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On AoA Estimation in the Presence of Mutual Coupling:
Algorithms and Performance Analysis

Ahmad Bazzi and Dirk. T.M. Slock

Abstract

This paper presents two novel methods for Angle-of-Arrival (AoA) es-
timation in the presence of unknown mutual coupling. We mainly focus on
the first method, where we show that this method could estimate AoAs of
multiple sources when more mutual coupling parameters are included in the
model, compared to existing methods. Furthermore, we derive a closed form
Mean-Squared-Error (MSE) expression of the proposed method and com-
pare it to the MSE of MUSIC with known coupling parameters. In addition,
the derived MSE expression is also compared to the Cramér-Rao bound of
joint AoA and mutual coupling estimation in the asymptotic regime, i.e. at
high signal-to-Noise ratio or large number of antennas. The second method
serves as a refinement of the first one. Simulation results have demonstrated
the potential of the proposed methods as they enjoy better performance than
existing methods. A better description of the paper could be found in the
Conclusions section.

Index Terms

Angle-of-Arrival estimation, Mutual Coupling, Mean-Squared-Error anal-
ysis, MUSIC.
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1 Introduction

1.1 Localization and Array Signal Processing

Localisation, also known as location estimation, of multiple emitting sources
by observing measurements at the output of an array of antennas arises frequently
in signal processing applications, such as sonar, seismology, radar, and astron-
omy [1, 2]. Indeed, locating multiple sources could be determined by processing
the different signals at the output of the receiving array. This is so because the
phase shifts across different antennas is a function of the angular position of the
emitter [3, 4], known as the Angle-of-Arrival, or AoA for short. Once the AoA is
known, say by two different array receivers, then one could apply techniques, like
triangulation, to locate the source [5, 6]. Of course, there exists other signal pa-
rameters that could determine the position of a source, such as the Time-of-Arrival
(ToA) and Recieved Signal Strength (RSS). For more information on this topic, we
encourage the reader to refer to [7]. Our main focus in this paper is on Angle-of-
Arrival estimation using an array of antennas.

Throughout several decades, the problem of Angle-of-Arrival estimation has
been seen as a specific problem of array signal processing and parameter estima-
tion [8]. The Maximum Likelihood (ML) approach was one of the first to be inves-
tigated [9]. The ML is optimal, in a sense that it minimizes the mean squared error,
but it requires a multidimensional search over different AoAs. As a response, this
issue attracted a number of researchers in order to find computationally efficient
methods and, at the same time, optimise the ML cost function, such as the Iterative-
Quadratic-ML (IQML) algorithm [10], the Alternating Projection (AP) method
[11], the Expectation-Maximisation (EM) method [12], the Method-Of-Direction-
Estimation (MODE) [13], and Space-Alternating-Generalised-EM (SAGE) [14].
These methods are ”much faster” than a multidimensional search, but might suffer
from convergence issues. For instance, see [15, 16] for convergence properties on
IQML, MODE, EM and SAGE.

Subspace methods are another class of algorithms, such as MUltiple SIgnal
Classification, MUSIC [17], and Estimation of Signal Parameters via Rotational
Invariance Techniques, ESPRIT [18]. These class of algorithms have attracted a
numerous amout of researchers because they are computationally more attractive
than the algorithms listed above, however this comes at the price of performance.
More specifically, MUSIC is a large sample realization of an ML estimator [19,
20]. The ESPRIT algorithm was also analyzed in [21, 22] and was reported to
be statistically less efficient than MUSIC in [21]. Moreover, the performance of
both MUSIC and ESPRIT deteriorate when the sources are highly correlated. As
a result, spatial smoothing [23] was proposed as a remedy of highly correlated
sources. In this paper, we focus on the MUSIC algorithm to solve the problem we
are interested in.
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1.2 Literature Review

In practical scenarios, an ideal model is, rarely, satisfied and modeling errors
are the main reason behind this non-ideality. Moreover, it is well-known that differ-
ent modeling errors could degrade the performance of direction-finding algorithms,
when not taken into consideration [24, 25]. More specifically, these modeling er-
rors induce a bias in the MUSIC estimator and could result in large mean-squared
errors of AoA estimates, when the modeling errors are large enough [25]. These
modeling errors include: antenna position uncertainty [26], unknown gain/phases
between different antennas [27], and mutual coupling between antennas [28].

Mutual coupling is a popular problem in array signal processing. This phe-
nomenon arises when antennas are close to each other [29], and thus the current
developed in an antenna element depends on its own excitation and on the contri-
butions from adjacent antennas. Methods that aim on solving the mutual coupling
problem are sometimes referred to as calibration methods, which are of two types:
Offline and Online. In an offline calibration approach, one estimates the mutual
coupling parameters using known locations [30–34]. For the sake of fairness, we
should distinguish the paper in [34], since this method could calibrate the anten-
nas in the presence of multipath. Offline calibration methods could estimate all
modeling errors, thanks to the aid of known positions. However, one might argue
that this approach is time-consuming and, in some scenarios, impossible to imple-
ment. Other methods assume partly calibrated antennas [35–38] or partly known
positions [39–41].

The other type of calibration methods, which is our main interest, are known as
online (or auto-calibration) methods. One of the first papers to appear that deal with
online calibration is [42]. This method is iterative and performs alternating min-
imisation steps between the AoAs and mutual coupling parameters to optimize the
MUSIC cost function. However, this method [42] doesn’t admit a unique solution
(See [43] for the case of linear arrays and [44] for non-linear arrays). Moreover,
an initial estimate of the coupling parameters are required. Other iterative methods
we could mention are [45–48]. In [45], the convergence rate may be slow. Also,
convergence is not always guaranteed. In [46], initial estimates are needed and this
is not always available. The paper in [48] assume a diagonal source covariance ma-
trix, i.e. the sources have no correlation. This is not always true. In addition, they
treat the mutual coupling matrix and its conjugate-transpose as independent ma-
trices. This might lead to some sub-optimality. Furthermore, they have reported,
through simulations, that their algorithm needs 12 iterations to converge, and that
global convergence is not guaranteed. Moreover, the methods in [49–52] add aux-
iliary, or ”dummy” antennas, to solve the mutual coupling issue. For instance,
in [52], antennas were added on the left and right edges of the array. Then, the
main array, or the ”middle sub-array” of the total array, was used to estimate the
AoAs. However, adding antennas is not possible in some scenarios. Also, the al-
gorithms in [53–55] focus on processing the ”middle sub-array” of the main array,
but this is sub-optimal since not all the antennas are being processed.

2



A RAnk-REduction estimator, also known as RARE, was first proposed in [56]
in the context of partly calibrated arrays. The same idea was used for totally un-
calibrated Uniform Circular Arrays (UCA) in [57, 58] and Uniform Linear Arrays
(ULA) in [59, 60]. This method makes use of the MUSIC algorithm to estimate
AoAs in the presence of mutual coupling via rank reduction of an appropriate ma-
trix. The method in [60] is a Recursive-RARE (R-RARE), which was shown to
achieve better performance than the traditional RARE. A similar rank-reduction
approach was adopted in [61]. Moreover, the algorithm in [62] is based on a min-
imum eigenvalues instead. In addition, the method in [63] formulates the problem
through a quadratic minimisation problem. We shall elaborate on those algorithms
in Section III.

1.3 Contributions

Our main contributions are summarized as follows.

• We present some introductory algorithms that turn out to be essential for the
bulk of this paper. The theorems lead to a consequence for ULAs that suffer
from mutual coupling.

• Using these theorems, we derive an algorithm that is able to estimate AoAs
when more mutual coupling parameters are present in the model.

• We derive an asymptotic Mean-Squared-Error expression and compare it to
the appropriate Cramér-Rao bound.

• Another algorithm is introduced to further refine the AoA estimates by solv-
ing a multidimensional problem by alternating minimisation.

• Simulation results have demonstrated the potential of the proposed algo-
rithms, which perform better than existing algorithms.

The remainder of the paper is divided as follows: Section 2 presents the system
model used throughout the paper. Section 3 revises the MUSIC algorithm, with
and without mutual coupling. Also, we summarize some related methods that
could estimate AoAs in the presence of mutual coupling. We derive and state some
properties of the proposed algorithm that could estimate the AoAs in the presence
of mutual coupling in Section 4. The Mean-Squared-Error (MSE) of the proposed
algorithm is derived in Section 5, where we compare the MSE expression to the
MSE of MUSIC with known mutual coupling. We also compare the derived MSE
expression to the Cramér-Rao bound in Section 6. Furthermore, Section 7 presents
a refinement of the proposed method that could further enhance the AoA estimates.
Some simulation results are demonstrated in Section 8. We conclude the paper in
Section 9. The Appendix of the paper is given in Section 10.
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Table 1: Nomenclature

CM×N Class of all M ×N complex-valued matrices
C∗ Class of all complex-valued numbers except zero
AAAT Transposition of matrixAAA
AAA∗ Conjugatation of matrixAAA
AAAH Conjugate-transposition of matrixAAA
AAA+ Moore-Penrose pseudo-inverse of matrixAAA
Re
{
AAA
}

Real part of matrixAAA
rankAAA Rank of matrixAAA
‖AAA‖ Frobenius norm of matrixAAA(
AAA
)
i,j

The (i, j)th element of matrixAAA
III The identity matrix with appropriate dimensions
JJJk An all-zero matrix in Ck×k except ones at its anti-diagonal
000 The zero matrix with appropriate dimensions
AAA�BBB The Hadamard product ofAAA andBBB
N
(
AAA) The null-space ofAAA, i.e. xxx ∈ N

(
AAA) ifAAAxxx = 000

eeei The ith column of III
X =⇒ Y If X is true, then Y is true
X ⇐⇒ Y Statements X and Y are equivalent
E{X} Expectation of a random variable X
R
(
AAA,xxx

)
Rayleigh quotient, xxx

HAAAxxx
xxxHxxx

1k k × 1 vector of all-ones
δi,j The Dirac delta (If i = j, then δi,j = 1, else 0)
|z| Magnitude of complex number z
CN (ννν,ΣΣΣ) Complex Gaussian of mean ννν and covariance matrix ΣΣΣ

2 System Model

This section formulates the signal model and presents the assumptions used
throughout the paper. Then, the problem of mutual coupling is addressed.

2.1 Problem Formulation

Consider a Uniform Linear Array (ULA) of N antennas. Furthermore, assume
q < N narrow-band sources, centered around a known frequency, say fc, attacking
the array from different angles, ΘΘΘ = [θ1 . . . θq]. Since narrow-bandedness in the
context of array processing means that the propagation delays of the signals across
the array are much smaller than the reciprocal of the bandwidth of the signals, it
follows that these propagation delays translate into phase shifts that depend on the
location.
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Now following [1], the received analog signal across all antennas, in the ab-
sence of mutual coupling, could be written as

xxx(t) =

q∑
i=1

aaa(θi)si(t) +www(t) (1)

where
xxx(t) =

[
x1(t) . . . xN (t)

]T (2)

is the received vector across all antennas at time t. Moreover, the vector aaa(θ) is
referred to as the ”steering vector” of the array towards angle θ. It is this vector
that allows us to perform Angle-of-Arrival (AoA) estimation, and is given by

aaa(θ) =
[
1, zθ, . . . z

N−1
θ

]T (3)

where zθ = e−j2π
d
λ

sin(θ), d is the inter-element spacing and λ is the signal’s wave-
length. Moreover, the signal si(t) is the signal emitted by the ith source at time t
and

www(t) =
[
w1(t) . . . wN (t)

]T (4)

is background noise across all antennas at time t. Equation (1) could be written in
a more compact way as follows

xxx(t) = AAA(ΘΘΘ)sss(t) +www(t) (5)

whereAAA(ΘΘΘ) ∈ CN×q is referred to as ”steering matrix” and is given as

AAA(ΘΘΘ) =
[
aaa(θ1) . . . aaa(θq)

]
(6)

and sss(t) ∈ Cq×1 is the vector of transmitted signals, viz.

sss(t) =
[
s1(t) . . . sq(t)

]T (7)

Finally, sampling (5) at L time instances, say t = {0, T, . . . , (L − 1)T}, where T
is the sampling period, we get

XXX = AAA(ΘΘΘ)SSS +WWW (8)

where XXX = [xxx(0),xxx(T ), . . . ,xxx
(
(L − 1)T

)
] ∈ CN×L is the data collected over

the observed interval of time. Matrices SSS ∈ Cq×L and WWW ∈ CN×L are similarly
defined.

Equation (8) assumes an ideal model, in the sense that each antenna acts inde-
pendently of all the others. In reality, the current developed in an antenna element
depends on its own excitation and on the contributions from adjacent antennas.
As a consequence, an ideal model is no longer valid. This phenomenon is called
”Mutual Coupling” between array elements, and it enters the model as follows [42]

X̄̄X̄X = TTT (ccc)AAA(ΘΘΘ)SSS +WWW (9)
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where TTT (ccc) ∈ CN×N captures the effect of mutual coupling, and is known as the
”Mutual Coupling Matrix” (MCM). Due to the linear and uniform configuration
of the different elements of the array, the MCM TTT (ccc) is given by a symmetric
Toeplitz matrix. Let ci be the coupling coefficient between two elements placed i
inter-element spacings apart. Since the amplitude of the coupling parameters tend
to decay as a function of increasing distance, namely

1 > |c1| > . . . > |cN−1| (10)

then a well-approximation ofTTT (ccc) is a banded symmetric Toeplitz matrix [66] with
bandwidth p, i.e. (

TTT (ccc)
)
i,j

=

{
c|i−j| if |i− j| < p

0 else
(11)

In other words, antennas that are placed at least p inter-element spacings apart
do not interfere, i.e. ci = 0 for all i ≥ p. In what follows, the MCM of a ULA
configuration is modelled as banded symmetric Toeplitz matrix of bandwidth p and
denoted as TTT (ccc), where ccc = [1, c1 . . . cp−1]T is the vector of coupling parameters.

2.2 Assumptions

Before the problem is clearly addressed, some assumptions have to be made so
as to proceed. They are given as follows:

• Assumption 1: The Angles-of-Arrival of the q sources are distinct, namely
θi 6= θj for i 6= j.

• Assumption 2: The processes sss(t) and www(t) are ergodic and stationary over
the observed interval of time.

• Assumption 3: The signals sss(t) are not coherent, i.e. they are not fully cor-
related.

• Assumption 4: The number of signals q and the bandwidth of TTT (ccc), which is
p, are known.

• Assumption 5: The noise www(lT ) is modelled as a white circular complex
Gaussian process of zero mean and covariance σ2III and independent from
the source signals.

2.3 Problem Statement

We are now ready to address our Mutual Coupling problem:

”Given X̄̄X̄X , q, and p, estimate the angles-of-arrival ΘΘΘ of the incoming signals in
the presence of mutual coupling TTT (ccc).”
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3 The MUSIC Algorithm and Related Work

3.1 Preliminaries

This subsection serves as a review of the MUSIC algorithm, in the absence
of mutual coupling. In other words, the model in equation (8) is assumed. The
covariance matrix of the received data could be written as

RxxRxxRxx , E{xxx(t)xxxH(t)}
= AAA(ΘΘΘ)RssRssRssAAA

H(ΘΘΘ) + σ2III
(12)

where the second equality is due to Assumption 5 and

RssRssRss , E{sss(t)sssH(t)} (13)

is the source covariance matrix. Using spectral decomposition, the matrix RxxRxxRxx is
expressed as

RxxRxxRxx =
[
UsUsUs UnUnUn

] [ ΣsΣsΣs 000

000 ΣnΣnΣn

] [
UsUsUs UnUnUn

]H
= UsUsUsΣsΣsΣsUUU

H
sss +UnUnUnΣnΣnΣnUUU

H
nnn

(14)

The partitioning in equation (14) is done because RxxRxxRxx is composed of two ma-
jor parts: Signal and Noise. The signal part AAA(ΘΘΘ)RssRssRssAAA

H(ΘΘΘ) is rank q, under
Assumptions 1 and 3. Therefore, due to the noise part σ2III , one can say that ΣsΣsΣs

is a q × q diagonal matrix composed of eigenvalues strictly greater than σ2 and
ΣnΣnΣn = σ2IIIN−q. The eigenvectors UsUsUs and UnUnUn are, often, referred to as the signal
and noise subspaces, respectively.
In the absence of mutual coupling, the key to MUSIC is the following observation:

‖UUUH
nnn aaa(θ)‖2 = 0 =⇒ θ ∈ΘΘΘ (15)

In practice, one could estimate the covariance quantities through sample averaging,
viz.

R̂xxR̂xxR̂xx =
1

L
XXXXXXH = ÛsÛsÛsΣ̂sΣ̂sΣ̂sÛ̂ÛU

H
sss + ÛnÛnÛnΣ̂nΣ̂nΣ̂nÛ̂ÛU

H
nnn (16)

MUSIC estimates the angles-of-arrival ΘΘΘ through peak finding, as follows

{θ̂i}qi=1 = arg max
θ

1

aaaH(θ)ÛnÛnÛnÛ̂ÛUH
nnn aaa(θ)

(17)

3.2 Mutual Coupling in the sense of MUSIC

The previous subsection tells us that one can estimate the angles-of-arrival in
the absence of mutual coupling by performing a 1D-search according to equa-
tion (17). Now, for the ease of exposition, let ā̄āa(θ) denote the steering vector in the
presence of mutual coupling, i.e.

ā̄āa(θ) = TTT (ccc)aaa(θ) (18)

7



Similarly, define Ā̄ĀA(ΘΘΘ) as follows

Ā̄ĀA(ΘΘΘ) = TTT (ccc)AAA(ΘΘΘ) = [ā̄āa(θ1) . . . ā̄āa(θq)] (19)

Taking into account mutual coupling, i.e. the model in equation (9), one could
follow the same steps from equation (12) till (16) in order to say that the angles-
of-arrival could be estimated as follows

{θ̂i}qi=1 = arg max
θ

1

ā̄āaH(θ)ÛnÛnÛnÛ̂ÛUH
nnn ā̄āa(θ)

(20)

where ÛnÛnÛn is the sample estimate ofUnUnUn. Throughout the rest of this paper,UnUnUn is the
noise subspace, namely UnUnUnUUUH

nnn = P⊥
Ā
P⊥
Ā
P⊥
Ā

= III −PĀPĀPĀ, where

PĀPĀPĀ = Ā̄ĀA(Ā̄ĀAHĀ̄ĀA)−1Ā̄ĀAH (21)

However, applying MUSIC directly as in equation (20) to the problem in hand is
not possible, since the functional form of the steering vector is not known. In other
terms, we have partial knowledge of vector ā̄āa(θ), which is that it is a known Van-
dermonde vector aaa(θ) pre-multiplied by an unknown banded symmetric Toeplitz
matrix TTT (ccc), as in equation (18). Nevertheless, MUSIC implies the following

‖UUUH
nnn TTT (mmm)aaa(θ)‖2 = 0 =⇒ {θ ∈ ΘΘΘ andmmm = ccc} (22)

In order to proceed, we find the following theorem useful:

Theorem 1: Let ααα = [α0, α1 . . . αp−1]T ∈ Cp×1 and aaa ∈ CN×1. Define the
corresponding matrix TTT (ααα). Then the following is true for any 1 ≤ p ≤ N

TTT (ααα)aaa = BBBpααα (23)

where
BBBp , Gp(aaa) =

[
aaa SSS1aaa . . . SSSp−1aaa

]
(24)

and SSSk ∈ CN×N is an all-zero matrix except at the kth sub- and super-diagonals,
which are set to 1.

Proof. See [42, 63].

Using this theorem, we can say that

ā̄āa(θ) = TTT (ccc)aaa(θ) = BBB(θ)ccc (25)

where
BBB(θ) = Gp(aaa(θ)) (26)

Therefore, equation (22) could be re-written as

‖UUUH
nnnBBB(θ)mmm‖2 = 0 =⇒ {θ ∈ΘΘΘ andmmm = ccc} (27)

8



Said differently and in a more compact way, equation (27) also means

∥∥∥
 UUUH

nnnBBB(θ1)
...

UUUH
nnnBBB(θq)

mmm∥∥∥2
= 0 =⇒mmm = ccc (28)

Therefore, one way to formulate the problem is

(P1) : min
mmm,θ̄1...θ̄q

mmmHŜ̂ŜS(θ̄1 . . . θ̄q)mmm (29)

where

Ŝ̂ŜS(θ1 . . . θq) =

 Û̂ÛUH
nnnBBB(θ1)

...
Û̂ÛUH
nnnBBB(θq)


H  Û̂ÛUH

nnnBBB(θ1)
...

Û̂ÛUH
nnnBBB(θq)

 =

q∑
j=1

K̂̂K̂K(θj) (30)

where
K̂̂K̂K(θ) = BBB(θ)ÛnÛnÛnÛ̂ÛU

H
nnnBBB(θ) (31)

Assuming true subspaces (i.e. ÛnÛnÛn = UnUnUn) and excluding the trivial solution mmm =
000, it is clear that one solution of problem (P1) is attained when mmm = ccc and
[θ̄1 . . . θ̄q] = [θ1 . . . θq] = ΘΘΘ. Said differently, S(ΘΘΘ) admits a null space of di-
mension 1 spanned by the vector of coupling parameters, ccc.
In any case, this is a multidimensional problem in the AoA parameters, and a num-
ber of papers have resorted to an alternative and sub-optimal problem, namely

(P2) : min
mmm,θ

mmmHK̂̂K̂K(θ)mmm (32)

The sub-optimality here has a nice interpretation: It is ”as if” the coupling pa-
rameters are treated to be angular-dependent and therefore, one does not acknowl-
edge that the vector of coupling parameters ccc is fixed for any θ. Consequently,
the objective function in (P2) would have been a reasonable choice if the coupling
parameters are a function of θ, i.e. ccc = ccc(θ). Surprisingly, a problem involving
angular-dependent coupling parameters suggests a computationally less optimisa-
tion problem in terms of the AoA parameters. Indeed, this approach is sub-optimal
when ccc is independent of θ.

3.3 Related Work

As mentioned in the introduction, some methods make use of the MUSIC algo-
rithm to estimate the AoAs of multiple sources in the presence of mutual coupling.
We provide a brief review of these algorithms in this subsection. The RARE algo-
rithm in [56, 59] maximizes the following cost function through peak searching

fRARE(θ) =
1

det
{
K̂̂K̂K(θ)

} (33)

9



The peaks of the RARE cost function are estimates of the AoAs. Indeed, this is a
reasonable cost function, since equation (27) tells us thatKKK(θ) admits a null space
when θ ∈ ΘΘΘ. The identifiability conditions of RARE is: {p+ q ≤ N and p ≤ N

2 }
(See [60]). This condition should be distinguished from the one in [56], since the
RARE method developed there was for partly calibrated arrays. The paper in [60]
develop a Recursive-RARE algorithm to optimize problem (P1) via multiple 1-D
searches. They also assume p ≤ N

2 . Furthermore, the method in [61] is similar to
the RARE cost function, in the sense that a determinant criterion is used, however
it involves a different type of matrix. Nevertheless, the identifiability conditions of
the method in [61] is: {2p + q ≤ N + 1}. It should be noted that this condition
also implies that p could not exceed N

2 . In addition, the method in [62] propose to
maximize the following cost function

fMinEig(θ) =
1

λmin
{
K̂̂K̂K(θ)

} (34)

where λmin
{}

stands for the minimum eigenvalue. Whether stated in [62], or not,
the above cost function is a solution of (P2) under a norm constraint onmmm. More-
over, a linear constraint (LC) was imposed onmmm, i.e. mmmHe1e1e1 = 1 to optimize (P2)
in [63], which gives the following cost function

fLC(θ) = eH
1e
H
1e
H
1 K̂̂K̂K
−1(θ)e1e1e1 (35)

The identifiability conditions for this method is similar to the one in RARE. To
the best of our knowledge, the reason of condition p ≤ N

2 is not so clear through
the literature. One aspect of this paper is to have a clear understanding on why
this inequality has to be satisfied for all the stated algorithms (see Theorem 3 and
Consequence 1). Furthermore, we propose an algorithm that is able to estimate the
AoAs of multiple sources in the presence of mutual coupling, even when p > N

2 .

4 The Proposed Mutual Coupling Agnostic Algorithm

This section presents the algorithm that could estimate the angles-of-arrival
of multiple sources, in the presence of mutual coupling. The algorithm is based
on optimising the cost function given in (P2), under a suitable constraint. The
constraint is based on the following theorems:

4.1 Introductory Theorems

Theorem 2: Let αααp = [α0, α1 . . . αp−1]T and aaa = [1, z . . . zN−1]T. Define the
corresponding matrix TTT (αααp). Then for any 1 ≤ p ≤ N , the following holds

TTT (αααp)aaa = g(z,αααp)aaa−MMMpα̃ααp (36)
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where the polynomial g(z,ααα) is given by

g(z,αααp) = α0 +

p−1∑
k=1

αk(z
k + z−k) (37)

The matrixMMMp ∈ CN×(p−1) is defined as

MMMp =

[
UUUp
000

]
+

[
000

zN−1JJJp−1UUU
∗
p

]
(38)

where UUUp ∈ C(p−1)×(p−1) is written as

(
UUUp
)
i,j

=

{
z−(j−i+1) if j ≥ i
0 else

(39)

and α̃ααp = [α1, α2 . . . αp−1]T.

Proof. See Appendix A.

Theorem 2 is key to Theorem 3, which comes next:

Theorem 3: Let aaa = [1, z . . . zN−1]T and BBBp = Gp(aaa). Then, BBBp has the fol-
lowing spectral characteristics:

1. If p ≤ N+1
2 , thenBBBp is full column rank.

2. If p = N+2
2 and z is an N th unit root (i.e. zN = 1) then rank(BBBp) = N

2 .
The null space is given in equation (121). Otherwise, it is full column rank.

3. We distinguish 2 cases when p > N+2
2 :

(a) N is even:

i. If zN 6= ±1, thenBBBp is full column rank.
ii. If zN = −1, then rank(BBBp) = N

2 + 1. The null space is given in
equation (140).

iii. If zN = 1, then rank(BBBp) = N
2 . The null space is given in equa-

tion (144).

(b) N is odd:

i. If zN = ±1, then rank(BBBp) = N+1
2 . The null space is given in

equation (145).
ii. Otherwise,BBBp is full column rank.

Proof. See Appendix B.
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For ULA configurations, a direct consequence of Theorem 3 is the following:

Consequence 1: For ULA type configurations, i.e. aaa(θ) = [1, zθ, . . . z
N−1
θ ]T with

zθ = e−j2π
d
λ

sin(θ). Define the following sets

Θ+Θ+Θ+ =
{

sin−1(
kλ

Nd
), k = −N

2
. . .

N

2

}
(40)

Θ−Θ−Θ− =
{

sin−1(
(k + 1

2)λ

Nd
), k = −N

2
. . .

N

2

}
(41)

Θ±Θ±Θ± =
{

Θ+Θ+Θ+ ∪Θ−Θ−Θ−

}
(42)

The matrixBBB(θ) = Gp(aaa(θ)) has the following characteristics:

• If p < N+2
2 , the matrixBBB(θ) is full column rank.

• When p ≥ N+2
2 , we distinguish the following cases:

– If N is even and θ ∈Θ+Θ+Θ+, then rank(BBB(θ)) = N
2 .

– If N is even and θ ∈Θ−Θ−Θ−, then rank(BBB(θ)) = N
2 + 1.

– If N is odd and θ ∈Θ±Θ±Θ±, then rank(BBB(θ)) = N+1
2 .

– ElseBBB(θ) is full column rank.

Proof. See Appendix C.

One purpose of this paper is to understand the behaviour of matrixBBB(θ) as function
of θ. Let ν1 ≤ ν2 ≤ . . . ≤ νp be the eigenvalues of BBBH(θ)BBB(θ). In order to
partially verify Consequence 1, we have depicted two figures where p > N+2

2 . In
Fig. 1a, we fix N = 8 (even) and p = 7. The red and green dashed vertical lines
correspond to angles in Θ+Θ+Θ+ and Θ−Θ−Θ−, respectively. Observe that when θ approaches
angles in Θ+Θ+Θ+, we have three eigenvalues, i.e. ν1, ν2, and ν3, dropping to zero. This
implies that, when θ ∈ Θ+Θ+Θ+, the rank of BBB(θ) is p − 3 = 4 = N

2 . However, when
when θ ∈Θ−Θ−Θ−, only two eigenvalues, namely ν1 and ν2, go to zero. In this case, the
rank ofBBB(θ) is p−2 = 5 = N

2 +1. Also note that ν4 is strictly positive. In Fig. 1b,
we fix N = 9 (odd) and p = 8. Again, ν4 is strictly positive. When θ ∈ Θ±Θ±Θ±, three
eigenvalues go to zero, implying that the rank ofBBB(θ) is p− 3 = 5 = N+1

2 .

4.2 Algorithm Derivation

The previous subsection reveals an important phenomenon of matrix BBB(θ).
According to Consequence 1, if θk ∈Θ±Θ±Θ± and p ≥ N+2

2 , thenBBB(θk) admits a null-
space. Therefore, optimising the cost function given in (P2), without choosing
an appropriate constraint, gives false AoAs. Mathematically speaking, the cost

12



function in (P2) is exactly zero for all θk ∈ Θ±Θ±Θ± when p ≥ N+2
2 . To circumvent

this issue, we form the following optimisation problemminimize
mmm,θ

mmmHK̂̂K̂K(θ)mmm

subject to eeeH
1 BBB(θ)mmm = 1

(43)

It is easy to see that, for any θ, the trivial solution mmm = 000 and the vectors that
lie in the null space of BBB(θ) (i.e. BBB(θ)mmm = 0) are not feasible solutions because
they do not satisfy the constraint. Therefore, optimising the above problem will
exclude the latter false solutions.

The Lagrangian function corresponding to the optimisation problem in (43) is
the following:

L(mmm, ν) = mmmHK̂̂K̂K(θ)mmm− ν
(
eeeH
1 BBB(θ)mmm− 1

)
(44)

Setting the derivative of L(mmm, ν) with respect tommm to 0, we get

∂

∂mmm
L(mmm, ν) = 2K̂̂K̂K(θ)mmm− νBBBH(θ)eee1 = 0 (45)

Equation (45) gives the optimal coupling parameters, momomo, for a given θ, in terms
of the optimal Lagrangian multiplier νo as

momomo =
νo

2
K̂̂K̂K−1(θ)BBBH(θ)eee1 (46)

It is easy to prove that
BBBH(θ)eee1 = aaa∗p(θ) (47)

where aaap(θ) is a p × 1 vector defined as in equation (3). The expression of νo

is obtained by plugging equations (46) and (47) in the constraint of the problem
in (43), viz.

νo =
2

aaaT
p(θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(48)

Therefore,momomo is now given as

momomo =
K̂̂K̂K−1(θ)aaa∗p(θ)

aaaT
p(θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(49)

Substituting momomo in the objective function of (43), the q AoAs could be estimated
as follows {

θ̂k
}q
k=1

= arg min
θ

1

f(θ)
(50a)

where
f(θ) = aaaT

p(θ)K̂̂K̂K−1(θ)aaa∗p(θ) (50b)

13



Note that K̂̂K̂K(θ) is not invertible for the cases given in Consequence 1 and when
θ ∈ΘΘΘ at infinite SNR. For that, we adopt diagonal loading as done in [64], namely(
KKK(θ) + εIII

)−1, where ε > 0 is small. Additionally, it has been mentioned in [64]
that there is generally no known method for determining the optimal value of ε,
and it is usually determined experimentally. We have found that ε = 10−14 serves
as a good value.

4.3 Properties of f(θ)

For a better understanding of the behaviour of the cost function given in equa-
tion (50), we reveal some of its properties

Property 1: For p = 1, i.e. no mutual coupling, the function f(θ) ”boils down”
to the traditional MUSIC cost function in equation (17).

Proof. Trivial.

Property 2: This property characterizes the null space ofKKK(θ) for p+ q ≤ N
as a function of θ

N (KKK(θi)) =


{000}, if θi 6∈ΘΘΘ ∪ΘΘΘ±

{000 ∪ ccc}, if θi ∈ΘΘΘ and θi 6∈ΘΘΘ±

N
(
BBB(θi)

)
, if θi 6∈ΘΘΘ and θi ∈ΘΘΘ±

N
(
BBB(θi)

)
∪ {ccc}, if θi ∈ΘΘΘ ∩ΘΘΘ±

(51)

Note that if p < N+2
2 , thenN

(
BBB(θi)

)
= {000}. Also note that this property assumes

true subspaces, i.e. K̂̂K̂K(θ) = KKK(θ) = BHBHBH(θ)UnUnUnUUU
H
nnnBBB(θ).

Proof.

• The first two cases are a direct consequence of equation (27).

• The third case is a result of Consequence 1 and equation (27).

• As for the fourth case, assume that the sets ΘΘΘ and ΘΘΘ± overlap and N+2
2 ≤

p < N . Let θi ∈ΘΘΘ∩ΘΘΘ±. Therefore,KKK(θi)ααα = 000 only whenααα ∈ N
(
BBB(θi)

)
or ααα = ccc. It suffices to prove that the set ccc is linearly independent from the
span of N

(
BBB(θi)

)
.

Let ∆ be the dimension ofN
(
BBB(θi)

)
. Furthermore, let γγγ ∈ C(∆+1)×1 be an

arbitrary vector and EEE ∈ Cp×(∆+1) be a matrix where the first ∆ columns
span N

(
BBB(θi)

)
and the last column is the vector ccc. It remains to show that

EEEγγγ = 000⇒ γγγ = 000. Under the assumption that p < N and using the structure
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of the null space ofBBB(θi) given in equations (121), (140), (144), and (145),
one could easily verify that the second row ofEEE is given as

[0 . . . 0︸ ︷︷ ︸
∆

, c1] (52)

which implies that the last element of γγγ is 0, since by construction c1 6= 0,
for p ≥ 2. Hence, γγγ = 000 because the first ∆ columns of EEE are linearly
independent.

Property 3: Assuming true subspaces (i.e. ÛnÛnÛn = UnUnUn), the function f(θ) is
bounded when θ 6∈ΘΘΘ and unbounded when θ ∈ΘΘΘ.

Proof. Let the function fε(θ) be defined as follows:

fε(θ) = aaaT
p(θ)

(
KKK(θ) + εIII

)−1
aaa∗p(θ) (53)

and therefore
lim
ε→0

fε(θ) = f(θ) (54)

By spectral decomposition,
KKK(θ) = VVVΦΦΦVVV H (55)

where the kth column of VVV is the kth normalized eigenvector1 ofKKK(θ), denoted as
vvvk and its corresponding eigenvalue is the kth smallest eigenvalue found in the kth

diagonal entry of ΦΦΦ, denoted as λk. We could then express fε(θ) as

fε(θ) = aaaT
p(θ)VVV

(
ΦΦΦ + εIII

)−1
VVV Haaa∗p(θ) (56)

• When θ 6∈ΘΘΘ, we distinguish two sub-cases:

– If θ 6∈ ΘΘΘ±, then KKK(θ) is full rank according to Property 2 and hence
λk > 0 for all k, so

f(θ) = ‖ΦΦΦ−1/2VVV Haaa∗p(θ)‖2 <∞ (57)

– If θ ∈ Θ±Θ±Θ±, then KKK(θ) is full rank (if p < N+2
2 ) and the preceeding

argument holds. However, if p ≥ N+2
2 , then KKK(θ) admits the same

null-space as that ofBBB(θ) according to Property 2. As before, let ∆ be
the dimension ofKKK(θ), therefore fε(θ) behaves as

fε(θ) v
∆∑
k=1

1

λk + ε
‖aaaT

p(θ)vvvk‖2 =
∆∑
k=1

1

ε
‖eeeT

1BBB(θ)vvvk‖2 (58)

Note that {vvvk}∆k=1 span the null space ofBBB(θ) and thereforeBBB(θ)vvvk =
000. So, fε(θ) = f(θ) = 0 <∞.

1Indeed, VVV and ΦΦΦ are functions of θ. This is omitted for the sake of compact exposition.
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• When θ ∈ ΘΘΘ, we also distinguish the same sub-cases:

– If θ 6∈ ΘΘΘ±, then there is only one singularity in KKK(θ) according to
Property 2, i.e. λ1 = 0, vvv1 = ccc

‖ccc‖ , and λk > 0 for all k ≥ 2. Hence

fε(θ) v
1

ε

‖aaaT
p(θ)ccc‖2

‖ccc‖2
(59)

Notice that the term aaaT
p(θ)ccc is a polynomial of degree p − 1 evalu-

ated at the unit circle. For a polynomial with non-zero coefficients to
have zeros on the unit-circle, the coefficient vector cccmust be conjugate-
symmetric [68], which is not the case according to equation (10). There-
fore, aaaT

p(θ)ccc 6= 0 and thus

f(θ) = lim
ε→0

fε(θ) =∞ (60)

– If θ ∈ Θ±Θ±Θ±, then the null space of KKK(θ) is spanned by ∆ + 1 vectors
given in Property 2, and we have

fε(θ) v
∆∑
k=1

1

ε
‖eeeT

1BBB(θ)vvvk‖2 +
1

ε

‖aaaT
p(θ)ccc‖2

‖ccc‖2
(61)

Using the same argument as before, as ε goes to zero, the 1st term of
the above expression goes to zero, whereas the 2nd term goes to∞.

Property 4: The condition so that f(θ) uniquely identifies the AoAs is that
p+ q ≤ N .

Proof. This is so because the cost function in equation (50) depends on the inver-
sion of KKK(θ). Hence, in the case where θ 6∈ ΘΘΘ ∪Θ±Θ±Θ±, the matrix UUUH

nnnBBB(θ) is full
column rank when p ≤ N − q. As for the case when θ ∈ ΘΘΘ ∪Θ±Θ±Θ±, we have the
argument in Property 3.

Remark: The existing methods in equations (33), (34), and (35) can not iden-
tify the true AoAs, when the number of coupling parameters p > N

2 . According to
Property 2, the cost functions of these exsiting methods would yield peaks when-
ever θ ∈ Θ±Θ±Θ± and p > N

2 . One could not, simply, remove these peaks because they
would affect the estimation, when the true AoAs are close to those in Θ±Θ±Θ±.

5 MSE Analysis

It is well known that the noise subspace could be decomposed into two parts:

ÛnÛnÛn = UnUnUn + ŨnŨnŨn (62)
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where the first part,UnUnUn, is the true noise subspace and the second one, ŨnŨnŨn, is the er-
ror term. Using this decomposition and other asymptotic properties (i.e. for large
L or high SNR) which will appear in this section, we wish to derive an asymp-
totic MSE expression for the AoA estimates obtained from equation (50). In other
words, we seek an asymptotic expression of E

{
(θ̃k)

2
}

, where θ̃k is the error part

θ̂k = θk + θ̃k (63)

Since
{
θ̂k
}q
k=1

are minimum points of f−1(θ), then

∂f−1(θ̂k)

∂θ
,
∂f−1(θ)

∂θ

∣∣∣
θ=θ̂k

= 0 (64)

As done in [19], since θ̂k is an estimate of θk, we could, asymptotically, expand the
above derivative in the neighborhood of the true θk using Taylor series

∂f−1(θ̂k)

∂θ
=
∂f−1(θk)

∂θ
+
∂2f−1(θk)

∂θ2
(θ̂k − θk) + . . . (65)

which gives an approximate expression of the error θ̃k = θ̂k − θk

θ̃k w −
∂f−1(θk)

∂θ
∂2f−1(θk)

∂θ2

= − f ′(θk)

f ′′(θk)− 2 (f ′(θk))2

f(θk)

(66)

where f ′(θk) and f ′′(θk) are the 1st and 2nd order derivatives of f(θ) evaluated at
point θk, respectively.

Property 5: The derivatives f ′(θ) and f ′′(θ) are given as

f ′(θ) = g1(θ) + g2(θ) (67)

f ′′(θ) = h1(θ) + h2(θ) + h3(θ) (68)

where g1(θ) and g2(θ) are given in equation (151) and h1(θ), h2(θ), and h3(θ)
are given in equation (152).

Proof. See Appendix D.

The expressions of f ′(θ) and f ′′(θ) in equations (67) and (68), respectively,
turn out to be too complicated to analyze the error in equation (66). However,
some simplifications could be done, asymptotically, thanks to the following theo-
rem

Theorem 4: Let λj and vvvj be the jth smallest eigenvalue and its corresponding
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normalized eigenvector of KKK(θk). Similarly, define λ̂j and v̂̂v̂vj for K̂̂K̂K(θk). The
smallest eigenvalue λ̂1 and its eigenvector v̂̂v̂v1 could be approximated as

λ̂1 =
1

‖ccc‖2
cccHBBBH(θk)ŨnŨnŨnPPP

⊥⊥⊥
k Ũ̃ŨU

H
nnnBBB(θk)ccc+O(‖ŨnŨnŨn‖3) (69)

v̂̂v̂v1 =
1

‖ccc‖

(
ccc−

p∑
i=∆+2

vvvH
i BBB

H(θk)UnUnUnŨ̃ŨU
H
nnnBBB(θk)ccc

λi
vvvi

)
+O(Ũ̃ŨU2

nnn) (70)

where PPP⊥⊥⊥k = III −PPPk and

PPPk = UUUH
nnnBBB(θk)KKK

+(θk)BBB
H(θk)UnUnUn (71)

and ∆ is the dimension of N
(
BBB(θk)

)
, which is 0 when p ≤ N+2

2 or {p > N+2
2

and θk 6∈ Θ±Θ±Θ±} and non-zero otherwise (according to Consequence 1). Note that
O(‖ŨnŨnŨn‖k) and O(Ũ̃ŨUknnn ) are scalar and vector terms, respectively, in which ŨnŨnŨn ap-
pears k times in each term.

Proof. See Appendix E.

This theorem reveals a behaviour of λ̂1, i.e. it acts as O(‖ŨnŨnŨn‖2). Using The-
orem 4, and some straightforward algebra, we have the following asymptotic ap-
proximations of f(θ), f ′(θ), and f ′′(θ)

f(θ) =
1

λ̂1‖ccc‖2
µk +O

(
‖ŨnŨnŨn‖−1

)
(72)

f ′(θ) = − 2

λ̂2
1‖ccc‖4

µkRe{ρ̃k}+O
(
‖ŨnŨnŨn‖−2

)
(73)

f ′′(θ) =
2

λ̂3
1‖ccc‖4

µk
( 4

‖ccc‖2
(Re{ρ̃k})2 − λ̂1υk

)
+O

(
‖ŨnŨnŨn‖−3

)
(74)

where

µk = ‖cccHaaa∗p(θk)‖2 (75)

ρ̃k = cccHBBBH(θk)ŨnŨnŨnPPP
⊥⊥⊥
k UUU

H
nnnDDD(θk)ccc (76)

υk = cccHDDDH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnnDDD(θk)ccc (77)

Substituting these expressions in equation (66), we arrive at

θ̃k '
Re{ρ̃k}
υk

(78)

In order to proceed, we use the following lemma, which gives the probabilistic dis-
tribution of the columns of ŨnŨnŨn
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Lemma 1: Let ñ̃ñni be the ith column of ŨnŨnŨn. Asymptotically, the vectors UsUsUsUUUH
sss ñ̃ñni

are jointly Gaussian distributed with zero means and covariance matrices given by

E
{(
UsUsUsUUU

H
sss ñ̃ñni

)(
UsUsUsUUU

H
sss ñ̃ñnj

)H
}

=
σ2

L
UUUδi,j (79)

E
{(
UsUsUsUUU

H
sss ñ̃ñni

)(
UsUsUsUUU

H
sss ñ̃ñnj

)T
}

= 000 (80)

where
UUU = UsUsUsΣsΣsΣs

(
ΣsΣsΣs − σ2III

)−2
UUUH
sss (81)

Proof. See [19].

This lemma is key to the following theorem, which gives the MSE expression
E
{

(θ̃k)
2
}

Theorem 5: The estimates
{
θ̂k
}q
k=1

estimated through f(θ) by equation (50) are
asymptotically unbiased. Furthermore, the MSE expression E

{
(θ̃k)

2
}

is given as

E
{

(θ̃k)
2
}
, var(p)

f (θ̂k) =
σ2

2L

ā̄āaH(θk)UUUā̄āa(θk)

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk)

(82)

where ā̄āa(θk) and UUU are defined in equations (18) and (81), respectively. Also,
d̄̄d̄d(θk) = ∂ā̄āa(θ)

∂θ

∣∣∣
θ=θ̂k

.

Proof. See Appendix F.

It is interesting and easy to see that when p = 1, the above MSE expression
coincides with the MSE expression of MUSIC derived in [19]. In other words, if
p = 1, we have ā̄āa(θk) = aaa(θk), d̄̄d̄d(θk) = ddd(θk), and PPP⊥⊥⊥k = III , hence

var(1)
f (θ̂k) =

σ2

2L

aaaH(θk)UUUaaa(θk)

dddH(θk)UnUnUnUUUH
nnn ddd(θk)

= varMU(θ̂k;aaa) (83)

where varMU(θ̂k;aaa) is read as follows: The variance of θ̂k obtained by MUSIC by
utilising a steering vector aaa(θ). We adopt this notation because the MSE expres-
sion, var(p)

f (θ̂k), could also be expressed as

var(p)
f (θ̂k) =

( 1

1− γk

)
varMU(θ̂k; ā̄āa) (84)

where
0 ≤ γk = R

(
PPPk,UUU

H
nnn d̄̄d̄d(θk)

)
< 1 (85)

where the bounds in equation (85) are due to the fact that γk is a Rayleigh quotient,
which is always bounded between the minimum and maximum eigenvalues of PPPk.
Since PPPk is a projector matrix, then the eigenvalues are either 0 or 1. Note that
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γk = 1 only when N − q = rank(PPPk) = p − 1, thus violating the identifiability
condition given in Property 4.

Observation: It is very important to observe that varMU(θ̂k; ā̄āa) appearing in equa-
tion (84) is, indeed, the MSE of θ̂k estimated through MUSIC with known mutual
coupling parameters. Therefore, the quantity 1

1−γk quantifies the loss of perfor-
mance, or ”gap” in terms of MSE, between the proposed method in equation (50)
and the MUSIC algorithm with known mutual coupling parameters. Through ex-
haustive simulations, we have noticed that γk is increasing as a function of p, given
that the coupling parameters decay as in equation (10) (See Section VIII).

6 Comparison with the Cramér-Rao Bound

The Cramér-Rao Bound (CRB) on the AoA estimates of a model that includes
unknown mutual coupling, i.e. equation (9) was derived in [74]. The CRB is given
as

varCRB(θ̂k) =
σ2

2L

([
D̄̄D̄DHP⊥ĀP

⊥
ĀP
⊥
Ā D̄̄D̄D �RssRssRss

]−1
)
k,k

(86)

where P⊥
Ā
P⊥
Ā
P⊥
Ā

= III − PĀPĀPĀ is given in equation (21) and Ā̄ĀA is given in equation (19).
Also

D̄̄D̄D =
[

∂ā̄āa(θ1)
∂θ1

. . .
∂ā̄āa(θq)
∂θq

]
(87)

Following similar steps as in [19], we re-write the MSE equation, var(p)
f (θ̂k), in a

way that turns out to be useful when comparing to the CRB

var(p)
f (θ̂k) =

σ2

2L

(
RRR−1
ssssss

)
k,k

+ σ2
(
RRR−1
ssssss (Ā̄ĀAHĀ̄ĀA)−1RRR−1

ssssss

)
k,k

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk)

(88)

6.1 Large Number of Antennas

We study the performance of the algorithm proposed in equation (50) in the
asymptotic regime when p

N → 0, i.e. N → ∞ for fixed p. We have the following
Theorem, which is a generalisation of the case with no mutual coupling in [19]

Theorem 6: The limits of varCRB(θ̂k) and var(p)
f (θ̂k) are given as

varCRB(θ̂k) −−−→p
N
→0

6σ2

N3L|hhhH
kccc|2

1(
RssRssRss
)
k,k

(89)

var(p)
f (θ̂k) −−−→p

N
→0

6σ2

N3L|hhhH
kccc|2

(
RRR−1
ssssss

)
k,k

(90)

γk −−−→p
N
→0

0 (91)
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where
hhhk = aaap(θk) + aaa∗p(θk)− eee1 (92)

Proof. See Appendix G.

Using this theorem, we have that

var(p)
f (θ̂k)

varCRB(θ̂k)
=
(
RssRssRss
)
k,k

(
RRR−1
ssssss

)
k,k

(93)

and hence the CRB is attained for uncorrelated signals (i.e. RssRssRss is diagonal), when
p
N → 0.

6.2 High SNR

For high SNR and uncorrelated signals, one could show the following relation

var(p)
f (θ̂k)

varCRB(θ̂k)
=
(

1 +

(
(Ā̄ĀAHĀ̄ĀA)−1

)
k,k

SNRk

)( 1

1− γk

)
(94)

where SNRk =
(RssRssRss)k,k
σ2 . For high SNR, the ratio in equation (94) is controlled by

the factor 1
1−γk , i.e. the ”gap” between the MSE of the proposed algorithm and the

CRB is 1
1−γk .

7 Refining the AoA estimates by alternating minimisation

As explained in Section III.B, the optimisation problem formed in (P2) is sub-
optimal. This is due to the fact that it, implicitly, assumes that each AoA is exposed
to different mutual coupling parameters, namely ccc = ccc(θ). Fortunately, problem
(P1) is optimal, since it forces the same coupling parameters on all the AoAs. In
this section, we propose an efficient algorithm that aims at optimising problem
(P1).

Consider the following problem:
minimize
mmm,θ1...θq

mmmHŜ̂ŜS(ΘΘΘ)mmm

subject to
( q∑
k=1

eeeH
1 BBB(θk)

)
mmm = 1

(95)

The constraint here is a generalisation of that in problem (43) in a sense that it pre-
vents the cost function to be zero when the AoA variables ΘΘΘ are ”simultaneously”
in the set ΘΘΘ±, i.e. when θ1 ∈ ΘΘΘ± . . . θq ∈ ΘΘΘ±. Following similar steps as in
equations (44) till (49), the optimal coupling parameters are given as

momomo =
Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

1
T
qAAA

T
p(ΘΘΘ)Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

(96)
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whereAAAp(ΘΘΘ) is similarly defined asAAA(ΘΘΘ) in equation (6) but of size p× q. Plug-
ging this expression ofmomomo in the objective function of (95), we get

Θ̂̂Θ̂Θ = arg max
ΘΘΘ

{
1

T
qAAA

T
p(ΘΘΘ)Ŝ̂ŜS−1(ΘΘΘ)AAA∗p(ΘΘΘ)1q

}
(97)

which involves a q−dimensional search in the AoA parameters. We, hereby, pro-
pose q ”1−dimensional” searches done by alternating minimisations: At an itera-
tion i, the following AoAs are estimated from previous iterations:

Θ̂̂Θ̂Θī = [θ̂1 . . . θ̂i−1] (98)

Estimate θ̂i as

θ̂i = arg max
θ

{
1

T
iAAA

T
p(Θ̂̂Θ̂Θī, θ)Ŝ̂ŜS

−1(Θ̂̂Θ̂Θī, θ)AAA
∗
p(Θ̂̂Θ̂Θī, θ)1i

}
(99)

by picking θ̂i 6∈ Θ̂̂Θ̂Θī because values in Θ̂̂Θ̂Θī also maximize the above cost function.
It is easy to see that the first iteration of this algorithm, i.e. i = 1, is equivalent to
maximising f(θ). However, the difference is that, the first approach involves pick-
ing q peaks from f(θ), whereas, the alternating minimisation algorithm in equa-
tion (99) picks one peak at each iteration, and therefore refining the estimates of
each AoA. Moreover, this approach could also estimate the coupling parameters.
This is done by using all estimated AoAs, say Θ̂̂Θ̂Θ and inserting them into equa-
tion (96), namely

ĉ̂ĉc =
Ŝ̂ŜS−1(Θ̂̂Θ̂Θ)AAA∗p(Θ̂̂Θ̂Θ)1q

1
T
qAAA

T
p(Θ̂̂Θ̂Θ)Ŝ̂ŜS−1(Θ̂̂Θ̂Θ)AAA∗p(Θ̂̂Θ̂Θ)1q

(100)

8 Simulation Results

This section provides some computer simulations to validate some MSE prop-
erties and demonstrate the potential of the proposed algorithms.

In Fig. 2, we study the behaviour of γk given in equation (85) by fixing p = 3
and increasing N , i.e. p

N → 0. Fig. 2a plots γ1 for one source q = 1, but different
AoAs. The coupling parameters are set to

ccc =
[
1; −0.08 + 0.5j; −0.14− 0.3j

]T (101)

In addition, Fig. 2b plots γ1 and γ2 when q = 2 sources are present. The coupling
parameters are set to

ccc =
[
1; 0.28 + 0.41j; 0.18 + 0.2j

]T (102)

We observe that in both cases γk → 0 as p
N → 0. Furthermore, the rate of decay

depends on the AoA, number of sources, and the coupling parameters.
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In Fig. 3, we study the behaviour of γk by fixing N and increasing p. We have
simulated two different scenarios when q = 1 source is present. The coupling pa-
rameters are generated by first forming a vector ccc, such that

{
ck = 1

k+1e
j2πφk

}N
k=1

,
where φk is randomly chosen. Then, in order to compute γk, for p = p0, we choose
the first p0 elements of ccc to form the vector ccc ∈ Cp0×1. In Fig. 3a and Fig. 3b, we
have set N = 10 and N = 50, respectively. We also observe that γk is increasing
as p increases for fixed N . This results in an increase of the MSE given in equa-
tion (82), when p increases due to the factor

(
1

1−γk

)
, as we shall next.

The MSE of the proposed algorithm in equation (50), namely var(p)
f (θ̂k), is

simulated in Fig. 4. In Fig. 4a, we set N = 6, q = 1, and θ1 = 50◦. The number
of snapshots is L = 103. The coupling parameters are chosen from vector

ccc = [1; −0.08 + 0.5j; −0.14− 0.3j; −0.04 + 0.04j; 0.03− 0.02j]T (103)

as done in the case of Fig. 3. This figure tells us that a higher MSE is obtained
for increasing p. In Fig. 4b, we quantify this loss of performance. We have q = 1
source impinging an array of N = 6 at θ1 = 10◦. The number of snapshots is
L = 102. The number of coupling parameters is p = 3 with ccc equal to that in
the scenario depicted in Fig. 2a. We have plotted the experimental and theoretical
MSE of MUSIC with known coupling parameters and the proposed algorithm in
equation (50). For the experimental MSE, we have averaged over 103 Monte-Carlo
simulations. This figure validates the gap between the MSE of MUSIC and the pro-
posed algorithm, which is about 1

1−γ1 , for sufficiently high SNR. The value of γ1

could be extracted from Fig. 2a, since we have used the same coupling parameters.
We could see that γ1 ' 0.758 for θ1 = 10◦, which gives 10log10

(
1

1−γ1

)
' 6dB.

This factor is the loss of performance compared to MUSIC with known coupling
parameters. Furthermore, we could also observe that the experimental and theo-
retical MSE curves are in agreement for sufficiently high SNR.

In Fig. 5, different spectra of methods that estimate AoAs in the presence of
mutual coupling are depicted for a particular scenario. There are two sources θ1 =
2◦ and θ2 = 20◦ attacking a ULA composed of N = 8 antennas. The ULA suffers
from mutual coupling with p = N+2

2 = 5 coupling parameters given as

ccc = [1; −0.44 + 0.23j; 0.33 + 0.01j; −0.23− 0.1j; 0.1 + 0.16j]T (104)

The SNR is set to 10 dB and the collected number of snapshots is L = 500. We
observe that the methods in Figures 5a, 5b, and 5d yield fake peaks when θ ∈ ΘΘΘ+

according to Consequence 1. In addition, there is no peaks corresponding to the
true positions. This is so because fake peaks may overlap with the true ones, when
the latter are sufficiently close to the former. Furthermore, the recursive RARE
depicted in Fig. 5e is initialized by RARE, and therefore selecting a false peak in
the first iteration may deteriorate the performance of recursive RARE in further
iterations. As we can see, recursive RARE has not successfully identified the true
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positions. Moreover, the method in [61] depicted in Fig. 5c does not perform well
at all. As stated earlier, this is so because the method requires that 2p+q ≤ N +1.
On the other hand, the iterative method in [48] gives broad and biased peaks away
from the true positions. Moreover, the proposed method in equation (50) depicted
in Fig. 5g gives peaks at the true positions. The ratio between the highest true peak
and the highest fake peak is about 50dB. Additionally, the ratio between the 2nd

highest true peak and the highest fake peak is about 25dB. Indeed, there is a great
improvement between the proposed method and the previously mentioned one. Fi-
nally, the refined method discussed in Section VII could further diminish the fake
peaks as we can see in Fig. 5h. In addition, the refined method also exhibits better
performance in terms of bias and MSE of AoAs and coupling parameters, when
compared to all these methods.

We now conduct three experiments to compare the bias and MSE of estimated
parameters. In all what follows, the experiments are conducted under 500 Monte-
Carlo simulations. At a given SNR, let θ̂(m)

k be the estimate of θk at the mth

Monte-Carlo simulation. Similarly, let ĉ̂ĉc(m) be the estimate of ccc at the mth Monte-
Carlo simulation. Then, we define the bias of AoA parameters at a given SNR as
follows:

Bias =
1

500q

500∑
m=1

q∑
k=1

θk − θ̂
(m)
k (105)

Also, at a given SNR, the MSE of AoA parameters is given as follows:

MSEAoA =
1

500q

500∑
m=1

q∑
k=1

(
θk − θ̂

(m)
k

)2 (106)

Similarly, the MSE of the coupling parameters are computed as follows

MSEccc =
1

500

500∑
m=1

∥∥ccc− ĉ̂ĉc(m)
∥∥∥∥ccc∥∥ (107)

In Experiment 1, we fix the following parameters: N = 8, q = 2 i.i.d. uncorre-
lated Gaussian sources impinge the array at θ1 = 5◦ and θ2 = 20◦. The collected
number of snapshots is L = 103, and the number of coupling parameters is p = 3
with

ccc =
[
1; 0.2 + 0.46j; 0.33 + 0.04j

]T (108)

According to Fig. 6a, all methods, except for [48], show no bias when SNR> 2dB.
However, it is interesting to observe that the proposed method and its refinement
are the least biased. In terms of the MSE of AoA estimates, which is depicted
in Fig. 6b, we also observe that the proposed method and its refinement exhibit
less MSE for any SNR. Interestingly, all algorithms (except for [61] and [48]), are
exposed to the same MSE, when the SNR exceeds 2dB. In Fig. 9a, we have plot-
ted the error on estimated coupling parameters, according to equation (107), for
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methods that could estimate ccc. Indeed, the AoA estimates are directly related to
coupling parameter estimates, and this is why we see that the method in [48] shows
the highest MSE error. In addition, we also observe that the error on coupling pa-
rameter estimates of the Recursive RARE [60] and the refined method show similar
behaviour, when SNR exceeds 2dB.

In Experiment 2 (Fig. 7a, 7b, and 9b), we fix the same parameters as in Exper-
iment 1, except now that the 2 sources are correlated. The sources are Gaussian
with covariance matrix

RssRssRss =

[
1 ρ
ρ∗ 1

]
(109)

where the correlation coefficient is set to |ρ| = 0.8. Again, the method in [48]
does not perform well at all (in terms of bias and MSE). This is so because the
method was based on the assumption that RssRssRss is diagonal, and therefore correla-
tion between sources is not allowed. On the other hand, all other methods require
higher SNR when sources are correlated, since they are MUSIC-based methods.
For example, the proposed method in equation (50) requires an SNR of −2 dB to
achieve 0 dB MSE, when the sources are un-correlated (Experiment 1). On the
other hand, and in order to achieve the same MSE for correlated sources with cor-
relation coefficient |ρ| = 0.8, an SNR of 13 dB is needed. This is so because the
MSE of this method depends on RRR−1

ssssss (equation (88)), and hence a higher MSE is
obtained as correlation between sources increase. According to Fig. 7a and 7b, we
also observe that the proposed and refined methods are the least biased and enjoy
better MSE performance than other methods. As for the MSE of coupling param-
eters, i.e. Fig. 9b, we see that the refined method outperforms Recursive RARE by
an MSE of about 6 dB, for any SNR > 7 dB.

In Experiment 3 (Fig. 8a, 8b, and 9c), we fix the same parameters as in Exper-
iment 1, except for p = N+2

2 = 5, with

ccc =
[
1; 0.2 + 0.46j; 0.33 + 0.04j; 0.12 + 0.01j; 0.01 + 0.03

]T
(110)

According to Figures 8a, 8b, and 9c, we see that all algorithms, except for [48] and
the proposed ones, do not operate properly in terms of bias and MSE. This is so
since p was chosen to be N+2

2 . Therefore, according to Consequence 1, the matrix
BBB(θ), and consequently K̂̂K̂K(θ) admits a null-space whenever θ ∈ Θ+Θ+Θ+, and there-
fore the mentioned methods will always choose peaks corresponding to angles in
θ ∈ Θ+Θ+Θ+. At sufficiently high SNR, we see that the MSE of the proposed algo-
rithm and the refined method coincide (Fig. 8b). Additionally, the refined method
outperforms all other algorithms in terms of bias and MSE of AoAs and coupling
parameters.
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9 Conclusions

There are several new results in this paper that should be highlighted.

• We have first presented and proven two theorems, namely Theorem 2 and
Theorem 3, that allowed us to characterize the spectral behaviour of an im-
portant matrix, i.e. BBB(θ), through Consequence 1. This consequence ex-
plains the reason why other algorithms, revised in Section III.C, suffer from
”non-identifiability” (i.e. when p > N

2 ) through that particular matrix.

• In the light of these results, we propose a new algorithm in Section IV, that
does not suffer from this ”non-identifiability” issue, namely this algorithm
could estimate the Angles-of-Arrival of q sources in the presence of pmutual
coupling parameters, given that p + q ≤ N . We have also proved some
properties that are related to the cost function f(θ) to give a better insight on
how the proposed method operates.

• We have derived a closed-form asymptotic MSE expression of the proposed
algorithm with the help of the paper in [19] and some Perturbation Theory
tools. Moreover, we have shown that the estimates of the Angles-of-Arrival
through peak finding of f(θ) are asymptotically unbiased.

• We observed the ”gap” between the MSE of the proposed method and the
MSE of MUSIC with known mutual coupling parameters. This is given by
equation (84). For the kth source, this ”gap” is given by

(
1

1−γk

)
.

• Furthermore, the derived MSE reveals that the proposed algorithm attains the
Cramér-Rao bound of joint mutual coupling and Angle-of-Arrival estimation
when p

N → 0 for uncorrelated signals. However, for high SNR, this is not
generally the case.

• Simulation results have demonstrated the potential of the proposed method
and its refined version (which is derived in Section VII) for different scenar-
ios, as they enjoy better performance than existing methods for any p (even
when p ≤ N

2 ).

10 Appendix

10.1 Appendix A: Proof of Theorem 2

We shall prove this theorem by mathematical recurrence. Clearly, the theorem
is true when p = 1 for any N ≥ 1. Assume equality (36) holds true for p− 1. Our
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task is to prove the same equality for p. Using Theorem 1, we can say

TTT (αααp)aaa = BBBpαααp

= BBBp−1αααp−1 + αp−1SSSp−1aaa

= g(z,αααp−1)aaa−MMMp−1α̃ααp−1 + αp−1SSSp−1aaa

= g(z,αααp)aaa− αp−1(zp−1 + z−(p−1))aaa−MMMp−1α̃ααp−1

+ αp−1SSSp−1aaa

= g(z,αααp)aaa−
[
MMMp−1 mmmp−1

]
α̃ααp

(111)

whereBBBp = Gp(αααp) and SSSp−1 are given in Definition 2. The vectormmmp−1 is given
as

mmmp−1 =
(

(zp−1 + z−(p−1))IIIN −SSSp−1

)
aaa (112)

which is easily verified to be the last column ofMMMp.

10.2 Appendix B: Proof of Theorem 3

Using Theorem 1 and Theorem 2, then for any 1 ≤ p ≤ N andααα = [α0, α1 . . . αp−1]T

we could say
BBBpααα = TTT (ααα)aaa = g(z,ααα)aaa−MMMpα̃αα (113)

where quantities have been previously defined in their corresponding theorems.

• Case 1: Here, we should prove thatBBBpααα = 000 implies ααα = 000. For p ≤ N+1
2 , the

matrixMMMp could be expressed as

MMMp =

 UUUp
000[(N−2p+2)×(p−1)]

zN−1JJJp−1UUU
∗
p

 (114)

Note the ”zero” gap in matrix MMMp, which gives g(z,ααα) = 0. Due to the upper-
triangular nature ofUUUp, we get α̃αα = 000, which, in turn, by plugging in g(z,ααα) = 0
gives α0 = 0.

• Case 2: Fix p = N+2
2 and N is even. Then

MMMp =

[
UUUp

zN−1JJJp−1UUU
∗
p

]
(115)

Note that the two block matrices UUUp and JJJp−1UUU
∗
p do not overlap. Assume

BBBpααα = 000. The (p− 1)th row implies

zp−2g(z,ααα) = z−1αp−1 (116)

27



Plugging equation (116) in the equation given by row p− 2 gives αp−1 = 0. By
backward substitution from rows p− 3 till 1, we get

αp−2 = . . . = α1 = 0 (117)

Now, the polynomial g(z,ααα) is given as

g(z,ααα) = α0 + αp−1(zp−1 + z−(p−1)) (118)

Therefore, using equation (116), row (p− 1) gives

α0 = −αp−1z
p−1 (119)

Similarly, the pth row and using z2(p−1) = zN since p = N+2
2 , we get

α0 = −αp−1z
−(p−1) (120)

Equations (119) and (120) together give zN = 1 if αp−1 6= 0. Moreover, equa-
tions (119) and (120) give us the null space ofBBBp, namely

N (BBBp) = {βββ ∈ Cp×1, z ∈ C∗|βββ = [1, 0 . . . 0,−zp−1]T} (121)

Therefore, the rank ofBBBp is p− 1.

• Case 3(a): Here, N is even and p > N+2
2 . Fix k = p − N+2

2 . In this case, the
two block matrices UUUp and JJJpUUU∗p overlap. Furthermore, the structure of MMMp is
given as follows

MMMp =

[
UUUp−k

zN−1JJJp−k−1UUU
∗
p−k

VVV

]
(122)

The ith column of VVV ∈ CN×k is

vvvi =
[
uuuT
i mmmT

i bbbT
i

]T (123)

where

uuui = [z−(N
2

+i), z−(N
2

+i)+1 . . . z−(2i+1)]T (124)

mmmi = [z−2i + zN , z(z−2i + zN ) . . . z2i−1(z−2i + zN )]T (125)

bbbi = [zN+2i, zN+2i+1 . . . z
3N
2
−1+i]T (126)

Realising the above equations, the system of equationsBBBpααα = 000 could be parti-
tioned into 4 subsystems of equations given as follows:

Rows 1 . . . N2 − k ofBBBpααα = 000 are given by system S1

S1 : ggg(z,ααα) =

N
2

+k∑
i=l

αiz
−i, l = 1 . . .

N

2
− k (127)
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Rows N
2 − k + 1 . . . N2 ofBBBpααα = 000 are given by system S2

S2 : ggg(z,ααα) =

N
2

+k−l∑
i=N

2
−k+l

αiz
−i +

N
2

+k∑
i=N

2
−k−l+1

αi(z
i + z−i), l = 1 . . . k

(128)
Rows N

2 + 1 . . . N2 + k ofBBBpααα = 000 are given by system S3

S3 : ggg(z,ααα) =

N
2

+k−l∑
i=N

2
−k+l

αiz
i+

N
2

+k∑
i=N

2
−k−l+1

αi(z
i+z−i), l = 1 . . . k (129)

Rows N
2 + k + 1 . . . N ofBBBpααα = 000 are given by system S4

S4 : ggg(z,ααα) =

N
2

+k∑
i=l

αiz
i, l = 1 . . .

N

2
− k (130)

Now, system S1 (or equivalently S4) imply the following

α1 = . . . = αN
2
−k−1 = 0 (131)

which is carried on by backward substitution. Therefore, systems S1 and S4

each break down to one and only one equation (for l = N
2 − k). Furthermore,

for l = k, system S2 gives

αN
2
z−

N
2 (zN − 1) = 0 (132)

According to equation (132), two cases arise:

αN
2

= 0 and zN 6= 1

Using systems S1 and S2, we get

N
2
−k+l−1∑
i=N

2
−k

αiz
−i =

N
2

+k∑
i=N

2
+k−l+1

αiz
i, l = 1 . . . k (133)

Similarly, systems S3 and S4 give

N
2
−k+l−1∑
i=N

2
−k

αiz
i =

N
2

+k∑
i=N

2
+k−l+1

αiz
−i, l = 1 . . . k (134)

Equation (133) reads

αN
2
−k+l−1 = αN

2
+k−l+1z

N , l = 1 . . . k (135)
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Equation (134) gives

αN
2
−k+l−1 = αN

2
+k−l+1z

−N , l = 1 . . . k (136)

Equations (135) and (136) together give

αN
2

+k−l+1(1− zN )(1 + z−N ) = 0 (137)

Based on assumption zN 6= 1, equation (137) gives two subcases:

• Case 3(a.i): {αN
2

+k−l+1 = 0}kl=1 and zN 6= −1. In this case, one could easily

verify that α0 = . . . = αp−1 = 0. Hence, iff zN 6= ±1, the matrix BBBp is full
rank.

• Case 3(a.ii): {αN
2

+k−l+1 6= 0}kl=1 and zN = −1 . In this case, equation (136)
gives

αN
2
−k+l−1 = −αN

2
+k−l+1, l = 1 . . . k (138)

Systems S1 and S4 now give

α0 = −z
N
2

k∑
i=1

αN
2

+i(z
i − z−i) (139)

The dimension of the corresponding null space is (2k+ 1)− (k+ 1) = k. Note
that the quantity (2k+ 1) is the number of non-zero variables and (k+ 1) is the
number of linearly independent equations. The null space ofBBBp when zN = −1
is given by

N (BBBp) =
{
bbb ∈ Cp×1,βββ 6= 000

∣∣∣bbb =


h−(βββ)

000
−JJJkβββ

0
βββ


}

(140a)

where βββ = [β1 . . . βk]
T and

h−(βββ) = −z
N
2

k∑
i=1

βi(z
i − z−i) (140b)

Therefore,

rank(BBBp) = p− k =
N

2
+ 1 (141)

αN
2
6= 0 and zN = 1
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Following the same steps as Case 3(a.1), one reaches equation (135) and con-
cludes

αN
2
−k+l−1 = αN

2
+k−l+1, l = 1 . . . k (142)

Also, as previously done, systems S1 and S4 imply

α0 = −z
N
2

(
αN

2
+

k∑
i=1

αN
2

+i(z
i + z−i)

)
(143)

The null space therefore spans k + 1 dimensions, namely

N (BBBp) =
{
bbb ∈ Cp×1, [βββ, γ]T 6= 000

∣∣∣bbb =


h+(βββ, γ)

000
JJJkβββ
γ
βββ


}

(144a)

h+(βββ, γ) = −z
N
2

(
γ +

k∑
i=1

βi(z
i + z−i)

)
(144b)

Hence, we conclude that the rank ofBBBp is N
2 . This completes the proof of Case

3(a.iii).

• Case 3(b): Here, N is odd and p > N+2
2 . Fix k = p− N+1

2 . The proof follows
similar steps as Case 3(a). The null space is given as follows

N (BBBp) =
{
bbb ∈ Cp×1,βββ 6= 000

∣∣∣bbb =


y(βββ)

000
−zNJJJkβββ

βββ

} (145a)

y(βββ) = −z
N
2

k∑
i=1

βi

(
z(i+ 1

2
) − zNz−(i+ 1

2
)
)

(145b)

10.3 Appendix C: Proof of Consequence 1

Using the results of Theorem 3 and restricting ourselves with z = zθ =

e−j2π
d
λ

sin(θ), it suffices to derive the two sets, Θ+Θ+Θ+ and Θ−Θ−Θ−. The equation zNθ = 1
reads the following

e−j2π
d
λ
Nsin(θ) = ej2kπ, k = −N

2
. . .

N

2
(146)

With some straightforward algebra, equation (146) implies that θ ∈ Θ+Θ+Θ+. In a
similar manner, zNθ = −1 implies θ ∈ Θ−Θ−Θ−. Combining Theorem 3 with the above
completes the proof.
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10.4 Appendix D: 1st and 2nd order derivatives of f(θ)

The 1st order derivative is computed as

f ′(θ) = 2Re{aaaT
p(θ)K̂̂K̂K−1(θ)

∂aaa∗p(θ)

∂θ
}+ aaaT

p(θ)
∂K̂̂K̂K−1(θ)

∂θ
aaa∗p(θ) (147)

Denoting

dddp(θ) =
∂aaap(θ)

∂θ
(148)

DDD(θ) =
∂BBB(θ)

∂θ
= Gp(

∂aaa(θ)

∂θ
) (149)

and using the following identity [73]

∂K̂̂K̂K−1(θ)

∂θ
= −K̂̂K̂K−1(θ)

∂K̂̂K̂K(θ)

∂θ
K̂̂K̂K−1(θ) (150)

then f ′(θ) = g1(θ) + g2(θ), where

g1(θ) = 2Re{aaaT
p(θ)K̂̂K̂K−1(θ)ddd∗p(θ)} (151a)

g2(θ) = −2Re{aaaT
p(θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ)K̂̂K̂K−1(θ)aaa∗p(θ)} (151b)

and
Ĝ̂ĜG(θ) = BBBH(θ)ÛnÛnÛnÛ̂ÛU

H
nnnDDD(θ) (151c)

In a similar manner, after some straightforward, but lengthy, calculations, one
could verify that f ′′(θ) = h1(θ) + h2(θ) + h3(θ), where hk(θ) are given as

h1(θ) = 2Re
{
dddT
p(θ)K̂̂K̂K−1(θ)ddd∗p(θ) + aaaT

p(θ)K̂̂K̂K−1(θ)
∂ddd∗p(θ)

∂θ

}
(152a)

h2(θ) =− 4Re
{
aaaT
p(θ)K̂̂K̂K−1(θ)

(
Ĝ̂ĜG(θ) + Ĝ̂ĜGH(θ)

)
K̂̂K̂K−1(θ)ddd∗p(θ)

}
− 2Re

{
aaaT
p(θ)K̂̂K̂K−1(θ)BBBH(θ)ÛnÛnÛnÛ̂ÛU

H
nnn

∂DDD(θ)

∂θ
K̂̂K̂K−1(θ)aaa∗p(θ)

}
− 2aaaT

p(θ)K̂̂K̂K−1(θ)DDDH(θ)ÛnÛnÛnÛ̂ÛU
H
nnnDDD(θ)K̂̂K̂K−1(θ)aaa∗p(θ)

(152b)

h3(θ) = 4Re
{
aaaT
p(θ)K̂̂K̂K−1(θ)

(
Ĝ̂ĜG(θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ)+Ĝ̂ĜGH(θ)K̂̂K̂K−1(θ)Ĝ̂ĜG(θ)

)
K̂̂K̂K−1(θ)aaa∗p(θ)

}
(152c)

10.5 Appendix E: Perturbation of λ̂1 and v̂̂v̂v1

KKK(θk) could, also, be decomposed as follows

K̂̂K̂K(θk) = KKK(θk) + K̃̃K̃K(θk) (153)

32



whereKKK(θk) = BBBH(θk)UnUnUnUUU
H
nnnBBB(θk) and

K̃̃K̃K(θk) = 2Re
{
BBBH(θk)ŨnŨnŨnUUU

H
nnnBBB(θk)

}
+BBBH(θk)ŨnŨnŨnŨ̃ŨU

H
nnnBBB(θk) (154)

Using well-known results in Perturbation Theory [69, 70], we seek to use the fol-
lowing methodology: Given two Hermitian positive semi-definite matrices KKK(θk)

and K̃̃K̃K(θk), where the latter perturbs the former, each λ̂j and v̂̂v̂vj could be approxi-
mated by a linear combination as follows:

λ̂j = λj + vvvH
j K̃̃K̃K(θk)vvvj +

∑
i 6=j

|vvvH
i K̃̃K̃K(θk)vvvj |2

λj − λi
+O(‖K̃̃K̃K‖3) (155)

and

v̂̂v̂vj = vvvj +
∑
i 6=j

vvvH
i K̃̃K̃K(θk)vvvj
λj − λi

vvvi +O(K̃̃K̃K2) (156)

This approximation is valid if the the eigenvalue λj is non-degenerate. In our
case, λ1 = 0 is non-degenerate as long as p ≤ N+2

2 or {p > N+2
2 and θk 6∈

Θ±Θ±Θ±} according to Consequence 1. In that case, applying equation (155) to λ̂1 and
denotingBBB = BBB(θk) andKKK = KKK(θk) for short, we get

λ̂1 =
1

‖ccc‖2
(
cccHK̃̃K̃Kccc−

p∑
i=2

|vvvH
i K̃̃K̃Kccc|2

λi

)
+O(‖K̃̃K̃K‖3)

=
1

‖ccc‖2
(
cccHBBBHŨnŨnŨnŨ̃ŨU

H
nnnBBBccc−

p∑
i=2

|vvvH
i BBB

HUnUnUnŨ̃ŨU
H
nnnBBBccc|2

λi

)
+ . . .

=
1

‖ccc‖2
cccHBBBHŨnŨnŨn

(
III −UUUH

nnnBBB
( p∑
i=2

vvvivvv
H
i

λi︸ ︷︷ ︸
KKK+

)
BBBHUnUnUn

)
Ũ̃ŨUH
nnnBBBccc

=
1

‖ccc‖2
cccHBBBHŨnŨnŨn

(
III −PPPk

)
Ũ̃ŨUH
nnnBBBccc+O(‖ŨnŨnŨn‖3)

=
1

‖ccc‖2
cccHBBBHŨnŨnŨnPPP

⊥⊥⊥
k Ũ̃ŨU

H
nnnBBBccc+O(‖ŨnŨnŨn‖3)

(157)

In a similar manner, using equation (156), v̂1̂v1̂v1 could be written as

v̂̂v̂v1 =
1

‖ccc‖

(
ccc−

p∑
i=2

vvvH
i K̃̃K̃Kccc

λi
vvvi

)
+O(K̃̃K̃K2)

=
1

‖ccc‖

(
ccc−

p∑
i=2

vvvH
i BBB

HUnUnUnŨ̃ŨU
H
nnnBBBccc

λi
vvvi

)
+O(Ũ̃ŨU2

nnn)

(158)

As for the degenerate case, i.e. λ1 = . . . = λ∆+1 = 0, which occurs when
p > N+2

2 and θk ∈ Θ±Θ±Θ±; we follow similar steps and use the approximations given
in [71].
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10.6 Appendix F: MSE Expression

Let’s call
ω̃̃ω̃ωk , Ũ̃ŨUH

nnnBBB(θk)ccc = Ũ̃ŨUH
nnnUsUsUsUUU

H
sss BBB(θk)ccc (159)

where the second equality is due to the fact that BBB(θk)ccc = ā̄āa(θk) = TTT (ccc)aaa(θk).
Using Lemma 1, it is easy to see that ω̃̃ω̃ωk is Gaussian distributed with zero mean
and covariance matrix(

E{ω̃̃ω̃ωkω̃̃ω̃ωH
k }
)
i,j

= E
{(
UsUsUsUUU

H
sss ñ̃ñni

)H
ā̄āa(θk)ā̄āa

H(θk)
(
UsUsUsUUU

H
sss ñ̃ñnj

)}
= ā̄āaH(θk)E

{(
UsUsUsUUU

H
sss ñ̃ñnj

)(
UsUsUsUUU

H
sss ñ̃ñni

)H
}
ā̄āa(θk)

=
σ2

L
ā̄āaH(θk)UUUā̄āa(θk)︸ ︷︷ ︸

σ̃2
k

δi,j

(160)

where the last equality is a result of equation (79). Therefore, ω̃̃ω̃ωk ∼ CN (000, σ̃2
kIII).

Similarly, E{ω̃̃ω̃ωkω̃̃ω̃ωT
k} = 000. Using the moments of ω̃̃ω̃ωk, we have

E
{

(θ̃k)
}

= E
{Re{ρ̃k}

υk

}
=

1

2υk

(
d̄̄d̄dH(θk)UnUnUnPPP

⊥⊥⊥
k E
{
ω̃̃ω̃ωk
}

+ E
{
ω̃̃ω̃ωH
k

}
PPP⊥⊥⊥k UUU

H
nnn d̄̄d̄d(θk)

)
= 0

(161)

E
{

(θ̃k)
2
}

= E
{(Re{ρ̃k}

)2
υ2
k

}
=

1

2υ2
k

E
{
|ρ̃k|2

}
=

1

2υ2
k

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k E
{
ω̃̃ω̃ωkω̃̃ω̃ω

H
k

}
PPP⊥⊥⊥k UUU

H
nnn d̄̄d̄d(θk)

=
σ̃2
k

2υ2
k

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk) =

σ̃2
k

2υk

=
σ2

2L

ā̄āaH(θk)UUUā̄āa(θk)

υk

(162)

where we have used (
Re{z}

)2
=

1

2

(
|z|2 + Re{z2}

)
(163)

and E
{

Re{ρ̃2
k}
}

= 0 since E{ω̃̃ω̃ωkω̃̃ω̃ωT
k} = 000.

10.7 Appendix G: Proof of Theorem 6

The termsBBBH(θk)BBB(θl),BBBH(θk)DDD(θl), andDDDH(θk)DDD(θl) appear in var(p)
f (θ̂k)

and varCRB(θ̂k). We first compute the limits of these three expressions as p
N → 0.
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With some straightforward calculations, one could verify the following equality

(
BBBH(θk)BBB(θl)

)
m,n

=

{
bk,l(m,n), if m ≥ n
b∗l,k(n,m), else

(164)

where

bk,l(m,n)

=
(
z
−(m−1)
θk

z
(n−1)
θl

+ (1− δ1,mδ1,n)z
(m−n)
θl

)(N−m∑
i=0

[z∗θkzθl ]
i
)

+ (1− δ1,n)
(
z
−(m+n−2)
θk

+ z
(m+n−2)
θl

)(N−m−n+1∑
i=0

[z∗θkzθl ]
i
) (165)

Using the following identity

1

mk+1

m∑
t=1

tkejt(w1−w2) −−−−→
m→∞

1

k + 1
δw1,w2 (166)

and keeping in mind that p is fixed, we could complete the summation terms ap-
pearing in equation (165) by a ”finite” amount of terms of order p so that the limits
of the sum span all integers i = 0 . . . N , and therefore we have

BBBH(θk)BBB(θl)

N
−−−→
p
N
→0

hhhkhhh
H
k δk,l (167a)

which is a rank-one contribution, and hhhk is given in equation (92). In a very similar
manner, we can prove

BBBH(θk)DDD(θl)

N2
−−−→
p
N
→0

j

2
hhhkhhh

H
k δk,l (167b)

and
DDDH(θk)DDD(θl)

N3
−−−→
p
N
→0

1

3
hhhkhhh

H
k δk,l (167c)

With those limits in hand, we could verify the following

1

N3
D̄̄D̄DHP⊥ĀP

⊥
ĀP
⊥
Ā D̄̄D̄D −−−→p

N
→0

1

12


|hhhH

1 ccc|2 0 · · · 0
0 |hhhH

2 ccc|2 · · · 0
...

. . . . . .
...

0 · · · 0 |hhhH
q ccc|2

 (168)

Note that, when p = 1, the above diagonal matrix is the identity matrix, which
coincides with the result in [19]. Plugging the limit of equation (168) in the CRB
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expression given in equation (86), we get equation (89). To verify equation (90),
we expand the denominator of equation (88) as follow

d̄̄d̄dH(θk)UnUnUnPPP
⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk)

= cccH
[
DDDH(θk)UnUnUnUUU

H
nnnDDD(θk)−

(
DDDH(θk)UnUnUnUUU

H
nnnBBB(θk)

)
(
BBBH(θk)UnUnUnUUU

H
nnnBBB(θk)

)+(
BBBH(θk)UnUnUnUUU

H
nnnDDD(θk)

)]
ccc

(169)

By using the limits computed in (167), we have

BBBH(θk)UnUnUnUUU
H
nnnBBB(θk)

N
−−−→
p
N
→0

000 (170a)

BBBH(θk)UnUnUnUUU
H
nnnDDD(θk)

N2
−−−→
p
N
→0

000 (170b)

DDDH(θk)UnUnUnUUU
H
nnnDDD(θk)

N3
−−−→
p
N
→0

1

12
hhhkhhh

H
k (170c)

and therefore
1

N3
d̄̄d̄dH(θk)UnUnUnPPP

⊥⊥⊥
k UUU

H
nnn d̄̄d̄d(θk) −−−→p

N
→0

1

12
|hhhH
kccc|2 (171)

Equations (170) directly imply that γk −−−→p
N
→0

0. Now, using equation (167a), we

can verify that the second term in the numerator of equation (88) goes to zero, viz.(
RRR−1
ssssss (Ā̄ĀAHĀ̄ĀA)−1RRR−1

ssssss

)
k,k
−−−→
p
N
→0

0 (172)

Another proof could be done by using the asymptotic equivalence between Toeplitz
and Circulant type matrices [75].
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(b) N = 9 and p = 8

Figure 1: Eigenvalues of BBBH(θ)BBB(θ) as a function of θ for different values of N
and p.
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Figure 2: The behaviour of γk for fixed p = 3 as a function of N .
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Figure 5: Different normalized spectra (in dB) of methods that estimate AoAs in
the presence of mutual coupling.
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(a) Bias in ◦ of AoA estimates as a function of SNR.

-10 -5 0 5 10
SNR in dB

-30

-20

-10

0

10

20

30

M
S
E
in

d
B

MSE as a function of SNR

Method in [63]
Method in [62]
RARE [56,59]
Recursive RARE [60]
Method in [61]
Method in [48]
Proposed method f(3)
Re-nement of proposed method
Coupling-free MUSIC [17]

(b) MSE in dB of AoA estimates as a function of SNR.

Figure 6: Bias and MSE of the AoA estimates as a function of SNR for Experiment
1
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Figure 7: Bias and MSE of the AoA estimates as a function of SNR for Experiment
2
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(b) MSE in dB of AoA estimates as a function of SNR.

Figure 8: Bias and MSE of the AoA estimates as a function of SNR for Experiment
3
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(b) Experiment 2
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(c) Experiment 3

Figure 9: Error on coupling parameters as a function of SNR for the three experi-
ments
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