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Abstract— To enhance video streaming experience for 
mobile users, we propose an approach towards Quality-of-
Experience (QoE) aware on-the-fly transcoding. The 
proposed approach relies on the concept of Mobile Edge 
Computing (MEC) as a key enabler in enhancing service 
quality. Our scheme involves an autonomic creation of a 
transcoding service as a Virtual Network Function (VNF) 
and ensures dynamic rate switching of the streamed video 
to maintain the desirable quality. This edge-assistive 
transcoding and adaptive streaming results in reduced 
computational loads and reduced core network traffic. The 
proposed solution represents a complete miniature content 
delivery network infrastructure on the edge, ensuring 
reduced latency and better quality of experience.  

I. INTRODUCTION  
According to the Cisco Visual Networking Index [1], it is 

estimated that by 2020, 75% of the global mobile data traffic 
will be occupied by video streaming services. In the recent 
years, user demand has also shifted from traditional 
broadcasted video to dynamic on-demand live streaming and 
to mobile video viewing. As these services are becoming an 
integral part of the mobile users’ entertainment and social life, 
user expectations towards high Quality of Experience (QoE) 
are also increasing.  

Traditional video streaming was designed considering a 
stable Internet link and a limited type of end-user devices. But 
with the typical link bandwidth variations in the present 
mobile networks, along with an increase in diverse types of 
end-user devices, the traditional technology has started to fall 
behind. This resulted in poor video viewing experience due to 
its non-scalable and maladaptive nature. At the media 
encoding level, to address the scalability support for a diverse 
range of devices, the Scalable Video Coding (SVC) 
mechanism [2] is introduced. Media profiles with multiple 
subsets (e.g., comprising various formats, screen resolutions, 
and frame rates) are stacked as layers in a single media file. 
The base layer is necessary to decode the video with minimum 
quality, while enhancement layers add spatial and temporal 
information to increase the delivered video quality. SVC can 
be combined with adaptive bitrate streaming techniques (i.e., 
MPEG DASH and Apple HLS) to adapt to varying network 
bandwidth.  

Numerous advances have recently also taken place in the 
content delivery infrastructure front. In a present day scenario, 
thousands of video content items are uploaded daily to the 
content provider’s network. This content is stored in large 
volumes in the provider’s centralized content database, and is 
then transcoded from source format to final delivery format. 

After this computationally-intensive transcoding process, the 
prepared content is then transferred to multiple streaming 
servers (residing at the edge of the content provider’s network) 
for further delivery to the users. To this extent, cloud 
computing has played a key role. The on-demand provisioning 
and auto-scaling features of the cloud supply service providers 
with scalable resources, such as huge computing power and 
storage, and facilitate service and infrastructure management.  

Unlike some typical enterprise cloud applications, video 
services are highly time-sensitive. Therefore, apart from 
storage and transcoding functionality, they also require the 
delivery of content in real-time. But with the present 4G and 
cloud infrastructure support, users still experience buffering 
delays and intermittent playback interruptions. The next 
generation of mobile systems, commercially known as 5G, 
aims at addressing these issues. Relying on technologies such 
as Network Function Virtualization (NFV), Software Defined 
Networking (SDN), and Mobile Edge Computing (MEC), 5G 
promises to attain system flexibility, elasticity and agility. The 
concept behind MEC is to provide storage and computation 
resources from the network edge, in the proximity of users. 
Accordingly, pushing data processing from remote cloud 
locations to the edge and processing data “locally” can reduce 
traffic bottlenecks in the core network.  

There are high expectations on how MEC can empower 
video streaming services. In this paper, we do not go deep in 
optimizing transcoding techniques but, rather, we focus on 
using transcoding as an enabling service at the mobile edge to 
enhance video quality. This paper proposes a scheme to 
achieve fine granularity in bitrate selection for adaptive 
streaming based on real-time perceived video quality 
monitoring, using QoE estimation techniques. Degradation in 
perceived quality triggers an on-the-fly transcoding (OTFT) 
service at the mobile edge to vary the bitrate of the stream, a 
process which continues until optimal quality is achieved. Our 
objective is to demonstrate how the QoE of a video service 
can be maintained by enforcing transcoding as a requirement-
based Virtual Network Function (VNF).  

The remainder of this paper is organized as follows. Section 
II presents some related work. Section III describes our 
proposed OTFT framework, along with its supporting 
mechanisms. For the sake of performance evaluation, Section 
IV portrays our experimental setup and discusses the obtained 
results. We conclude the paper by summarizing our main 
findings in Section V. 

II. RELATED WORK 
MEC has been proposed as an enabler for novel, low-

latency services in a mobile network. Considering its 



potential, both industry and the research community are 
working on maximizing the benefits and efficiency of the 
MEC technology. As discussed in [3], [4], such decentralized 
architecture with support for fault resiliency will enable new 
services and promising business models, including those for 
smart city [27]. 

In the context of video streaming, the proposed two-hop 
edge architecture in [5] reflects the data transfer rate and 
throughput of the edge in comparison with the remote cloud. 
The research work in [6] introduces a network-assisted 
adaptive streaming application to enhance QoE of the 
delivered multimedia content. An architecture with distributed 
parallel edges to increase QoE for content delivery has been 
proposed by Zhu et al. in [7]. Chang et al. [4] deploy 
independent small-scale datacenters at the network edges, 
which are capable of performing video caching and streaming 
on their own. Jararweh et al. [8] integrate caching with proxy 
functionality at the edge to store media content. They also 
enforce computation offloading to increase the lifetime of 
mobile devices. In [26], the authors proposed solutions for 
service mobility across datacenters to ensure the proximity of 
services to mobile users regardless their mobility. The 
solutions assume a distributed cloud federation and are easily 
extensible to the case of edge computing.  

Video transcoding in the cloud has recently received 
significant research attention. Utilizing virtual instances of the 
cloud to perform video transcoding upon request has been 
proposed in [9], [10] as the simplest and straightforward use 
case. The works in [11] and [12] propose cloud-assisted video 
transcoding. Utilization of cloud resources to assist mobile 
devices for customized transcoding services [13] and for 
energy conservation on mobile devices [14] has also been 
proposed. As an efficient way of video transcoding in the 
cloud, an approach to reduce the bitrate of the transcoded 
video by using a higher quantization parameter without 
reducing the frame size or the frame rate has been proposed in 
[15]. Transcoding only portion of a video to reduce the 
transcoding time [16], [17] and distributed video transcoding 
in the cloud to enhance efficiency have also been studied in 
[18], [19]. Amazon in its recent development [20] has 
introduced an elastic transcoder to reduce time of the intensive 
transcoding service.  

In all the above research works, MEC is deemed to be a 
promising solution for handling video services, although 
mainly focusing on streaming, caching and compression 
techniques; the computationally-intensive transcoding 
functionality has been generally proposed to be treated on the 
cloud-based infrastructure. Energy-efficient video transcoding 
as a network function at the edge has been proposed in [21] 
for a Voice over Long Term Evolution (VoLTE) service. In 
our prior work [22], we focused on the effects of processing 
load on user experience, and proposed a QoE-driven 
mechanism for elastic compute resource allocation in a cloud-
native 5G environment. In this work, we address issues that 
pertain to network-related resources and effects. To the best of 
the authors’ knowledge, QoE-aware on-the-fly transcoding 
along-with bitrate variation in adaptive streaming at the 
mobile edge for content delivery has not yet been considered. 
In this paper, we describe and showcase an innovative 
transcoding and streaming scenario leveraging the potential of 
MEC. 

III. PROPOSED OTFT SCHEME 
A. Use Cases 

In a real-life scenario, many use cases can be considered 
involving video streaming from the edge. We here consider 
two use cases where fine-grained on-the-fly transcoding will 
enhance users’ video experience: 
• Use case 1: Bob and Alice are two friends residing in the 

same city in the vicinity of the same mobile edge node. 
Bob has one high-end smart phone capable of taking 
High Definition (HD) videos whereas Alice’s device 
supports only Standard Definition (SD) quality. We 
consider a situation where Bob takes a HD video of 
some funny moments and wants to immediately share it 
with Alice. He uploads the video to the nearest edge 
tagging Alice. Alice, upon receiving the notification, 
clicks to play the video. Due to unsupported resolution, 
Alice will experience buffering when playing the 
content. The edge, being smarter in this case, will make 
use of its on-the-fly transcoding capabilities to convert 
the high-bitrate source format to a lower bitrate one. This 
will help Alice to view the video more smoothly. The 
relevant operations, including uploading, transcoding, 
and streaming, will take place in the edge without 
involving the content provider’s backend cloud network. 

• Use case 2: Bob is waiting for his next transit flight in a 
busy airport and wants to watch some music video for 
leisure. He connects to the nearby edge and starts 
receiving the video stream. The edge server has adaptive 
streaming enabled with content of only HD quality. 
However, due to limited network bandwidth and the 
unavailability of other low-bitrate profiles of the media 
content, Bob will experience buffering delays and, thus, 
reduced QoE. In such a situation, the edge will spin up 
the transcoding service to create media content with a 
lower bitrate than HD. Upon completion, the newly 
prepared content will be streamed. Bob’s QoE will be 
monitored, and this process of fine tuning will continue 
in a recurring manner, until a smooth viewing experience 
is achieved. This will both balance user experience and 
improve network resource utilization and, thus, network 
availability. 

In this paper, we consider a lightweight, container-based 
transcoding service to meet the requirements of the 
aforementioned use cases, with more focus on fine bitrate 
granularity and the on-the-fly transcoding aspect of Use Case 
2. 

B. Proposed OTFT Architecure 
The proposed OTFT architecture, represented in Fig. 1, is 

based on a two-tier principle. The content provider’s cloud-
based network consists of a centralized content database 
(CCD), a transcoder, and a segmenter. The cloud has its own 
orchestrator to manage its infrastructure and resources. The 
uploaded content from the content producers is initially stored 
in the CCD. The content is then sent to the transcoder to 
perform H.264/AVC transcoding. Note that the use of SVC 
technologies is an option that can offer storage advantages, 
since all available video representations can be stored in a 
single file. However, our design considers H.264/AVC 
encoding, which is also more widely supported. The prepared 
content is finally segmented in chunks and is prepared for 
adaptive streaming by the segmenter. Streaming-ready 
contents are then transferred to the streaming server (SS). The 



SS is hosted in the MNO’s edge network node and is 
responsible to further deliver the video stream to the end 
user’s device. An additional component, the cloud controller 
(CC), is considered. The CC is responsible for business-
related functionality and maintains the Service Level 
Agreement (SLA) between the content provider and the 
mobile network operator (MNO). This deals with the content 
provider’s access rights over the MNO’s network to manage 
the SS. The dotted line between CC and the Edge Orchestrator 
(EO) represents agreement level connectivity. 

The Edge Node (EN) is hosted on virtual machines on top 
of existing hardware in the MNO’s edge network. The EN 
runs its own compute and storage services. The compute one 
is responsible for hosting container-based applications on the 
edge, and the storage one is used to host the container image 
templates. The EN and all its services are managed by the EO. 
These services are hosted in containers inside the edge, and 
the EO controls their deployment and management.  

 
The primary service components considered here are: 

Streaming Server: Part of the content provider’s network, 
and a container-based application to perform adaptive 
streaming to the client. In this scenario, we have considered 
HTTP live streaming (HLS), so the pre-transcoded chunks of 
media segments (sent from the segmenter) reside inside this 
server. Upon a client request, the manifest file with the media 
description and structure is first served, and sequentially the 
chunks are delivered. 

 
Fig. 1. Proposed OTFT Architecture. 

Quality Assessor: It is responsible for assessing the quality of 
the served video using the Pseudo-Subjective Quality 
Assessment (PSQA) methodology. PSQA uses machine 
learning techniques to train a Random Neural Network (RNN) 
classifier on data from subjective tests with human subjects, 
where specific parameters that affect QoE are monitored while 
the viewer assesses the quality of test video sequences in the 
scale from 1 (poor quality) to 5 (excellent quality). The 
resulting RNN can then be used in real time, given that its 
input parameters are measurable. In our case, we used the 
PSQA tool of Singh et al. [23], which is trained to estimate 
QoE for an adaptive streaming service of H.264/AVC-
encoded video. The authors have shown its QoE assessments 
to correlate well with human users’ ratings. The input to this 
tool is the number, frequency and duration of playout 

interruptions in a 16-second video window, as well as the 
average value of the Quantization Parameter (QP) (the input 
values have to be appropriately normalized; for details see 
[23]). Its output is an estimate of the Mean Opinion Score 
(MOS), i.e., the expected quality rating in the 1-5 scale that a 
panel of humans would give for a video under the specific QP 
and interruption conditions. The “black-box” nature of this 
tool makes it easy to integrate with our architecture. 

The Quality Assessor receives real-time information of the 
service status from the client. The status includes the ID of the 
last downloaded segment and of the playing segment, the 
playback interruption count and duration, and the QP value of 
the video playing at the end-user device. Considering these 
parameters, the PSQA model generates a QoE estimate in real-
time in an automatic manner and without any human 
intervention. It also performs a check on the calculated MOS 
value. It is under the QA’s scope to trigger the EO for 
initiating the transcoding service. 
Transcoder and mixer: It is a container-based virtual 
transcoding service deployed by the EO. It is used to transcode 
the source media format to another deliverable format with a 
different bitrate. Once the newly prepared content is ready, the 
mixer replaces the old content in the streaming server with the 
new one. The triggering process to deploy the transcoder and 
mixer service is assisted by the EO. Once the required 
operation is done and the target QoE level is achieved, the 
service is terminated and removed from the EN.  

Referring to Use Case 2, the stepwise operational flow is 
depicted in Fig. 2. For the purpose of demonstration, let us 
consider that the streaming server stores HLS content with a 
bitrate of R1 (high bitrate). Also, we consider here that the 
application used to view the stream (e.g., VLC player) can 
provide the information necessary for QoE estimation, i.e., the 
ability to measure playout interruption and QP information 
and the reporter functionality. The interruption logger 
maintains a log of occurred interruptions count and 
interruption duration of the played video segment. Similarly, 
the QP logger tracks the QP value per picture macroblock of 
the played video. The log values are finally handed over to the 
reporter in real-time. The reporter also keeps information of 
the downloaded segment ID, playing segment ID, and playout 
start time.  

To start the service, Bob connects to the edge and sends an 
HTTP GET request to the server to fetch the playlist/manifest 
file. Upon receiving the file, the end-user device starts sending 
HTTP GET requests to fetch the media segments sequentially 
one by one as detailed in the playlist/manifest. Once the initial 
necessary playout buffer level is achieved the player starts 
displaying the first segment and automatically moves on to the 
second one, as soon as the first segment is over. At the end of 
every segment, the reporter sends the whole set of information 
to the QA. The QA performs a real-time calculation of the 
MOS value at fixed intervals. If the desired value is above the 
optimal, it reports that the QoE of the video is acceptable and 
no further action is required until the next calculation time 
instance. On the other hand, if the value decreases, the QA 
triggers the EO to spin up the transcoder and mixer service. 

The container is started (using template image from the EN) 
and the transcoding of the media content is performed. The 
bitrate is reduced to R2 (R2<R1), one step lower than the 
current bitrate. Once the newly-built media content is ready, 
the EO performs a check to get information on the last 
downloaded segment ID. Upon confirmation, the EO then 



triggers the mixer to replace the old segments (which are not 
yet fetched by the client) with the new ones. Once the 
operation is finished, the EO waits for the next QA 
information. If no information is received within a certain 
interval, the EO considers that the target MOS is achieved, 
and discards the service and stops the container. However, if 
the QoE still remains low, the same operation is performed 
again reducing the bitrate to R3 (R3<R2). This stepwise 
recurring operation continues until a target optimal QoE is 
achieved at the client end. 

It is worth noting that the proposed solution not only 
ensures QoE, but also transforms the edge into a complete 
video delivery solution. Performing transcoding on-the-fly 
incurs compute-intensive load only for a limited time. 
Furthermore, storage overhead can be reduced, as pre-
transcoded multiple versions are not required from the 
beginning and can be generated on-demand. Moreover, by 
serving the content locally (i.e., from the edge), the solution 
ensures reduction in core network traffic and reduced end-to-
end latency. 

 
Fig. 2. Signaling diagram. 

C. Potential Enhancements 
Considering a mobile network, where network conditions 

are dynamically changing due to user mobility, high 
sensitivity towards transient events may lead to a “ping pong” 
effect, where transcoding will be initiated every now and then 
with the varying conditions of the network. Instead, the 
triggering should be done only if the network conditions have 
actually degraded. However, still the tradeoff between 
responsiveness and avoiding the ping pong effect exists. 
Maintaining a sliding window of QoE scores to decide on 
whether to initiate transcoding or not based on a running 
average of the MOS (within that window) can help address 
this issue. 

Various further performance enhancements are also 
possible. For example, the cross-layer mobility, bandwidth 
[24], and QoE [25] prediction mechanisms that we have 
studied in our prior work in similar contexts can be applied to 
this end. Such an ability to predict the conditions at the client 
end can assist in identifying the optimal time to initiate 
transcoding. 

Depending on the resource availability in the EN, the 
transcoding service can be initiated in parallel to support 
multiple end-user requests. Considering it as a compute-
intensive task, and in case of limited resources in the serving 
Edge, it is the EO's responsibility to select another nearby 
edge (taking into account response time and resource 
availability) to perform the transcoding-only operation, 
leveraging the shared infrastructure concept of MEC. 

 The concept can be further enhanced by introducing smart 
algorithms in the selection of the steps for bitrate variation. 
Also, introducing advanced transcoding techniques may reduce 
the delay incurred from triggering till completion. Moreover, if 
the video is almost towards the end (i.e., the remaining video 
time is less than the transcoding time), the service initiation 
may simply be omitted. 

IV. PERFORMANCE EVALUATION 
In this section, we describe the testbed environment which 

we have built to simulate the proposed edge-based transcoding 
and streaming service. The content provider’s cloud-based 
network is not simulated, as we have considered that the 
media content for adaptive streaming is ready and is already 
stored in the streaming server. For this purpose, the authors’ 
framework proposed for providing slices of Content Delivery 
Networks as a Service (CDNaaS) can be used [28]. The 
simulation environment mostly focuses on assessing the 
performance of the edge. Our testbed is simulated with two 
laptops (with Ubuntu 14.04.3 LTS desktop OS), where one is 
the edge node and the other is the client.  

The client was simulated using a version of the VLC player 
which we modified to implement QP and interruption 
monitoring. The reporter functionality was implemented in a 
python script, which retrieves the required information, filters 
it, and passes it on to the QA database residing in the EN. On 
the edge side, two VirtualBox VMs were used. VM1 was used 
as a gateway for the entire network to access the Internet. 
DHCP with authentication was also set up inside VM1 to 
configure the whole network using a single subnet (for ease of 
the simulation). VM2 was configured using the Proxmox 
Virtual Environment to act as the EN. We use OpenVZ 
containers to host the services of our architecture in our 
testbed. The streaming server functionality was achieved using 
an Ubuntu cloud minimal image using Nginx as the webserver 
inside an Openvz container. Nginx was also configured for 
HLS streaming. The content for initial streaming was pre-
transcoded and prepared using ffmpeg, and the video codec 
used was H.264/AVC. The same container is used as storage 
for the media files. The QA was configured to receive 
interruption and QP information periodically from the 
database and appropriately normalize/transform them to be 
used as input to the PSQA tool to calculate the expected MOS 
values. The same QA script was responsible for the evaluation 
of the MOS values and triggering the EO. The automated 
orchestration was performed with a script serving the 
functionality of EO for spinning up the container which 
provides the transcoding service. The transcoding container 
template was built with a Ubuntu minimal image and had 
ffmpeg installed.  This service was configured to start on boot. 
The mixer functionality was created with a script residing 
inside the same container. Finally, to ensure that the laptop 
acted as an edge access point, its wireless LAN interface was 
configured using hostapd in IEEE.802.11 master mode. Also, 
Netem and Wondershaper tools were used to simulate a 
cellular environment. 

It is worth recalling that the objective of these tests is to 
advocate the use of MEC to ensure on-the-fly transcoding and 
achieve results on its responsiveness. Responsiveness is the 
measured delay from the time of triggering the service to the 
actual QoE enhancement time. This responsiveness check was 
performed in two ways: 



a. The container is already active with pre-transcoded 
media files. Only the mixer functionality is used, and, 
thus, taken into account in the delay measurement. 

b. Using the full functionality of on-the-fly transcoding by 
booting a container, initiating the service, transcoding 
the media file and then performing the mixing. 

The media file used for this test purpose was 9 minutes 56 
seconds long with 298 segments in total, each comprising of 
2s of video. The reporter information was sent exactly after 2s 
of video had been played (considering video play-time). To 
perform QA operation, the tool requires the information of 16s 
of played video. Therefore, the MOS calculation was 
performed only after information of a total of 8 segments were 
received. The MOS values are represented in a scale of 1 to 5. 
The value below 3.5 was considered low and was used to 
trigger the EO. 

Case a. is represented in Fig. 3, where initially the MOS 
value was high. With time, it degraded and as soon as it 
reached below the predefined threshold, mixing was initiated. 
In this scenario, pre-transcoded low bitrate files were copied 
to the streaming server’s desired location and replaced the 
existing ones. To save time, only the segments which were yet 
to be downloaded by the client were replaced. The 
replacement occurs in a sequential manner. As a result, 
although the mixing time was approximately 26s, the QoE 
started enhancing as soon as few segments were delivered. 

Fig. 4 depicts the full functionality as mentioned in case b. 
‘Ti’ represents the time when container initiation started. The 
time difference between the QA triggering the EO and the EO 
starting the creation of the container is in the milliseconds 
range. The container boots up with the already prepared 
transcoder image template (within 3s). Once it is ready, the 
EO signals to start the transcoding with the mentioned rate. 
Having limited resources (2 vCPU & 1024MB RAM) the 
container performs this total operation in approximately 1 
minute 10 seconds. The mixer operation starts as soon as the 
transcoding is over. In-between, the EO sends the information 
of the last downloaded file to indicate from which segment the 
mixing will start. The mixer operation takes almost similar 
time as mentioned before (in case a.) and depends on the 
number of segments to be transferred and replaced. 

 
Fig. 3. MOS vs Time (with pre-transcoded media files). (Ms: mixing 

start time; Mc: mixing completion time). 

 
Fig. 4. MOS vs Time (full functionality). (Ti: transcoding container 

initiated; Tc: transcoding completed; Ms: mixing started; Mc: mixing 
completed). 

In Fig. 5, the segment buffering time (Δt) is the time a 
downloaded segment spends in the buffer waiting for playout. 
In other words, it is the time difference between the instant its 
playout started and the instant it was fully downloaded. It is 
clear that initially the segment buffering time was high, which 
indicates that the segments were downloaded in advance. As a 
result, the immediate next few segments were already 
downloaded and ready before it was being played. Therefore, 
there was no buffering delay, and thus no playout 
interruptions, hence the MOS was high (if compared with Fig. 
4). When we introduced a degradation in network conditions, 
emulating congestion due to significant background traffic, the 
downloading segment time increased because of a reduction in 
the available bandwidth. At a point when the difference (Δt) 
was almost zero, the video experienced buffering delays as it 
had to wait until the downloading of a segment is complete. 
However, after transcoding to a lower-bitrate video, the 
segment size, as well as the segment download time, reduced. 
Consequently, adapting video bandwidth demands to the 
current network traffic conditions leads to timely video 
segment downloads, and minimized playback buffering time. 
This positively impacted the overall MOS. 

From Fig. 4, it is evident that with the degradation in 
network conditions, the MOS value started reducing and at a 
certain point it reached 3 (below the acceptable QoE 
threshold). In such a situation, if OTFT was not enforced, the 
client would have experienced the video with a reduced 
quality for the entire remaining duration (486 secs). However, 
enforcing OTFT has enabled the client to experience the low 
quality video only for a limited amount of time (from 
detection of MOS degradation until the end of transcoding and 
mixing i.e. 96 s), after which the viewing experience of the 
remaining video (390 s) has improved.  

We should further note that the PSQA tool helped to an 
extent to deal with a potential “ping-pong” effect, where 
transient variations in the mobile network conditions would 
lead to frequent bitrate/quality switches, since it outputs one 
“average” QoE value every 16s. Enhancements to our scheme 
are also possible. For instance, finer granularity can be 
achieved by properly setting the QoE threshold, by increasing 
the intelligence of the EO in terms of variety of bitrates and 
finally by advanced lightweight transcoding techniques with 
less startup latency. 



 
Fig. 5. Segment buffering time (∆t) vs Segment ID. (Ti: transcoding 
container initiated; Tc: transcoding completed; Ms: mixing started; 

Mc: mixing completed; when Segment buffering time = ‘0’, 
corresponding segments are not downloaded in advance). 

V. CONCLUSION 
In this paper, we proposed a scheme that reflects QoE in 

deciding, in an autonomic manner, when to enforce transcoding 
in an edge environment to increase the service quality. The 
proposed scheme features a cognitive way in selecting the best 
suitable media profile by utilizing the concept of on-the-fly-
transcoding, as one of the future applications of MEC. Instead 
of accepting the pre-selected bitrate of the streamed video from 
the content provider’s end, this framework enforces the edge to 
customize the content based on the user’s expectation. The 
framework was validated using a real life testbed, and 
interesting results were obtained on response times. Based on 
the obtained result, it can be concluded that MEC awaits a 
lightweight transcoding functionality, which can convert this 
proof-of-concept to reality. This defines one of the authors’ 
future research directions in this area. 
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