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ABSTRACT
Network densification via small cells is considered as a key
step to cope with the data tsunami. Caching data at small
cells or even user devices is also considered as a promising
way to alleviate the backhaul congestion this densification
might cause. However, the former suffers from high deploy-
ment and maintenance costs, and the latter from limited re-
sources and privacy issues with user devices. We argue that
an architecture with (public or private) vehicles acting as
mobile caches and communication relays might be a promis-
ing middle ground. In this paper, we assume such a vehic-
ular cloud is in place to provide video streaming to users,
and that the operator can decide which content to store in
the vehicle caches. Users can then greedily fill their play-
out buffer with video pieces of the streamed content from
encountered vehicles, and turn to the infrastructure imme-
diately when the playout buffer is empty, to ensure uninter-
rupted streaming. Our main contribution is to model the
playout buffer in the user device with a queuing approach,
and to provide a mathematical formulation for the idle pe-
riods of this buffer, which relate to the bytes downloaded
from the cellular infrastructure. We also solve the resulting
content allocation problem, and perform trace-based simu-
lations to finally show that up to 50% of the original traffic
could be offloaded from the main infrastructure.

Keywords
Caching; Opportunistic networks; Vehicular networks; Mo-
bile data offloading; Multimedia Streaming; Optimization

1. INTRODUCTION
The diffusion of low-cost handheld devices has led to a

large increase in the mobile traffic demand in the past few
years. Specifically, the vast majority of the traffic concerns
videos, and new streaming services have been recently intro-
duced in the market (e.g., Netflix, Amazon Prime). In prac-
tice, current and near-future architectures (e.g., 3G, LTE)
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cannot keep up with such increase which is already overload-
ing the cellular infrastructure [12]. Small cell densification
has been proposed to improve the data rates and Quality of
Experience (QoE) for users. While this solution decreases
the load on the backbone, it actually provokes two problems:
(i) small cells (SCs) require high CAPEX/OPEX costs to
provide a dense enough radio access and backhaul transport
network; (ii) SC deployments move the traffic overload from
the core of the network to the backhaul. In order to solve (ii),
several studies propose to cache popular content at the edge
of the network (e.g., femtocells, picocells) [15, 27]. While
caching in femtocells is useful to alleviate the backhaul con-
gestion, it requires additional installation and maintenance
costs. Other studies consider using mobile user equipment
(UE) as relays and storage points [9, 16]; while more af-
fordable for an operator, this solution faces significant tech-
nology adoption concerns, as mobile devices have limited
storage capacity and strict battery constraints.

In this work, we propose to use public or private trans-
portation means (e.g., buses, cars) as data caches and mo-
bile relays, directly accessible by nearby UE. Vehicles create
a vehicular cloud controlled by mobile network operators
(MNOs). End users requesting to stream a content, can
download chunks of it from nearby vehicles when available,
filling up their playout buffer while watching, or, alterna-
tively, stream the video directly from the cellular infrastruc-
ture when their buffer is empty and no vehicle is in reach.
We focus on streaming content because of its major contri-
bution to Internet traffic according to recent measurement
studies [12]. Also, while the number of content in the Inter-
net is large, content popularity is known to exhibit strong
Zipfian characteristics, suggesting that reasonable hit ratios
for the cloud can be achieved with moderate storage capac-
ity per vehicle. Vehicles bring mobility for free, allowing
UE to quickly browse the caches of many different encoun-
tered vehicles (while consuming the content chunks already
available in their buffer, at a slower rate), thus virtually in-
creasing the size of accessible caches.

We believe that the current infrastructure can be easily
turned into a working vehicular cloud in a cost-efficient way:
vehicles of all types are usually widespread in urban loca-
tions even in developing countries, and a subset of them
could be readily equipped with storage capacity, wireless
communication capabilities and basic computational power
[2] at a much lower cost than SC deployments [25, 28]. Our
solution brings a twofold benefit: on the one hand, it reduces
the number of potential interruptions during playback, as
future content chunks are prefetched from the cloud, when



available, leading to improved QoE for the user; on the other
hand, it promotes existing and new MNOs to operate in
emerging markets enabling them to offer users a 3G/4G-like
experience at a much lower cost.

To summarize, our main contributions in this paper are:

• We model the buffer dynamics as a queueing system, and
analyse the characteristics of its idle periods (during which
access to the cellular infrastructure is required).

• Based on this model, we formulate the problem of optimal
allocation of content in vehicles, in order to minimize the
total load on the cellular infrastructure, assuming a fixed
catalogue and a content popularity distribution.

• We provide closed-form expressions for the optimal allo-
cation for two interesting regimes of vehicular traffic den-
sities, assuming a relatively generic setting.

• We validate our theoretical results, using real traces for
content popularity and vehicle mobility, and show that our
system can offload up to 50% of streamed data in realistic
scenarios, even with modest technology penetration.

The rest of the paper is organized as follows: first, in Sec-
tion 2 we present the network model and the system assump-
tions; next, we provide closed-form expressions for optimal
allocation of content in different traffic regimes in Section 3;
then, we show the results of the real-trace based simulations
in Section 4; finally, we list related work in Section 5, and
we conclude our paper in Section 6.

2. SYSTEM MODEL

2.1 Architecture
In our architecture, we consider three types of nodes:

• Infrastructure Nodes (I), e.g., cellular base stations or
macro-cells. These nodes are directly connected to the
Internet and they can obtain any content. Their task is
to fill the cloud caches with popular content, and serve
requests for content not found in the cloud.

• Helper Nodes (H), e.g., cars, buses, taxis, where |H| = α.
These nodes cache popular content, and have storage ca-
pacity limitations. Furthermore, we assume for simplicity
that the H nodes cannot communicate with each other1.

• End Users (U), e.g., smartphones, tablets, netbooks. A
content requested by a user is streamed using a playout
buffer for that content in her device. Content chunks in-
side the playout buffer are consumed at the viewing (play-
out) rate rP . In parallel, whenever an H node with the
watched content is encountered (referred to as a contact),
subsequent chunks not already in the device buffer can
be downloaded at low cost, for the duration of that con-
tact. This download takes place at rate rV . If the buffer
is (almost) empty, the U node immediately switches to
the cellular interface and downloads content at a rate rC ,
until another vehicle storing the content is encountered.
Finally, during a contact, simultaneous connections are
not allowed, i.e., a U node can download from one and
only one H node at a time.

1While such communication could help fetch content over
multiple hops, MANET-like schemes are known to consider-
ably increase the complexity of the approach, while bringing
incremental benefits. We defer their study to future work.

Figure 1: Sequence of contacts with three vehicles (above),
and amount of data in end user buffer over time (below).
When the buffer empties, the red region indicates that data
are downloaded from the cellular infrastructure.

Previous work has confirmed the feasibility of opportunis-
tic connections between vehicles and UE [10]. IEEE 802.11p
[4], which has been developed for the specific context of
vehicular networks, is considered as the de facto standard.
This standard actually covers simplicity (uncoordinated ac-
cess mechanism, no authentication) and low delay (few hun-
dreds ms in crowded areas). What is more, it is possible
to implement a low battery consumption version in mod-
ern UEs without compromising performance [11]. Recently,
there was an increasing interest in adopting LTE to support
vehicular network applications [7]. Differently from IEEE
802.11p, LTE improves performance throughput, reliability
and scalability at the cost of higher latency. Still, [20] shows
that LTE is capable of satisfying delay requirements for most
of the vehicular applications.

In Fig. 1 we sketch the basic communication protocol:
during a contact, the user can fill her buffer while streaming
the video (e.g., between t1 and t2 it will download from
vehicle 1); when the buffer empties (red region), the user is
redirected to the cellular infrastructure. Since we assume
that a U node can download content from only a single H
node at a time, the user will switch to vehicle 3 only at t4,
i.e., after she has finished downloading from vehicle 2.

2.2 Assumptions
We make the following system assumptions:

A.1 (Download rate) - We assume rV and rC to be larger
than rP in order to guarantee uninterrupted streaming2. We
assume rC is equal to rP + ε (where ε > 0 is small), in
order to limit the access to the cellular infrastructure to the
minimum required to ensure smooth playout (for simplicity,
we will assume in our analysis that ε = 0).
A.2 (Content popularity) - Let K be the set of content that
can be requested by U nodes, such that |K| = k. Each
content i ∈ K is characterized by known size si and popu-
larity φi, namely the expected number of requests during a
given time window. Similar to a number of works on edge
caching [15, 27], we assume this time window is a system
parameter chosen by the MNO, during which estimates for
the expected popularity per content are available. Every
time period, the cellular operator updates its caches accord-
ing to the new estimated popularity. Several studies have
shown that it is possible to predict the popularity with good
accuracy over relatively short periods (until few weeks for
YouTube videos) [29]. Without loss of generality, we assume
content is sorted by popularity as φ1 ≥ φ2 ≥ · · · ≥ φk.

2Without this assumption, the streaming would require ini-
tial buffering in order to avoid interruptions, which are
known to significantly degrade QoE [18]. While our frame-
work could be extended to include initial buffering, due to
space limitations we defer it to future work.



Table 1: Notation used in the paper.

α Number of vehicles

β Buffer size per vehicle

si Size of content i

φi Number of requests for content i

Ni Number of copies stored for content i

k Number of content in the catalogue

λ Pairwise inter-meeting rate between H and U

E[S] Mean contact duration

rP Playout rate

rV Download rate from H nodes

A.3 (Buffer capacity) - Each H node can store at most β
bytes. While this assumption might seem to oversimplify
the problem, we will show that our results can be applied to
any buffer size. Moreover, we assume end user buffers to be
large enough to store entirely any requested content.
A.4 (Inter-contact times) - Unless otherwise stated, pairwise
inter-contact times between H and U nodes are drawn from
a generic distribution with rate λ, and the contact duration
is drawn from a generic distribution with mean E[S].

Given the above assumptions, the result of the policy is
that (i) the user’s video is never interrupted provided the
infrastructure can guarantee at least the playout rate (if that
is not the case, then this is an issue of the infrastructure and
not of the vehicular storage cloud); (ii) while the video plays
out at the user, future parts of it are actually downloaded
from locally encountered vehicles (in principle pre-fetched)
thus offloading some of it from the infrastructure. As long
as the playout buffer remains non-empty, the infrastructure
does not need to be accessed. And when it does, we ensure
that the minimum necessary amount of bytes is downloaded
from the infrastructure (rC = rP + ε).

The notation used in the paper is summarized in Table 1.

2.3 Problem formulation
Definition 1. The number of bytes downloaded from I is
given by

∑k
i=1

∑φi
j=1 Xij, where Xij is a random variable

corresponding to the bytes of the jth request for content i.

Conditionally on the characteristics of the content (i.e.,
size and popularity) Xij are IID random variables depend-
ing only on the mobility statistics (e.g., meeting rate with
vehicles, contact duration). Thus, its expected value E[Xij ]
is equal to E[Xij |φi, si] = E[Xi], ∀j ∈ [1, φi].

The goal of this paper is to find the optimal number of
copies to allocate in H nodes in order to minimize the num-
ber of bytes downloaded from the cellular infrastructure.
From Definition 1, we can derive the following theorem:

Theorem 2.1 (Optimization problem). The optimal num-
ber of copies for content i (Ni ∈ N) is given by the solution
of the following optimization problem:

minimize
Ni

k∑
i=1

φi ·E[Xi], (1)

subject to 0 ≤ Ni ≤ α, i ∈ K, (2)

k∑
i=1

siNi ≤ αβ, (3)

where the objective function is the total number of bytes
downloaded from the cellular infrastructure in a given period

of time. The objective function is subject to two constraints:
(i) the number of replicas is limited by the number of vehicles
participating in the cloud and cannot be negative (Eq. (2));
(ii) the buffer capacity is limited as shown in Assumption
A.3 (Eq. (3)). Due to space limitations, all proofs can be
found in a tech report, available at [30], and we will provide
instead only a proof sketch for a subset of results.

3. ANALYTICAL MODEL
In this section, we derive E[Xi] according to the vehicle

density, i.e., the rate of vehicles met by U nodes, and we
solve the respective optimization problem of Theorem 2.1 to
find the optimal content allocation. We model the playout
buffer at U nodes with a queue, where its number of “jobs”
corresponds to the amount of bytes available in the playout
buffer, i.e., the number of bytes prefetched from the cloud,
but not yet consumed; thus, when the queue empties (idle
period), the user will switch to the cellular interface.

3.1 Low Traffic (LT)
Let us assume first that contacts with vehicles are sparse,

and do not overlap with each other, i.e., a U node meets one
and only one vehicle with the requested content at a time.
Assume that U node is streaming content i. We can model
the playout buffer for content i as a bulk GY /D/1 queue (as
shown in Fig. 2). A contact between U and a vehicle storing
content i corresponds to a new (bulk) arrival in the buffer.
Since there are Ni such vehicles, the total arrival rate into
the queue is λNi (while the actual inter-arrival distribution
is generic, G). Each arrival brings a random amount of Y
new bytes to be consumed (that depends on the random
contact duration with the vehicle). Finally, bytes in the
buffer are served (i.e., viewed by the user) at the constant
playout rate rP . We are interested in the idle periods of
the queue, i.e., when the buffer is empty and the user is
redirected to the cellular infrastructure. We can enunciate
the following theorem:

Theorem 3.1 (Low Traffic). If λE[S]·α� 1 (Low Traffic),
the optimal content allocation replicates the most popular
content in any vehicle, until the buffer space is filled up:

N∗
i =

{
α, if 1 ≤ i ≤ γ,
0, otherwise,

where γ , max{γ̄ ∈ N|
∑γ̄
i=1 si ≤ β}.

Sketch of proof. Since the video length is much larger than
the mean contact duration, namely si/rP � E[S] ∀i ∈ K,
the playout queue sees several idle/busy cycles. For this rea-
son, we can apply stationary regime analysis to the proposed
queue. Specifically, the fraction of time that the GY /D/1
queue is idle is 1 − λE[S] · rV /rP ·Ni. Then, the objective
function of the optimization problem is equivalent to:

min
Ni

k∑
i=1

φi ·si(1−λE[S]·rV /rP ·Ni) ≡ max
Ni

k∑
i=1

φi ·siNi. (4)

We distinguish two cases according to the value of β: large
β, when all content fits in a vehicle buffer (i.e., β ≥

∑k
i=1 si);

and small β, otherwise:

• Large β: since the RHS of Eq. (4) is a strictly monotonic
increasing function according to Ni, then N∗

i = α ∀i ∈ K,
due to the constraint in Eq. (2).
• Small β: let yi , siNi be the total number of bytes to al-

locate per content. Here, we solve a continuous relaxation
for Ni. We rewrite the optimization problem as:



...

Figure 2: Queuing model proposed for generic traffic regime.

max
yi

k∑
i=1

φiyi s.t.

k∑
i=1

yi ≤ αβ. (5)

Additionally, from Eq. (2) we know that yi ranges be-
tween 0 and siα. The optimization problem can be read
as if we had a budget of bytes (until αβ) to use in or-
der to maximize the objective function. We can proceed
iteratively in order to find the optimal value of yi. Let
ε > 0 be a small number of bytes (ε � αβ) to assign
to one of the content. Initially, let further assume that
yi = 0 ∀i ∈ K. An optimal solution assigns the ε bytes to
content 1 (y1 = ε), since φ1 is maximum. We iterate this
step by summing the marginal budget ε, until one of the
two following sub cases arises:

(i) y1 = siα: due to Eq. (2), no more bytes can be as-
signed to y1. In this case, the additional ε bytes will be
assigned to y2, and so on;

(ii)
∑k
i=1 yi = αβ: there is not available space in the

cloud. Then, N∗
i is equal to yi/si.

As stated in Theorem 3.1, the optimal solution allocates
copies to the content with the largest popularity.

Corollary 1. An optimal policy stores α copies for the (ap-
proximately) β/E[si] most popular content.

Corollary 2. Let βj denote the buffer capacity for vehi-
cle j. Then, for Low Traffic, the optimal content alloca-
tion replicates the most popular content, until the buffer
space is filled up. Specifically, N∗

i =
∑α
j=1 1A(βj), where

A = {n ∈ N|n ≥ i}. If βj = β ∀j ∈ H, then the optimal
allocation corresponds to Theorem 3.1.

3.2 Generic Traffic (GT)
In busy urban environments, a user might be within range

of many vehicles at the same time, a number of which storing
the content of interest. If a user is downloading video i from
car A, and the connection is lost (e.g., car A moves away),
the user could just keep downloading from another car B
storing i, also in range. Hence, as long as there is at least
one vehicle with a copy within range for a duration T , then
the user will be downloading content i at rate rV for all of
T . We are now thus interested in modelling the duration of
periods with at least one vehicle with a copy in range.

Unfortunately, we cannot use the previous model here,
as it assumes the absence of overlaps. In fact, an encoun-
tered car does not necessarily bring an amount of content
E[S] · rV now. Consider the example above with car A and
car B. When the user switches to downloading from car B,
the contact with car B was already ongoing and thus does

not have the same statistics as in Low Traffic regime. We
choose to model these contact periods (with potential over-
laps) with the busy periods of a queue with infinite servers.
However, to derive the mean busy period, we have to assume
that pairwise inter-contact times between users and vehicles
are exponentially distributed with mean λ. While this is
still subject of debate, several studies have shown that this
exponential assumption is reasonable, especially in the tail
of the distribution [13,19]. Thus, we model the queue as an
M/G/∞ (Fig. 2), whose output is feeding arrivals into the
playout buffer as described in Section 3.1. The number of
vehicles simultaneously inside the end user communication
range, as a function of time, corresponds to the number of
jobs in the M/G/∞ queue. Specifically, arrivals describe the
vehicles met by a U node, and the service time is the contact
duration. We will test the model in Section 4 against a trace
with non-exponential contacts.

Lemma 3.2 (Busy period). Consider an M/G/∞ queue,
with arrival rate λNi and mean service time E[S]. The mean
busy period length is given by:

E[B] =
eλE[S]·Ni − 1

λNi
. (6)

Proof. Consider the M/G/∞ queue previously described.
Then, let Bn (resp. In) be the length of the nth busy (resp.
idle) period. Note that (Bn, In) forms an Alternating Re-
newal process. We can associate to each renewal a reward
which corresponds to the duration of busy periods (i.e., the
time during which there is at least one job in the queue).
From the Renewal-Reward theorem [17], in the stationary
regime, the average rate at which we earn reward is equal to
the expected reward earned during a cycle, divided by the
expected cycle length. It follows that, if p(t) is the proba-
bility that the server is busy at time t, then:

p(t) =
E[B]

E[B] + E[I]
. (7)

In such M/G/∞ queue, the fraction of time that the sys-

tem is busy (i.e., p(t)) is equal to 1 − e−λNi·E[S]; this re-
sult is directly derived from the stationary probabilities of
an M/M/∞, a known insensitivity result [24]. Moreover, by
the Markov property of arrivals, E[I] = 1/λNi. Then, from

Eq. (7), we deduce that E[B] = (eλNi · E[S] − 1)/λNi.

Corollary 3. Consider the M/G/∞ queue of Lemma 3.2.
Then, its busy periods are generic distributed with mean
λB · Ni, where λB , λ · e−λE[S]·Ni .

As in the Low Traffic regime, we model the playout buffer
with an GY /D/1 queue. Arrivals represent the beginning of
a busy period of duration given by the M/G/∞ queue. We
use Corollary 3 to define the arrival rate, and E[B] · rV as
mean bulk size. We introduce the following result:

Theorem 3.3 (Generic Traffic). In the Generic Traffic regime,
the optimal number of replicas splits content in three slots
depending on the content popularity. Specifically:

N∗
i =


0, if φi < L

(λE[S])−1 · ln
(
λE[S]·φi
mC

)
, if L ≤ φi ≤ U

α, if φi > U

where L , mC · (λE[S])−1 and U , mC · (λE[S])−1 · e
α

λE[S] ,
and mC is an appropriate Lagrangian multiplier.



Table 2: Mobility statistics (λ and λB are in day−1).

Range λ E[S] λB E[B]

Short range 1,680 29,53 s 1,238 34,53 s

Long range 4,391 57,77 s 0,924 139,11 s

Sketch of proof. According to Lemma 3.2 and Corollary 3,
we can rewrite the optimization problem as follows:

min
Ni

k∑
i=1

φi · sie−λE[S]·Ni . (8)

The problem is convex since the objective function is sum
of convex functions, the constraints are linear and the do-
main of feasible solutions is convex. Thus, it can be solved
with the method of Lagrangian multipliers [6].

4. SIMULATIONS
To validate our results, we perform simulations based on

real traces for (i) mobility and (ii) content popularity:

• Mobility: We use the Cabspotting trace [26] to simulate
the vehicle behaviour; this trace records the GPS coordi-
nates for 531 taxis in San Francisco for more than 3 weeks
with granularity of 1 minute. In order to improve the ac-
curacy of our simulations, we increase the granularity to
5 seconds by linear interpolation.
• Content popularity: We infer the number of requests

per day from a database with statistics for 100.000 YouTube
videos [3]. The database includes static (e.g., title, de-
scription, author, duration) and dynamic information (e.g.,
daily and cumulative views, shares, comments). Data is
worldwide, and we scale it linearly according to the esti-
mated population of the centre of San Francisco.

In our simulations, we assume that end users can contact
the vehicular cloud with either short (100m) or long (200m)
range communications. We vary video qualities from 240p
(which requires rP = 400kbps) to 1080p (rP = 4Mbps).
What is more, current and near future vehicles can be equipped
with 801.11 b/g/n mobile access points for wireless devices [1].
While these devices can provide much faster download rates,
we set rV to 5Mbps as a pessimistic scenario. Finally, we
extrapolate the mobility statistics (λ and E[S]) from the
analysis of the Cabspotting trace to compute the optimal
allocation. These values3 are summarized in Table 2.

We build a MATLAB simulator as follows: first, we gener-
ate a set of requests, and we associate a random location (in
GPS coordinates) to each one. The number of requests per
content per day is given by the YouTube trace. Then, we
store content in vehicles according to the policies shown in
Section 3.1 and 3.2. For each request, we simulate the play-
out of the video; the end user buffer will be opportunistically
filled when the vehicular cloud can be contacted, according
to the mobility provided by the Cabspotting trace. In order
to increase the number of simulations and to provide sensi-
tivity analysis for content size and buffer capacity, we limit
the number of content to 5000. We scale down the vehicle
storage capacity β to ensure that 0,05%-1% of the total cat-
alogue can be fit in each cache, which is an assumption that
has also been used in [15, 22, 27]. Finally, content requests
are generated over a period of 5 days.

3The values of λB and E[B] consider Ni = α.
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Figure 3: Data offloaded for different video quality
(β = 0, 2%) for LT regime.
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Figure 4: Data offloading gain with short (left) and long
(right) range communications for GT regime.

Fig. 3 shows the fraction of bytes downloaded from the ve-
hicular cloud according to different video qualities with Low
Traffic regime. The plot reveals that long range communi-
cations can reduce the mobile traffic from 30% (full HD con-
tent) to 45% (low resolution content). What is more, short
range communications can also provide gains between 15%
and 35%. While in this simulation we are only storing the
0,2% of the total catalogue per vehicle, considerable gains
can still be achieved. Not less important is that the num-
ber of vehicles participating in the cloud is small (α = 531),
approximately less than the 1% of estimated number of ve-
hicles in the center of San Francisco. This provides some
evidence on the advantages of offloading based on a vehicu-
lar cloud, compared to offloading using small cells or WiFi
with deadlines, as for example in [8] or [21].

Fig. 4 depicts the fraction of data offloaded by the vehic-
ular cloud for two video qualities (360p and 720p) according
to different values of β for GT regime. On the one hand,
small vehicle caches (≤ 0, 1% of the catalogue) can provide
interesting gains even for high quality videos (15-30%); on
the other hand, using larger caches allows significant higher
gains, up to 60% with long range communications.

Stationary regime is reasonable when the number of busy
+ idle periods is large enough such that the transitory phase
becomes negligible. To have a high number of these periods,
the average content size and the number of requests need to
be large. Fig. 5 shows the fraction of data offloaded by our
vehicular cloud for content of same size (with video quality
360p). We can note that when file size is larger than 100MB
(≈ 15 minutes), the number of bytes downloaded from the
infrastructure becomes more stable, validating the station-
ary regime assumption. Furthermore, with short range com-
munications, LT and GT policies provide almost the same
gain: in fact, from Table 2 we can note that the value of λB
(resp. E[B]) is similar to λ (resp. E[S]), revealing a limited
number of contact overlaps. Differently, for long range com-
munications the result in the GT regime can increase the
offloaded traffic up to 5% more than LT regime, confirming
the validity of the exponential assumption for the mobility.
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Figure 5: Data offloaded vs content size (video quality 360p).

5. RELATED WORK
The rapid increase in the mobile traffic demand has led to

a large number of proposals to alleviate the load on the back-
bone. Related work can be split in caching at the edge and
offloading on mobile devices. In the context of caching at the
edge, traditional solutions concern adding storage capacity
to small cells [15, 27] and/or to WiFi Access Points [14,31].
However, a large number of small cells is required for an
extensive coverage, which comes at a high cost [5]. By con-
trast, in an urban environment, the same area will contain
thousands of vehicles. To alleviate this situation at a low
cost, a number of works introduce delayed access [8, 21, 23].
Differently, in our work we guarantee QoE (since we pro-
vide uninterrupted streaming) with similar or better gains
in terms of data offloaded than the aforementioned works.

Apart from small cells, researchers also proposed to use
mobile devices to offload content through opportunistic com-
munications [9, 16]. These works exploit the possibility of
serving user requests from other nearby mobile devices. More-
over, a few works have also suggested to exploit vehicular
networks to store content [32, 33]. Despite the obvious lim-
ited constraints in terms of resources (e.g., battery, storage),
the majority of these works does not consider a common
cloud maintained by the ISP for video streaming.

6. CONCLUSION
In this work, we have provided a low-cost alternative to de-

crease the load on the cellular network. Specifically, we have
proposed to cache popular multimedia content in vehicles.
Users can opportunistically fill up their buffer from nearby
vehicles, in a transparent way, while streaming the requested
content. We have modelled the user playout buffer with a
queueing approach, and provided closed-form expressions for
different vehicle densities. Finally, we have validated our re-
sults with real-trace based simulations. As future work, we
will evaluate how the mobility patterns affect the system
and if they can be used to improve performance. We also
plan to study the transient phase of our queuing system.
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