleb, “An Integrated Predictive
Mobile-Oriented Bandwidth-Reservation Framework to Support Mobile
Multimedia Streaming,” IEEE Trans. on Wireless Communications, Vol.
13, No. 12, Dec. 2014, pp. 6863 – 6875.

[25] A. Ksentini, T. Taleb, and K.B. Letaif, "QoE-Based Flow Admission
Control in Small Cell Networks," IEEE Trans. Wireless
Communications, Vol. 15, No. (4), 2016, pp. 2474-2483.

[26] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-Me Cloud: When
Cloud Services Follow Mobile Users”, to appear in IEEE Transactions
on Cloud Computing.

[27] T. Taleb, S. Dutta, A. Ksentini, I. Muddesar, and H. Flinck "Mobile
Edge Computing Potential in Making Cities Smarter," to appear in IEEE
Communications Magazine.

[28] P. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture for
on-demand service deployment over a telco CDN,” in IEEE ICC’16,
Kuala Lumpur, Malaysia, May 2016

