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Abstract—The problem of Joint Angle and Delay Estimation (JADE)
in the presence of mutual coupling is addressed. The system consists of a
Single Input Multiple Output (SIMO) link in an OFDM communication
setting. This paper presents two resilient algorithms that could cope with
mutual coupling. The first one is an extension of an existing algorithm
in order to perform JADE, which allows resolvability of more signals.
The second algorithm is an improvement of the first one, in the sense
that it could handle more mutual coupling parameters. Simulation results
show the difference between both algorithms. In addition, the algorithms
are compared with the 2D-MUSIC method that performs JADE in the
absence of mutual coupling, i.e. when a ”coupling-free” model is assumed.

Index Terms—Joint Estimation, Angle-of-Arrival, Time-of-Arrival, Re-
silient Mutual Coupling, OFDM

I. INTRODUCTION

Mutual coupling between antennas is a popular problem in array
signal processing. This phenomenon arises when antennas are close
to each other [1], and thus the current developed in an antenna
element depends on its own excitation and on the contributions from
adjacent antennas. As a consequence, an ideal model is no longer
valid, and therefore the performance of the high resolution algorithms
that perform Angle-of-Arrival (AoA) estimation, such as MUSIC [2],
ESPRIT [3], etc., deteriorate significantly.

Methods that aim on solving the mutual coupling problem are
sometimes referred to as calibration methods, which are of two types:
Offline and Online. In an offline calibration approach, one estimates
the mutual coupling parameters using known locations, such as the
techniques in [4]–[6]. In contrast, online calibration consists of jointly
estimating the coupling and AoA parameters. Herein, we focus on
the latter.

In the literature, several techniques deal with the online calibration
problem, such as those found in [7]–[17] and references within. The
authors in [7] jointly estimate the coupling parameters and AoAs
by alternating minimization steps between the former and the latter
using the MUSIC cost function. In [8], the algorithm is iterative and
the sources are assumed to be totally uncorrelated. Moreover, the
method in [8] estimates the coupling parameters in order to utilize
it in the MUSIC cost function. In [9], [10], the array elements are
assumed to be partly calibrated. In other words, one has access to a
few coupling parameters.Moreover, methods in [13]–[15] propose to
use the ”middle sub-array”. In particular, let N be the number of
antennas placed in a uniform and linear fashion, and p be the number
of coupling parameters. If p ≤ N

2
, then there exists a ”middle sub-

array”, of size N − 2p + 2, over which the effect of the mutual
coupling is preserves the Vandermonde structure of the array response
[13]–[15]. As a matter of fact, one could mathematically show that
the array response on the ”middle sub-array” is a known functional
Vandermonde vector multiplied by an unknown scalar, and therefore
high resolution techniques could be applied to estimate the AoAs.

However, this is highly suboptimal because only an effective number
of antennas, i.e. N − 2p + 2, are utilized for parameter estimation.
To address this major loss of antennas, the authors in [17] suggest to
add ”Guard” antennas on the edges of the array, in particular p− 1
antennas on the left edge and the other p − 1 on the right edge.
Therefore, the main array of size N plays the role of a ”middle sub-
array”. The aforementioned arguement on the ”middle sub-array”
holds on the main array. Unfortunately, appending antennas is not
possible in some applications, such as Wi-Fi.

Joint Angle and Delay Estimation, also known as JADE, was
introduced in [26]. One motivation behind JADE is to increase the
number of resolvable signals by transmitting known signals. As
a result, this allows estimating signal parameters (AoA/ToA) of a
number of signals beyond the number of antennas, thanks to temporal
(or frequency, in the case of OFDM) diversity. We outline two
contributions of this paper: The first one is an extension to an existing
resilient mutual coupling algorithm in order to perform JADE in the
presence of mutual coupling. Analogously to the motivation of JADE,
this algorithm could handle more coupling parameters, as compared
to AoA-only estimation. The second contribution is an improvement
of the first algorithm. In particular, the first algorithm requires p ≤ N

2

to function properly, whereas the second algorithm does not.
Notations: Upper-case and lower-case boldface letters denote

matrices and vectors, respectively. (.)T, (.)∗, and (.)H represent the
transpose, conjugate, and transpose-conjugate operators. The matrix
I is the identity matrix of suitable dimensions. The operator E{X}
returns the expectation of a random matrix X. For any matrix B, the
operator ‖B‖2 is the Frobenius norm.

II. SYSTEM MODEL

A. Mathematical Formulation

Consider an OFDM symbol composed of M subcarriers and
centered at a carrier frequency fc, impinging an array of N antennas
via q sources, each arriving at different AoAs Θ = {θ1 . . . θq} and
ToAs T = {τ1 . . . τq}. Note that the order in both sets should be
respected. In frequency domain, we could express the signal at the
nth antenna and mth subcarrier of the lth OFDM symbol as follows
[19]:

Xm,n(l) = bm

q∑
i=1

γi(l)ãn(θi)e
−j2πmMf τi +Nm,n(l) (1)

with l = 1 . . . L, m = 1 . . .M , and n = 1 . . . N . Moreover, T = 1
4f

is the OFDM symbol duration, 4f is the subcarrier spacing, bm is
the modulated symbol onto the mth subcarrier, ãn(θ) is the nth

antenna response to an incoming signal at angle θ. Moreover, γi(l)
is the complex coefficient of the ith source during the lth OFDM
symbol. The term Nm,n(l) is background noise.



We claim that the transmitted OFDM symbol is a preamble field
of the Wi-Fi 802.11 frame, thus prior knowledge of the modulated
symbols {bm}M−1

m=0 is a valid assumption. Therefore, we compensate
for all such symbols (multiplying by b∗m

|bm|2
) and hence omit bm

from (1). Re-writing (1) in a compact matrix form, we have:

x(l) = Hγ(l) + n(l) (2)

where x(l) and n(l) are MN × 1 vectors

x(l) = [X1,1(l) . . . X1,N (l) . . . XM,1(l) . . . XM,N (l)]T (3)

The noise vector n(l) is defined in a similar manner. The vector
γ(l) ∈ Cq×1 is given as

γ(l) = [γ1(l) . . . γq(l)]
T (4)

H is an MN × q matrix given as

H = [c(τ1)⊗ ã(θ1) . . . c(τq)⊗ ã(θq)] (5)

where

c(τ) = [1, zτ . . . z
M−1
τ ]T with zτ = e−j2πτMf (6)

and ã(θ) is the response of a Uniform Linear Array (ULA) suffering
from mutual coupling. Following [11], the response ã(θ) could be
modelled as

ã(θ) = Tp(m)a(θ) (7)
where Tp(m) ∈ CN×N is a banded symmetric Toeplitz matrix defined
as follows

Tp(m) =


1 m1 m2 · · · mp−1 0 · · · 0
m1 1 m1 · · · mp−2 mp−1 · · · 0

...
. . .

. . .
...

0 · · · mp−1 mp−2 · · · m1 1 m1

0 · · · 0 mp−1 · · · m2 m1 1


(8)

and

a(θ) = [1, zθ . . . z
N−1
θ ]T with zθ = e−j2π

d
λ

sin(θ) (9)

where d is the inter-element spacing and λ is the signal’s wavelength.
The model in equations (7) and (8) suggest that antennas that are
placed at least p inter-element spacings apart do not interfere, i.e.
mi = 0 for all i ≥ p. This is due to the fact that the mutual coupling
is inversely proportional to the distance between antennas.

B. Assumptions and Problem Statement

Throughout the paper, we assume the following:
• A1: H is full column rank.
• A2: The complex coefficients γ(l) are fixed within a snapshot,

and are uncorrelated over OFDM symbols.
• A3: The number of sources, i.e. q, is known.
• A4: The vector n(l) is additive Gaussian noise with zero mean

and covariance σ2I independent from the sources.
The conditions so that assumption A1 is satisfied are given in [20].

Moreover, if assumption A2 were not satisfied, i.e. when the sources
are a result of multipath propagation, then one could preprocess
OFDM symbols by applying Frequency Smoothing1, which is a
1D version of [21]. For the sake of compactness, we shall assume
that the sources are uncorrelated. Furthermore, algorithms exist for

1Note that one could apply the technique of spatial smoothing [18] over
frequencies (i.e. frequency smoothing) since the VanderMonde structure is
preserved over the vector c(τ) even though mutual coupling is present. For
simplicity and due to lack of space, we shall assume uncorrelation of sources.

estimating the number of sources, such as Minimum Description
Length [22], Modified MDL [23], Benjamin Hochberg procedure
[24], and so forth. Therefore, assumption A3 is reasonable. Any
further assumptions will be mentioned. Now, we address our problem:
”Given {x(l)}Ll=1, p and q, jointlyestimate the signal parameters Θ
and T in the presence of mutual coupling.”

III. RESILIENT MUTUAL COUPLING ALGORITHM

A. Algorithm 1: Quadratic Program 1

We start by defining the covariance matrix of the received vector
x(l), i.e.

Rxx = E{x(l)xH(l)} (10)

In practical scenarios, this matrix is computed thru a sample average
as follows R̂xx = 1

L
XXH, where X = [x(1) . . .x(L)]. Let λ̂1 >

λ̂2 > . . . > λ̂MN and û1, û2 . . . ûMN denote the eigenvalues and their
corresponding eigenvectors of R̂xx. Under assumptions A1, A2 and
A4, one could jointly estimate {(θi, τi)}qi=1 by evaluating the peaks
of the following 2D-MUSIC cost function [25], [26]

(θ̂i, τ̂i) = argmax
θ,τ

1

hH(θ, τ)ÛnÛH
nh(θ, τ)

(11)

where h(θ, τ) = c(τ) ⊗ ã(θ) and Ûn = [ûq+1 . . . ûMN] is
called the ”noise” subspace. The MUSIC cost function exploits the
orthogonality between vectors in the signal and noise subspaces
[25]. Unfortunately, MUSIC couldn’t be directly applied since the
functional form of ã(θ) is unknown. Before we proceed, we find the
following useful:

Definition 1: For any vector a ∈ CN×1 and matrix Ap ∈ CN×p.
We say that ”a generates Ap”, or Ap , Gp(a), if

Ap =
[

a S1a . . . Sp−1a
]

(12)

where Sk ∈ CN×N is an all-zero matrix except at the kth sub- and
super-diagonals, which are set to 1.

Theorem 1: (Commutativity of Symmetric Toeplitz Matrices) Let
m = [m0,m1 . . .mp−1]

T ∈ Cp×1 and a ∈ CN×1. Define the
corresponding matrix Tp(m) as in equation (8). Then the following
is true for any 1 ≤ p ≤ N

Tp(m)a = Apm (13)

where Ap = Gp(a). (See Definition 1)

Proof: See [7], [27].
Using Theorem 1, we have that

ã(θ) = Tp(m)a(θ) = B(θ)m (14)

where B(θ) = Gp(a(θ)). This theorem allows re-writing the denom-
inator of the 2D-MUSIC cost function in equation (11) as follows

hH(θ, τ)ÛnÛH
nh(θ, τ) =

∥∥∥ÛH
n

(
c(τ)⊗ ã(θ)

)∥∥∥2
2

=
∥∥∥ÛH

n

(
c(τ)⊗B(θ)

)
m
∥∥∥2
2

(15)

which is quadratic in m. Now, let

S(θ, τ) ,
(
c(τ)⊗B(θ)

)H
ÛnÛH

n

(
c(τ)⊗B(θ)

)
(16)

If we form the following Quadratic Program (QP)

(QP1):

minimize
t∈Cp×1

tHS(θ, τ)t

subject to eT
1t = 1

(17)



then the solution is the cost function f1(θ, τ) [27], where its q peaks
are estimates of the signal parameters {(θi, τi)}qi=1:

f1(θ, τ) = eT
1S†(θ, τ)e1 (18)

where the constraint in equation (17) is to exclude the trivial solution.
Similar to [27], the identifiability conditions of f1(θ, τ) are:
• B1: q + p ≤MN
• B2: p ≤ N

2

Condition B2 is due to the following property:
Property 1: For ULA type configurations, i.e. a(θ) =

[1, zθ, . . . z
N−1
θ ]T with zθ = e−j2π

d
λ

sin(θ). Define the following sets:

Θ+ = {θ = sin−1(
kλ

Nd
), k = −N

2
. . .

N

2
} (19a)

and

Θ− = {θ = sin−1(
(k + 1

2
)λ

Nd
), k = −N

2
. . .

N

2
} (19b)

Also, let Θ± = {Θ+ ∪Θ−}. The matrix B(θ) = Gp(a(θ)) has the
following characteristics:
• Iff p < N+2

2
, the matrix B(θ) is full column rank.

• When p ≥ N+2
2

, there are two cases
– Iff N is even and θ ∈ Θ+, then rank(B(θ)) = N

2
. Further-

more, iff N is even and θ ∈ Θ−, then rank(B(θ)) = N
2
+1.

Otherwise, B(θ) is full column rank.
– Iff N is odd and θ ∈ Θ±, then rank(B(θ)) = N+1

2
.

Otherwise, B(θ) is full column rank.
Proof: See [28].

B. Algorithm 2: Quadratic Program 2

When assumption B2 is not satisfied, the function f1(θ, τ) is
maximised at θ ∈ Θ± for any τ . This could be seen from the
objective function of QP1 in (17): When θ ∈ Θ±, then according
to Property 1, the matrix B(θ) admits a null space, therefore the
cost function is minimized. To circumvent this issue, we form a new
Quadratic Program (QP2), which minimizes the same cost function,
but under a different constraint, viz.

(QP2):

{
minimize

t
tHS(θ, τ)t

subject to eT
1B(θ)t = 1

(20)

The solution of QP2 is given in [28], which is the following

f2(θ, τ) = aT
p(θ)S

†(θ, τ)a∗p(θ) (21)

where ap(θ) is a steering vector of a p-sized ULA array, namely
ap(θ) = [1, zθ . . . z

p−1
θ ]T. The ToAs and AoAs are obtained by

selecting the q peaks of the f2(θ, τ).

IV. ANALYSIS OF f1(θ, τ) VS f2(θ, τ)

In this section, we justify the identifiability conditions of f2(θ, τ),
which are given as follows:
• C1: q + p ≤MN
• C2: p < N

Condition C1 is common to f1(θ, τ) and f2(θ, τ). This is due to the
fact that the projection matrix onto the noise subspace, i.e. ÛnÛH

n

is of rank MN − q. Furthermore, the dimension of matrix S(θ, τ)
is p × p. In order to preserve the rank of the noise noise subspace
projector, we should have p ≤ MN − q, provided that B(θ) is full
column rank (i.e. when B2 is satisfied). This argument justifies the
conditions of f2(θ, τ) when B2 is true. In what follows, we argue
the case when N

2
< p < N .

For the sake of argument and compactness, let us assume true
subspaces (i.e. high SNR or number of snapshots), so we shall replace
Ûn by Un. The MUSIC criterion implies that∥∥∥UH

n

(
c(τi)⊗B(θi)

)
t
∥∥∥2
2
= 0, (θi, τi) ∈ (Θ,T) and t = m

(22)
Equation (22) along with Property 1 imply the following

• Case 1: The rank of S(θi, τi) is p − 1, if (θi, τi) ∈ (Θ,T)
and θi 6∈ Θ±. In addition, the only eigenvector that spans the
nullspace of S(θi, τi) is m. This is equivalent to equation (22).

• Case 2: The rank of S(θi, τi) is p− δ if θi ∈ Θ± and θi 6∈ Θ,
∀τi, where δ is the dimension of the null space of B(θi). This
is a direct result of Property 1 when p ≥ N+2

2
.

• Case 3: The rank of S(θi, τi) is p− δ − 1 if (θi, τi) ∈ (Θ,T)
and θi ∈ Θ±. It has been proven in [28] that the vector m is
linearly independent from the vectors that form the null space
of B(θi). In other words, N

(
S(θi, τi)

)
= N

(
B(θi)

)
∪ {m}

• Case 4: Otherwise, S(θi, τi) is full rank.

Let us discuss the first three cases. Using spectral decomposition, we
can say

S(θi, τi) = VΦVH (23)

where the kth column of V is the kth eigenvector2 of S(θi, τi),
denoted as vk and its corresponding eigenvalue is the kth smallest
eigenvalue found in the kth diagonal entry of Φ, denoted as νk. We
adopt ”diagonal loading” for the pseudo inverse, namely

S†(θi, τi) =
(
S(θi, τi) + εI

)−1
= VΣVH (24)

where Σ = (Φ + εI)−1. Consider the quadratic function f(θ, τ) =
yHS†(θi, τi)y. When y = e1, then f(θ, τ) = f1(θ, τ) and when
y = a∗p(θ), then f(θ, τ) = f2(θ, τ). Furthermore, we can re-write
f(θ, τ) as follows

f(θ, τ) =

p∑
k=1

1

νk + ε
‖yHvk‖22 (25)

Case 1 implies that ν1 = 0 while νk > 0 for all k ≥ 2. Therefore,
f(θi, τi) v 1

ε
‖yHm‖22 −−−→

ε→0
∞, provided that ‖yHm‖22 6= 0. It is

easy to see that the norm term is not zero if y = e1, since the first
element of m can not be zero. As for y = a∗p(θ), the conditions on
m so that ‖yHm‖22 6= 0 should be found in [28]. We conclude that
both functions f1(θ, τ) and f2(θ, τ) peak at the true values(θi, τi)
defined in Case 1.

Case 2 implies that ν1 = . . . = νδ = 0, while νk > 0 for all
k ≥ δ + 1. Therefore,

f(θi, τi) v
1

ε

δ∑
k=1

‖yHvk‖22 (26)

When y = e1, the norm term is not necessarily zero. Therefore,
f1(θ, τ) peaks at values of θi ∈ Θ± for any τi. However, when
y = a∗p(θi), then the norm term is exactly zero because

f(θi, τi) v
1

ε

δ∑
k=1

‖aT
p(θi)vk‖22 =

1

ε

δ∑
k=1

‖eT
1B(θi)vk‖22 = 0 (27)

since vk span the null space of B(θi). We conclude that f1(θ, τ)
yields fake peaks as explained wherever f2(θ, τ) doesn’t.

Using the same reasoning, both functions f1(θi, τi) and f2(θi, τi)
peak at values given in Case 3.
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Fig. 1: RMSE of AoAs on a log-scale vs. SNR of the 1st experiment.
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Fig. 2: RMSE of ToAs on a log-scale vs. SNR of the 1st experiment.
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Fig. 3: RMSE of AoAs on a log-scale vs. SNR of the 2nd experiment.

V. SIMULATION RESULTS

In this section, two experiments are conducted. In particular, we
are interested in observing the Root-Mean-Squared-Error (RMSE) of

2Indeed, V and Φ are functions of (θ, τ).
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Fig. 4: RMSE of ToAs on a log-scale vs. SNR of the 2nd experiment.

ToAs and AoAs when condition B2 is respected (1st experiment) and
violated (2nd experiment). Note that C2 is always respected. We fix
the following parameters:
• N = 5 antennas and M = 64 subcarriers.
• d = λ

2
and Mf= 312500 MHz (a total bandwidth of 20 MHz).

• L = 100 snapshots and 200 Monte-Carlo simulations.
• q = 4 multipaths, with:

– Θ = [−60◦,−50◦,−40◦,−30◦].
– T = [10 nsec, 35 nsec, 50 nsec, 75 nsec].
– γ(l) are chosen according to a Gaussian distribution.

In the 1st experiment (Fig. 1 and Fig. 2), the number of coupling
parameters is set to p = 2 (condition B2 is respected), and are
given as m = [1 , 0.343+ j0.3638]T. Clearly, applying 2D-MUSIC
to perform JADE in the presence of mutual coupling gives bad
performance. Furthermore, at −7 dB ≤ SNR ≤ 10 dB, we can see
that the performance of f1(θ, τ) and f2(θ, τ) is close to that of 2D-
MUSIC, when applied to a ”coupling-free” model. Moreover, we
also observe that f2(θ, τ) coincides with the ”coupling-free” model,
when the SNR exceeds 17 dB. Also, there is a gain of almost 0.1◦

in terms of AoA (Fig. 1) and 0.3 nsec in terms of ToA (Fig. 2) when
compared with f1(θ, τ).

In the 2nd experiment (Fig. 3 and Fig. 4), the number of coupling
parameters is set to p = 4 (condition B2 is violated), and are given
as m = [1 , 0.415 − j0.28 , − 0.224 − j0.246 , 0.214 − j0.13]T.
It is obvious that the performance of f1(θ, τ) massively deteriorates.
In addition, we see that f2(θ, τ) shows similar performance to 2D-
MUSIC when applied to a ”coupling-free” model when the SNR
exceeds 25 dB.

VI. CONCLUSION

In this paper, we presented two contributions: The first one
(Quadratic Program 1) is an extension to an existing resilient mutual
coupling algorithm in order to perform Joint Angle and Delay
Estimation (JADE). The second contribution (Quadratic Program 2)
is an improvement of the first algorithm, in a sense that we could
perform JADE when more antennas suffer from mutual coupling.
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