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Abstract
Parameter inference in mechanistic models of
coupled differential equations is a topical prob-
lem. We propose a new method based on ker-
nel ridge regression and gradient matching, and
an objective function that simultaneously encour-
ages goodness of fit and penalises inconsistencies
with the differential equations. Fast minimisa-
tion is achieved by exploiting partial convexity
inherent in this function, and setting up an itera-
tive algorithm in the vein of the EM algorithm.
An evaluation of the proposed method on var-
ious benchmark data suggests that it compares
favourably with state-of-the-art alternatives.

1. INTRODUCTION
Many processes in science and engineering can be de-
scribed by dynamical systems based on nonlinear ordinary
differential equations (ODEs). Often ODE parameters are
unknown and not directly measurable. Since nonlinear
ODEs typically have no closed form solution, standard it-
erative inference procedures require a computationally ex-
pensive numerical integration of the ODEs every time the
parameters are adapted, which in practice restricts statisti-
cal inference to very small systems. To overcome this com-
putational bottleneck, approximate methods based on gra-
dient matching have recently gained much attention. The
idea is to circumvent the numerical integration step by us-
ing a surrogate cost function that quantifies the discrepancy
between the derivative obtained from a smooth interpolant
to the data and the derivatives predicted by the ODEs. Vari-
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ous methods have been proposed in the literature, based on
P-splines (Ramsay et al., 2007; Liang and Wu, 2008), par-
allel tempering (Campbell and Steele, 2012), Gaussian pro-
cesses (Dondelinger et al. (2013), Calderhead et al. (2009),
Barber and Wang (2014)), and reproducing kernel Hilbert
spaces (RKHS, see González et al. (2013; 2014)). While
the application of Gaussian processes in this context has re-
cently been subject to some controversy (Macdonald et al.,
2015), the RKHS approach appears to have achieved very
promising results (González et al., 2013; 2014) and pro-
vides the motivation for the present study.

Consider n arbitrary time points t1 < t2 < . . . < tn and
a set of noisy observations ys(ti) of a set of unknown state
variables xs(ti), i ∈ {1, 2, . . . , n}, s ∈ {1, 2, . . . , r}. The
variable xs(t) represents the value of state variable s at time
t, x(t) is an r-dimensional column vector of the values of
all state variables at time t, xs is an n-dimensional row
vector of the values of state variable s at all time points, and
X = (x(t1), . . . ,x(tn)) = (xT

1 , . . . ,x
T
r )

T is the matrix of
all r state variables at all n time points. We use the same
notational convention for the noisy observations ys(t) with
all observations combined into a matrix Y . The dynamics
of the system composed of the r interacting states xs, 1 ≤
s ≤ r, are governed by coupled non-linear ODEs:

ẋ =
∂x

∂t
= f (x(t),θ) , (1)

with parameters θ determining the kinetics of the interac-
tions, and fixed initial values x(t1) (which, if unknown,
can be integrated into θ). We observe or measure the states
subject to iid additive Gaussian noise εs ∼ N(0, σ2I):

ys = xs + εs (2)

and the objective of inference is to learn θ from these noisy
measurements or observations. The remainder of the pa-
per is structured as follows: The state-of-the-art in ODE
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parameter estimation within the RKHS framework is re-
viewed in Section 2. Our three-step gradient matching ap-
proach based on the RKHS framework is presented in Sec-
tion 3. Two ODE benchmark models are used for com-
parative method evaluation in Section 4. We conclude in
Section 5 with a discussion of our results.

2. BACKGROUND
A Hilbert space H is a space of functions g defined over
a set D ⊂ Rm. H is said to be a Reproducing Ker-
nel Hilbert Space if and only if there exists a function
k(·, ·) : D × D → R such that for all t ∈ D the inner
product < g(·), k(t, ·) > is equal to g(t) and the kernel
function k(t, ·) is in H (Aronszajn, 1950). When working
with an RKHS approach for function estimation, functions
are expressed in the following form

x(t) =

n∑
i=1

bik(t, ti) (3)

with bi ∈ R and ti ∈ D. Many possible kernel functions are
available including the squared exponential or Radial Basis
Function (RBF) kernel, the spline kernel, and the multi-
layer perceptron (MLP) kernel, to name a few.

The RKHS approach has been previously employed for
ODE parameter estimation as follows. Consider a dynami-
cal systems with interacting states denoted by xs : D→ R.
In equation 2 we interpret xs as the target regression func-
tion to be estimated from the observed data ys. To estimate
xs, one needs to make some smoothness assumptions, and
a way to do so is to define a likelihood function penalised
with a convex regularisation function acting on xs. Green
and Silverman (1993) proposed a differential operator to
impose smoothness on xs:

lλ
(
xs|Y , σ2

)
= − 1

2σ2
‖xs − ys‖2L2−

λ

2
‖Pxs‖2L2

, (4)

where ‖·‖2L2 is the L2 norm and the P operator is required
to be linear. Recent successful RKHS-based approaches
to estimating ODE parameters build on this formulation
(González et al., 2013; 2014). In their approach, the ODEs
are reformulated as a summation of a linear and a nonlinear
part. The linear part can be combined with the differential
operator to form a linear operator P . The nonlinear part
of the ODEs is linearised by feeding a spline interpolation,
x̃(t), of the state vector into the nonlinear part, which we
denote by fn(x̃(t),θ), giving:

ẋs = fn(x(t),θ)− βxs(t) (5)

⇒
(
d

dt
+ β

)
xs(t) = fn(x̃(t),θ) (6)

⇒ Pxs(t) = fn(x̃(t),θ) (7)

Defining X̃ as the matrix of the spline interpolation for all
states at all time points, equation (4) becomes:

lλ
(
xs|Y , σ2) =

−1
2σ2
‖xs − ys‖2L2−

λ

2

∥∥∥Pxs − fn(X̃,θ)
∥∥∥2

L2

.

The operator P can be connected with a kernel in a Hilbert
space as K = (P ∗P )

−1 (Green and Silverman, 1993).
However, this poses a computational challenge, as the an-
alytical solution of this inversion is not available in closed
form and calls for the need of an approximation. González
et al. (2014) approximate the differential operator by a dif-
ferencing operator using a finite element method, making
the linear operator P becomeD+ βI , whereD is the dif-
ference matrix (see González et al. (2014) for the explicit
expression). The inverse of the kernel Gram matrix can
then be approximated as:

K−1
G =

(
D + βI)T (D + βI

)
(8)

and eq. (4) can be rewritten as (see González et al. (2014)):

lλ
(
xs|Y , σ2,θ

)
= −‖ỹs −KGα‖2

2σ2
− λ

2
αTKGα (9)

α =
(
KG + λσ2I

)−1
ỹs (10)

ỹs = ys − P−1fn(X̃,θ) (11)

The ODE parameters are then obtained by maximisation of
eq. (9) with respect to θ, which is a regularisation problem
in RKHS (Berlinet and Thomas-Agnan, 2011). The authors
found that their method outperformed the alternative ODE
parameter estimation techniques of Ramsay et al. (2007)
and Khanin et al. (2007).

However, there are two drawbacks of this approach. Firstly,
while the approximation of the derivative operator by a
difference operator is reliable for time series sampled at
high frequencies, it tends to perform poorly with sparse and
noisy data. Secondly, the linearisation of the nonlinear part
introduces inaccuracies as it is based on simple spline in-
terpolation with no influence from the ODEs. In the next
section, we propose a new approach, which is also based
on the RKHS framework, but avoids these difficulties.

3. PROPOSED METHOD
Like González et al. (2013; 2014), we model the unknown
concentrations of the sth component of the dynamical sys-
tem in eq.(1) at time t with a linear combination of kernels
k(., .) from some function family F :

gs(t; bs) =

n∑
j=1

bsjk(t, tj) (12)

We denote by bs the vector of kernel regression coefficients
bsk and define B = (bT1 , ..., b

T
r ), where r denotes the total
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number of components in the system. We estimateB along
with θ by minimisation of the following objective function:

E(θ,B) =

r∑
s=1

(
n∑
i=1

[
gs(ti; bs)− ysi

]2)

+ ρ

r∑
s=1

(
n∑
i=1

[
ġs(ti; bs)− fs(g(ti,B),θ)

]2)
(13)

where g(ti,B) = (g1(ti; b1), . . . , gr(ti; br))
T, and ρ ≥ 0

is a regularisation parameter that can be estimated effi-
ciently (by parallelisation) with 10-fold cross-validation.
The first term penalises deviations of the interpolant
gs(ti; bs) from the data ysi. The second term is a gradi-
ent matching term that penalises the difference between the
gradient obtained from the interpolant,

ġs(t; bs) =
n∑
i=1

bsi
dk(t, ti)

dt
=

n∑
i=1

bsik̇(t, ti) (14)

and the gradient predicted from the ODEs, fs(g(ti,B),θ).
MinimisingE(θ,B) with respect toB for given θ is a reg-
ularised regression problem that aims to minimise the sum-
of-squares error subject to penalising interpolants that are
not consistent with the ODEs. Minimising E(θ,B) with
respect to θ for givenB estimates the ODE parameters via
gradient matching. The inference problem

{θ̂, B̂} = argminθ,BE(θ,B)

faces two practical problems. Firstly, E(θ,B) is usually
multimodal. This calls for a ‘good’ initialisation of {θ,B}
that is ‘close’ to the global minimum. Secondly, E(θ,B)
is non-convex in both θ andB. This leaves us with a com-
putationally expensive optimisation problem that calls for
numerical acceleration. In addition, the kernels ks(tk, ti)
typically depend on some hyperparameters ϕs (e.g. the
length scale of an RBF kernel), which need to be set in ad-
vance according to a separate optimality criterion. We dis-
cuss these issues in the remainder of this section. In what
follows, ys represents the vector of observations for the sth
state, andKs is the Gram matrix with entries ks(tk, ti).

Step 1 - Initialisation of regression parameters and op-
timisation of kernel hyperparameters. Following stan-
dard kernel ridge regression, the interpolants gs(t) from
eq.(12) are obtained by minimising the following regu-
larised loss function:

L(bs,ϕs;λs) =
n∑
i=1

(
gs(ti; bs)− ysi

)2
+ ||gs||2 (15)

where the dependence on ϕs is via ks (which has not been
made explicit in the notation), and the regularisation term
||gs||2 is the squared norm in Hs, ||gs||2 = λsb

T
sKsbs,

which contains a regularisation parameter λs ≥ 0. The
minimisation of L(bs,ϕs;λs) with respect to bs for given
ϕs and λs is a convex optimisation problem with solution

bs = (Ks + λsI)
−1ys (16)

Given λs, the kernel hyper-parametersϕs are optimised in-
dependently with a standard optimisation routine, like trust
region or quasi-Newton. The regularisation parameters λs
are estimated using 10-fold cross validation (parallelised!).

Step 2 - Initialisation of ODE parameters using gradient
matching. Setting B fixed at the values obtained from
Step 1, the ODE parameters θ are obtimised by minimis-
ing the objective function E of eq. (13) using a standard
optimisation routine (e.g. trust region or quasi Newton).

The combination of Steps 1 and 2 provides a straight-
forward method for ODE parameter inference, which we
henceforth refer to as the RKG2 method: smooth re-
gression with standard regularisation to prevent overfitting
(Step 1) followed by ODE parameter estimation via gradi-
ent matching (Step 2). What is missing is a regularising
influence of the ODEs back on the interpolation. This is
effected by minimising the objective function E(θ,B) of
eq. (13) in the following step.

Step 3 - Minimisation of the combined objective func-
tion with convergence acceleration. The subsequent
minimisation of E(θ,B) with respect to both arguments
is a complex non-convex optimisation problem. However,
when fixingB in the argument of fs(.), the objective func-
tion is convex in the remaining parameters B, due to the
linearity in eq. (12). This convexity can be exploited with
a modified optimisation algorithm, which bears a certain
resemblance to the EM algorithm. First, we define the fol-
lowing modified objective function:

Ẽ(θ,B, B̃) =

r∑
s=1

(
n∑
i=1

[
gs(ti; bs)− ysi

]2)

+ ρ

r∑
s=1

(
n∑
i=1

[
ġs(ti; bs)− fs(g(ti, B̃),θ)

]2)
(17)

Note that Ẽ(θ,B,B) = E(θ,B). We now carry out the
following iteration until reaching a zero-gradient point:

1. Given B and θ, minimize Ẽ(θ,B∗,B) with respect
toB∗, i.e. findBnew = argminB∗Ẽ(θ,B∗,B)

2. SetB = Bnew and minimise Ẽ(θ,Bnew,Bnew) wrt
θ, i.e. find θnew = argminθẼ(θ,Bnew,Bnew)

Theorem. Let G denote the set of functions defined by
equation (12). Assume G is contained in the solution space
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of the ODEs in the sense that ∀g ∈ G ∃θ ∈ R : ġ =
f(g,θ). Then each parameter adaptation step of the algo-
rithm described above, (B,θ) → (Bnew,θnew), implies
that E(θnew,Bnew) ≤ E(θ,B), and the iteration con-
verges to a zero gradient point of E(θ,B).

Proof. The first step of the algorithm implies that

Ẽ(θ,Bnew,B) ≤ Ẽ(θ,B,B) = E(θ,B) (18)

For the second step, note that ∃θ∗ ∈ R such that
ġ(t,Bnew) = f(g(t,Bnew),θ

∗), by assumption of the
theorem. This implies that

||ġ(t,Bnew)− f(g(t,Bnew),θ
∗)||2 = 0 ∀t

Hence Ẽ(θ,Bnew,B) =

=

N∑
i=1

{
||y(ti)− g(ti,Bnew)||2 +

ρ||ġ(ti,Bnew)− f [g(ti,B),θ]||2
}

≥
N∑
i=1

{
||y(ti)− g(ti,Bnew)||2

}
+ 0

=

N∑
i=1

{
||y(ti)− g(ti,Bnew)||2 +

ρ||ġ(ti,Bnew)− f [g(ti,Bnew),θ
∗]||2

}
= Ẽ(θ∗,Bnew,Bnew)

This implies that on completion of the second step of the
algorithm, θnew = argminθ Ẽ(θ,Bnew,Bnew), we have
Ẽ(θnew,Bnew,Bnew) = Ẽ(θ∗,Bnew,Bnew), and hence

E(θnew,Bnew) = Ẽ(θnew,Bnew,Bnew)

= Ẽ(θ∗,Bnew,Bnew) ≤ Ẽ(θ,Bnew,B)(19)

Combining equations (18) and (19), we get:

E(θnew,Bnew) ≤ Ẽ(θ,Bnew,B) ≤ E(θ,B)

which completes the first part of the proof. The iteration
is continued until ∇θẼ(θ,B,B) = ∇BẼ(θ,B,B) = 0.
Since Ẽ(θ,B,B) = E(θ,B), this is a zero-gradient point
of the original objective function E(θ,B).

Table 1 shows that the proposed algorithm accelerates con-
vergence by two orders of magnitude over the direct min-
imisation of the objective function of eq. (13) with standard
iterative optimisation methods, like trust-region or quasi-
Newton minimisation. The improvement stems from the
fact that the first step of the proposed iteration is a quadratic
optimisation problem, with closed-form solution:

bs =
(
KT
s Ks + K̇

T
s K̇s

)−1 (
Ksys(t) + K̇sfs (t,θ,B)

)

Table 1. Comparison of computational costs. The table shows
the computational costs for a single iteration of two optimisation
algorithms compared in our study, and an alternative method dis-
cussed in Section 2, using the data generated from eq. (20).

Method CPU time
Direct minimisation of E(θ,B) 599.8s
Proposed acceleration algorithm (RKG3) 6.7s
RKHS method by Gonzalez et al. (GON) 4.2s

where fs (t,θ,B) = (fs (t1,θ,B) , . . . , fs (tn,θ,B))T,
Ks is the Gram kernel matrix for the sth state and K̇s is the
corresponding matrix of derivatives with respect to time. In
practice, we avoid the potentially numerically unstable ma-
trix inversion by appropriate factorisation and updating the
bs by means of forward and back substitutions. The as-
sumption of containment, on which the proof is based, is
quite restrictive, and the objective of our future work is to
generalise the proof to more relaxed conditions. Our sim-
ulations suggest that the acceleration algorithm is effective
without having to satisfy the containment condition. We
provide two examples in the following section.

Table 2. Statistical hypothesis test for the Lotka-Volterra
data. The table shows the p-values corresonding to Figures 1 and
2. Standard fonts: no significat difference (p-value > 0.05). Bold
fonts: the proposed RKG3 method significantly outperforms the
competing method (p-value < 0.05).

Par GON RKG2 GON RKG2
σ = 0.25 n = 34 σ = 0.4 n = 51

α 3.8e-3 2.5e-2 5e-1 1.7e-1
β 2.2e-5 5.4e-4 7e-1 1.4e-1
γ 3.2e-6 4.8e-4 7e-5 1.5e-6
δ 2.1e-5 5.7e-4 6.1e-2 6.7e-4

Table 3. Method evaluation on the Lotka-Volterra data. Per-
formance criteria are the root median square error in parameter
space (par) and function space (fun; for the functions obtained
by inserting the estimated parameters into the ODEs). Values in
brackets show the median absolute deviation (MAD). The true
parameter values are: α = 0.2, β = 0.35, γ = 0.7, δ = 0.4.

σ n Method par10−2 fun10−2

0.25 34 RKG3 4.6(2.3) 64.4(37.8)
RKG2 6.1(3.2) 77.6(66)
GON 7.1(3.3) 98.7(55)

0.4 51 RKG3 5.4(3.3) 95.8(72.7)
RKG2 10.3(4.7) 151(56.3)
GON 7.9(5) 129(66)
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α β γ δ
−0.3

−0.2

−0.1
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0.1

0.2 GON
RKG2
RKG3

(a) Parameter estimation

α β γ δ
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15 GON
RKG2

(b) Parameter estimation differences, compared with RKG3

Figure 1. Method evaluation on the Lotka-Volterra data, lower noise level (10 db). The figure shows distributions of parameter
estimates from 50 data instantiations, generated from the Lotka-Volterra system, with noise level σ = 0.25 (10db) and sample size
n = 34. (a) Distributions of the parameter differences (inferred value minus true value); from left to right: GON, RKG2, RKG3. The
dashed horizontal line indicates no difference from the true value. (b) Distribution of the absolute differences, |A−L| − |RKG3−L|,
whereRKG3 is the estimate obtained with the proposed RKG3 method,A is the estimate obtained with the alternative, and L is the true
value. The dashed horizontal line indicates equal performance. Positive values indicate that RKG3 outperforms the alternative method.
A t-test was carried out to test the significance of the indicated trends. The corresponding p-values are shown in Table 2.

α β γ δ
−0.4
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(a) Parameter estimation

α β γ δ

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

GON
RKG2

(b) Parameter estimation differences, compared with RKG3

Figure 2. Method evaluation on the Lotka-Volterra data, higher noise level (6 db). The figure corresponds to Figure 1, with the
noise standard deviation increased to σ = 0.4(6 db), and the sample size increased to n = 51. For details, see the caption of Figure 1.
The p-values from a paired t-test corresponding to the right panel are shown in 2.

4. SIMULATIONS
The objective of our simulation study is to compare the
performance of three algorithms: the RKHS-based method
proposed by González et al. (2013; 2014) (GON), the
method proposed in the previous section (RKG3), and a
faster, reduced version of this method, which only carries
out the first two steps of the algorithm (RKG2). This is to
assess the effectiveness of the full optimisation of the ob-
jective function in eq. (13), which effecitvely constitutes a
regularisation effect by which the ODEs reshape the inter-
polant obtained from the smooth regression in Step 1.

We have evaluated the methods on data generated from two
ODE systems: the classical Lotka-Volterra system, and a
mathematical description of a protein signal transduction
pathway. The Lotka-Volterra equations describe the dy-
namics of ecological systems with predator-prey interac-
tions (Lotka, 1920):

ẋ1 = α · x1 − β · x1 · x2, ẋ2 = −γ · x2 + δ · x1 · x2

where the dot denotes a derivative with respect to time,
α, β, γ, δ are four parameters to be inferred, and x1 and
x2 are the states of the model, indicating the numbers of
prey and predators, respectively. We numerically solved
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Figure 3. Demonstration of the regularisation effect of step 3
of the RKG3 method. The figure shows the true solution (solid
line) of the Lotka-Volterra system, noisy observations (σ = 0.25)
of sample size n = 34 (circles), the interpolant obtained with the
RKG2 method (dashed line), and the interpolant obtained with
the RKG3 method (dash-dotted line). It is seen that the RKG2
interpolant shows clear signs of overfitting, and that the RKG3 in-
terpolant shows much better agreement with the true signal. This
demonstrates the effectiveness of the regularisation inherent in the
third step of the proposed RKG3 method, by which the ODEs act
back as a regulariser on the interpolant.

the ODEs for α = 0.2, β = 0.35, γ = 0.7, δ = 0.4
and initial conditions x1(0) = 1 and x2(0) = 2. We gen-
erated 50 independent noisy observation of x1 and x2 by
adding zero mean iid Gaussian noise with standard devia-
tions σ = 0.25 (signal-to-noise ratio SNR = 10db) and
σ = 0.4 (SNR = 6db). We recorded samples of sample
sizes n ∈ {34, 51} evenly spaced in the interval of [0, 30].

A model for the interactions of five protein isoforms,
S, dS,R,RS,Rpp, in a signal transduction pathway was
studied by Vyshemirsky and Girolami (2008), based on
mass action and Michaelis-Menten kinetics:

[Ṡ] = −k1 · [S]− k2 · [S] · [R] + k3 · [RS]
[ ˙dS] = k1 · [S]
˙[R] = −k2 · [S] · [R] + k3 · [RS] +

k5 · [Rpp]
k6 + [Rpp]

˙[RS] = k2 · [S] · [R]− k3 · [RS]− k4 · [RS]
˙[Rpp] = k4 · [RS]−

k5 · [Rpp]
k6 + [Rpp]

(20)

The square brackets, [·], denote concentrations, and the
letters k1:6 represent 6 kinetic parameters to be inferred.
It turns out that k5 and k6 are only weakly identifiable,
and we have thus assessed the accuracy of inference based
on the ratio k5

k6
. We took the kinetic parameters from

Vyshemirsky and Girolami (2008) and generated 50 inde-
pendent data instantiations of different sample size, n =14
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6
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R
pp

Figure 4. Method evaluation in function space. The parame-
ters estimated using the different methods were fed back into the
ODEs and the solutions were plotted and compared with the true
solution. Black solid line: true solution. Red dotted line: GON.
Blue dash-dotted line: RKG2. Green dashed line: RKG3. The in-
ference was based on data obtained from the protein signal trans-
duction pathway model of eq.(20) with sample size n = 14 and
noise level σ = 0.01. RKG3 gives the best approximation.

and n = 28, and different noise standard deviations: σ =
0.01 (SNR = 24db) and σ = 0.052 (SNR = 10db).

A numerical solution of the Lotka-Volterra system gives
stationary oscillations, and we therefore chose a stationary
kernel: the RBF kernel with state-specific lengthscale ls:

ks(tk, ti) = exp
(
−l−2

s (tk − ti)2
)

(21)

The protein concentrations obtained from the protein trans-
duction pathway are nonstationary, as seen from Figure 4,
and we have therefore chosen a non-stationary kernel: the
multi-layer perceptron kernel (MLP), with state-specific
parameters ws and ls, given by

k(tk, ti) = arcsin

(
wtkti + l√

wt2i + l + 1
√
wt2k + l + 1

)
(22)

For the GON method, we used the authors’ software, for
RKG2 and RKG3 we used our own code, which is avail-
able upon request. The computational costs are shown in
Table 1. Figure 3 illustrates the improvement obtained with
the third step of the proposed method (RKG3), showing
much better agreement with the true solution than the inter-
polant obtained with RKG2 and thereby indicating the effi-
cacy of the regularisation effect inherent in the feedback of
the ODEs acting back on the interpolant via minimising the
objective function in eq. (13). The left panels of Figures 1-
2,5-6 show the distributions (over 50 independent data in-
stantiations) of the parameters inferred with the different
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Figure 5. Method assessment on the protein pathway data, lower noise level (24 db). The figure shows the same distributions as in
Figure 1, but obtained from 50 data instantiations of the protein signalling pathway of eq.(1). Noise standard deviation: σ = 0.01(24db).
Sample size: n = 14. For details of the box plots, see the caption of Figure 1. A paired t-test was carried out, to test the significance of
the indicated trends; the p-values are shown in Table 4.
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Figure 6. Method assessment on the protein pathway data, higher noise level (10 db). The figure corresponds to Figure 5, but with
the noise increased to σ = 0.052(10db), and the sample size increased to n = 28. See the caption of Figure 5 for details. The p-values
from a paired t-test corresponding to the right panel are shown in Table 4.

methods. For a clearer comparison between the methods,
we computed the absolute differences between the inferred
and true parameters, and then subtracted the score obtained
with RKG3 from the scores obtained with the competing
methods. A positive value indicates that the parameters ob-
tained with RKG3 are closer to the true parameters. The
right panels of Figures 1-2,5-6 confirm that, for most pa-
rameters, this is indeed the case. We followed this graphi-
cal presentation up with a statistical hypothesis test, shown
in Tables 2 and 4, which shows that the improvement ob-
tained with RKG3 is significant in 69% of the tests per-
formed, and that RKG3 is never significantly worse than
any of the the competing methods. Tables 3 and 5 show the
root median square distance in parameter space and func-
tion space, where the latter measure was obtained by rein-

serting the estimated parameters into the ODEs, numeri-
cally solving them, and comparing the results with the true
solution. In all cases, we computed the median absolute de-
viation for uncertainty quantification. Our findings suggest
that RKG3 clearly outperforms the alternative methods.

5. DISCUSSION
We have proposed an approach to parameter estimation in
ODEs that overcomes the need for computationally expen-
sive numerical integration (RKG3). The approach consists
of an iterative three-step procedure. The first step carries
out smooth function interpolation within the reproducing
kernel Hilbert space framework. The second step estimates
the parameters of the ODEs based on the principle of gra-
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Table 4. Statistical hypothesis test for the protein pathway
data. The table shows the p-values corresponding to Figures 5
and 6. Bold fonts: the proposed RKG3 method significantly out-
performs the alternative schemes. Standard fonts: the difference
is not significant.

Par GON RKG2 GON RKG2
σ = 0.01 n = 14 σ = 0.052 n = 28

k1 3.6e-4 6.6e-17 2.1e-11 2.5e-3
k2 3.2e-31 3.4e-31 1.1e-4 3.9e-20
k3 6.3e-17 2e-7 1.6e-1 2.5e-3
k4 1.5e-16 1.3e-8 7.8e-10 2e-9
k5

k6
2.1e-1 1.6e-1 3.1e-1 2.1e-1

Table 5. Method evaluation on the protein pathway data. Per-
formance criteria are the root median square error in parameter
space (par) and function space (fun; for the functions obtained by
inserting the estimated parameters into the ODEs). The values
in brackets show the median absolute deviation (MAD). The true
value of the parameters are fixed to k1 = 0.07,k2 = 0.6,k3 =
0.05,k4=0.3,k5 = 0.017,k6 = 0.3

σ n Method par10−2 fun10−2

0.01 14 RKG3 3.7(1) 5.2(1.6)
RKG2 8.6(1.4) 22.7(8.4)
GON 6.5(0.4) 9.1(5.2)

0.052 28 RKG3 5.4(2) 11(6)
RKG2 12.5(2.8) 18.8(7)
GON 11(5.3) 37( 11)

dient matching. The third step, inherent in the minimisa-
tion of the objective function in eq. (13), regularises the
interpolant by balancing goodness-of-fit against a discrep-
ancy measure between the estimated derivatives and those
predicted from the ODEs. This scheme is naturally iter-
ated until some convergence criterion is met. To reduce the
computational costs of the third step, we have exploited the
fact that the explicit dependence of the objective function
on the regression parameters is quadratic, which suggests
an iterative procedure akin to the EM algorithm: solving
a convex optimisation problem for fixed parameters within
the ODEs (akin to an M-step), then reinserting these pa-
rameters into the ODEs (akin to an E-step).

We have evaluated our method on two systems of differen-
tial equations: the Lotka-Volterra system, and a mathemat-
ical description of a protein signalling pathway. We have
compared the performance of our method with the RKHS-
based method proposed by González et al. (2013; 2014)
(GON). The authors report that their method achieves a
similar performance as methods based on a computation-
ally far more expensive explicit solution of the ODEs, and

that it outperforms the method proposed in the seminal
work of (Ramsay et al., 2007). Hence, GON appears to
be representative of the current state of the art. To eval-
uate the effectiveness of the regularisation step (Step 3 in
our algorithm) we also carried out a comparison with a re-
duced 2-step version of our algorithm (RKG2), in which
the regularisation inherent in the minimisation of the ob-
jective function in eq. (13) is missing. Our evaluation is
based on inspecting the distributions of the absolute dif-
ference between the estimated and true parameters over a
large number of independent data instantiations (Figures 1-
2,5-6), testing the statistical significance of the difference
(Tables 2 & 4), and quantifying an average distance metric
in parameter as well as in function space (Tables 3 & 5).

Our results indicate that in most cases, the proposed RKG3
algorithm achieves a significant improvement over the two
alternative methods. For those parameters where no im-
provement could be found, the differences were not signif-
icant, indicating that RKG3 is always at least as good as
the other two methods. The effectiveness of the regulari-
sation scheme inherent in the minimisation of the objective
function in eq. (13) is illustrated in Figure 3, and the per-
formance improvement in function space is illustrated in
Figure 4. The improvement of the proposed method over
GON stems from the fact that it does not need to approxi-
mate time derivatives by difference quotients, and that the
estimation of all component concentration profiles takes
both data mismatch and consistency with the ODEs into
consideration, by virtue of eq. (13). We emphasise that
a naive optimisation of the objective function in eq. (13)
would substantially increase the computational complexity
over that of GON. However, by exploiting partial convex-
ity inherent in the objective function, we have reduced the
computational complexity by about two orders of magni-
tude, bringing it into the same range as GON.

We emphasise that the focus of our work has been on
fast inference. We have therefore avoided Bayesian sam-
pling methods and tried to keep the methodology as closely
as possible within the realm of convex optimisation. We
note that substantial recent research efforts have been in-
vested in ODE parameter inference with Bayesian state
space models (e.g. Baker et al. (2011)) and emulators
(e.g.Wilkinson (2014)). These methods clearly have the
potential to achieve a high degree of accuracy, but they also
critically hinge on a ‘good’ initialisation. This becomes
particularly evident for statistical emulation, where the ini-
tial space-filling design in a high-dimensional parameter
space is computationally onerous.To turn emulation into a
viable tool, the initial parameter space needs to be confined
to a small subdomain deemed plausible a priori. It is here
that the method proposed in the present article will provide
a powerful complementary tool, by enabling fast ODE pa-
rameter estimates for guidance on the initial design.
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Javier González, Ivan Vujačić, and Ernst Wit. Inferring la-
tent gene regulatory network kinetics. Statistical appli-
cations in genetics and molecular biology, 12(1):109–
127, 2013.
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