
Security Guidelines: Requirements Engineering for
Verifying Code Quality

Zeineb Zhioua
zeineb.zhioua@sap.com

Yves Roudier
yves.roudier@eurecom.fr

Stuart Short
stuart.short@sap.com

Rabea Boulifa Ameur
Rabea.Ameur-Boulifa
@telecom-paristech.fr

Abstract—The development and delivery of secure software is
a challenging task, that gets even harder when the developer tries
to adhere to both application and organization-specific security
requirements translated into security guidelines. These guidelines
serve as best practices or recommendations that help reduce
application exposure to vulnerabilities, and provide hints about
the application’s adherence to high-level and abstract security
requirements. In this paper, we present guidelines we gathered
from different sources, and we highlight the main issues related to
the interpretation and application of those guidelines. We present
a first attempt to classify the requirements with the objective of
identifying the analysis that should be performed to verify the
adherence of the developed software to each of the categories.

Keywords- Security Guidelines, Development Lifecycle, Informa-
tion flow

I. Introduction

With the aim of protecting the infrastructure and sensitive
data of their own as well as of their customers, organizations
and companies define non-functional security requirements to
be applied by software developers. Defined requirements are
generally abstract and high-level, which requires extra effort
to interpret, apply and verify the adherence to. In practice,
companies create review processes and conduct audit sessions
[16] comprising a wide range of experiments to verify the
compliance with general and security related requirements.
However, manual reviews can be time-consuming and costly
to the companies in terms of resources, and they can fall
short in detecting requirements violations. From a developer
perspective, interpreting and applying security requirements
is not a trivial task, as those requirements, translated into
security guidelines, are often written in an informal style,
use ambiguous language, and require domain expertise to
interpret them. The idea behind this paper is not to propose
a model-driven engineering approach offering methodologies
for designing secure systems [24], but we aim at bringing
the verification of security guidelines in early stages of the
development lifecycle, and provide assistance and guidance to
the developer through the development phase to ensure the
quality of his developed software with respect to security. We
propose a first step towards closing this gap, consisting at
arranging the guidelines into categories with the objective of
preparing the ground for the analysis approach to be carried
out for each category. In order to define the categories, we
conducted a deep analysis on guidelines coming from diverse
sources. The analysis led to the classification of a preliminary
set of 17 guidelines, that will be used for creating models for

formal verification. The paper flow is as follows: Section 2
provides the motivation behind this paper. We introduce the
security guidelines in Section 3 and propose a classification
of the guidelines with respect to the identified criteria. This
presentation is then followed by a discussion in Section 4.
In Section 5, we provide existing approaches that dealt with
guidelines specification. Section 6 concludes the paper and
discusses possible directions to verify the compliance with
security guidelines.

II. Motivation

With the objective of illustrating further the problems de-
scribed above, we provide a sample code (Fig. 1) in which
user credentials are provided as input. On the other hand, we
want to verify the adherence of the developed code with a
specific guideline that recommends to hash passwords before
logging them (denoted IDS03-J in [5]). The developer assigned
the input password to the password attribute of an object user
(line 99). In the lines 105 and 106, the developer instantiates
the Sanitize and the Log threads (Threads implementation
is depicted in Fig. 2). The Sanitize thread eliminates the
suspicious characters from a given data. In our example, the
data is the user password provided as input. The Log thread,
on the other hand, performs the logging operation. Later in
the program, the developer runs the thread Sanitize followed
by the thread Log (lines 108 and 109). From a pure control
flow angle, that is from methods invocation perspective, the
guideline is met, as the password provided as input was first
sanitized (line 108) before being logged (line 109). However,
in the presence of multiple threads, the control flow of the
program can be altered, and the sensitive data ”‘password”’
can be modified in inconsistent ways, as the logging operation
might occur before the sanitization, and this will lead to the
password leakage, hence, to the violation of the guideline.
In this example, detecting the violation of the guideline is not
trivial; there is a need for a reliable analysis that should detect
this violation. Nowadays, formal methods, in particular formal
verification are increasingly being used to enforce security and
safety of programs. Formal specification of the guidelines is
not in the scope of this paper.

III. Security Guidelines

Organizations and companies define non-functional security
requirements to be applied by software developers, and those
requirements are generally abstract and high-level. Security



Fig. 1. Sample code 1

Fig. 2. Sanitize and Log threads

requirements such as confidentiality and integrity are abstract,
and their application requires defining explicit guidelines to
be followed in order to fulfill the requirements. Security
guidelines describe bad as well as good programming practices
that can provide guidance and support to the developer in
ensuring the quality of his developed software with respect to
the security aspect, and hence, to reduce the program exposure
to vulnerabilities when delivered and running on the customer
platform (on premise or in the cloud). Bad programming
practices define the negative code patterns to be avoided,
and that can lead to exploitable vulnerabilities, while good
programming practices represent the recommended positive
code patterns to be applied on the code. However, guidelines
are usually presented in an informal and unstructured way.
In the OWASP Secure Coding Practices guide[21], a set of
security guidelines are presented in a checklist format arranged
into classes, like Database Security, Communication Security,
etc. The listed programming practices are general, in a sense
that they are not tied to a specific programming language.
The same source, OWASP [20] introduces the Cryptographic

Storage Cheat sheet that provides a set of guidelines to be
followed in order to protect data at rest. Another programming
practices guide we can consider for instance is the CERT
Oracle Coding Standard for Java [14]; for each guideline,
the authors provide a detailed textual explanation. For most,
there are also provided examples of compliant and non-
compliant sample codes in addition to the description. The
Juliet Test Suite [19] is created by the National Security
Agency (NSA), and proposes a set of test cases covering
multiple programming languages including Java. The provided
test cases are arranged into categories with respect to the flow
type; control or data, and every test case targets one specific
vulnerability or weakness, referring to known entries in the
Common Weakness Enumeration dictionary (CWE) 1.

The definition of security guidelines also stands in another
scenario: software marketplaces. In this scenario, the main
stakeholders are the service provider or the developer, the
marketplace operator and the end-user. Software Marketplaces
use different approaches in order to prevent malicious applica-
tions from being advertised in their official stores. Submitted
applications generally go through a verification of their com-
pliance with the marketplace security requirements. On the
one hand, it is important for a service provider to be aware
of domain-specific requirements as failure to be accepted in
the marketplace and subsequent application rewrites may be
costly, time-consuming, and affect the organization’s reputa-
tion. On the other hand, the end-user wants to be reassured
that their demands are respected in terms of security and
privacy. However, this process is neither always transparent
nor understandable to the service provider as well as to the
end-user. For instance, Apple App Store performs a rigorous
vetting process that comprises in addition to security and
privacy checks, verifies also the adherence to the Apple App
Store guidelines [1], that serve as a guide to developers
through the development of their applications and to enhance
their chances of getting their applications pass the approval
process. From service providers/developers perspective, the
understanding and interpretation of guidelines is not trivial, as

1https://cwe.mitre.org/index.html



there is no formalization that exposes the necessary program
instructions for each guideline, or that explains how to apply
them correctly in the software.

Before proceeding to the classification, effort was under-
taken to develop the criteria serving as basis to our catego-
rization. One trivial criterion is the control flow, specifying the
sequence of operations that should be performed for a software
to be compliant. Another criterion consists in considering data
and how it should be processed. Different guidelines require
some data typing rules, specifying the data types that should
be used in a given context. The fourth criterion we have con-
sidered is the semantic aspect. This criterion means that there
is a need to study the meaning of linguistic expressions for
the evaluation of the guideline’s key words. The interpretation
of semantic guidelines is not straightforward, and requires
expertise to analyze, apply and verify them.

The main objective behind this classification is to prepare
the ground for expressing these guidelines in a formal lan-
guage and to reason about their satisfiability. Control, data and
typing guidelines can be translated automatically into formal
language. However, for those involving the semantic aspect,
the formalization cannot be carried out automatically and
should be led by a security expert who extracts the linguistic
meaning and relate it to the guideline context.

Let’s now consider some real-world guidelines 2 as intro-
duced in different sources such as CERT [14], Apple App Store
Developer Guide [1], Juliet Test Cases[19] and OWASP[20].
Each guideline is denoted by a unique code attributed by the
issuing organization.

As a first step, we will organize the guidelines into groups
with respect to the type of verification they consider. For exam-
ple, a category of guidelines can be more focused on validating
data provided as input. We can also consider another category
for secret security, that is data whose integrity violation can
result in a loss of confidentiality of sensitive information.
Sensitive information security is another category we define,
and consists at regrouping the guidelines for the sensitive
information, such as user’s private information. We have also
depicted categories that deal with specific methods invocation
and execution environment security. For each guideline, we
provide explanation, comments and observations.

A. Input validation

This category gathers the guidelines that perform the valida-
tion of data provided as input. Validation consists in ensuring
that input data belong to the expected input domain.

a) IDS01-J:Normalize strings before validating them:
[11] This guideline recommends that input strings should be
normalized before being validated. Normalization is according
to this guideline a crucial operation as the same string can
have multiple representations depending on the used Unicode.
However, neither the normalization nor the validation are
easy to interpret and to apply. Does the validation mean
sanitization?

2https://www.securecoding.cert.org/

b) IDS03-J:Do not log unsanitized user input: [5] This
guideline describes the recommended behavior when dealing
with user input that should be logged. Provided user input
should be sanitized before being logged, however, sanitization
can be performed through multiple manners, such as the
elimination of suspicious characters. In the guideline descrip-
tion, the implementation of the sanitization operation is not
specified.

c) IDS06-J:Exclude unsanitized user input from format
strings: [8]

The guideline recommends not to include untrusted data
in a format string, as this may result in information leakage.
One ambiguity in the guideline description is the notion of
untrusted data. From a developer perspective, the operation
of ”‘excluding”’ untrusted data is not trivial; is it only about
not including it in format string? Hence, this guideline can be
formulated as follows: sanitize user input before including it
in format string.

d) IDS07-J:Sanitize untrusted data passed to the Run-
time.exec() method: [13]

This guidelines proposes a way to reduce the program
exposure to command and argument injection vulnerabilities,
through the sanitization of untrusted data included in a specific
Java method Runtime.exec() that allows to run an external
program. It is pointed out that suspicious arguments passed to
this method may expose the program to the command injection
attack. Despite the detailed description, applying the guideline
is not trivial, due to the unclarity of the untrusted data notion,
even though there is an attempt to clarify it and put in the
context of trust boundary.

e) IDS08-J:Sanitize untrusted data included in a regu-
lar expression: [12]

In this guideline, it is recommended to sanitize data passed
to a regex in order to prevent malicious attacks such as regex
injection, information leak or DOS attacks. If unsanitized input
is included in a regex, this might modify the original regex
that will be changed and will no longer perform the original
desired verification. The developer is faced with the ambiguous
notion of untrusted data. What would determine if the data is
trusted or not? Does this assume that all the data coming from
external sources (user input, consumption of a web service,
etc.) is untrusted?

f) 124683:CWE 129: Improper Validation of Array
Index: [18]

The test case 124683 references a weakness in the CWE
(Common Weakness Enumeration database) that points out the
risk of not validating the array index3. It is recommended to
check that the array index is within the correct range of values
for the array, but it is not specified how to properly perform
this verification.

B. Method declaration and invocation

This category is focused on guidelines that provide useful
hints to ensure the program safety when invoking specific Java
methods.

3https://cwe.mitre.org/data/definitions/129.html



g) MET03-J:Methods that perform a security check
must be declared private or final: [9] This guideline rec-
ommends to declare methods that perform security checks as
private or final to make sure they cannot be overridden. How-
ever, the notion of security checks can be subject to different
interpretations; is it authentication? encryption verification? As
a reader can notice, the understanding and implementation of
this guideline are not intuitive.

h) MET53-J:Ensure that the clone() method calls su-
per.call(): This guideline specifies that for a class that im-
plements the clone() method, it should explicitly invoke the
super.clone() method. Otherwise, the types of the cloned object
and the original one can be different.

i) MET56-J:Do not use Object.equals() to compare
cryptographic keys: [7] The guideline recommends avoiding
the invocation of the method Object.equals() to compare
cryptographic keys. The motivation behind this guideline is
that Object.equals() method is not applicable to composite
objects, such as cryptographic keys, and may return false even
when the keys have exactly the same value.

j) EXP02-J:Do not use the Object.equals() method to
compare two arrays: [6]

This guideline specifies the proper method to be invoked
for the comparison of the Java Array type.

C. Secret security
We express through this category the need to ensure the

integrity of specific data whose violation can have negative
impact on confidentiality of dependent data. For example,
the violation of password integrity can violate authentication,
same for the violation of encryption keys secrecy, this will
result in violating confidentiality of encrypted data, and the
encryption operation can no longer be reliable for ensuring
confidentiality.

k) MSC62-J:Store passwords using a hash function:
[15]

This guideline specifies the technique to be used in order to
ensure the secrecy of passwords and limit their exposure. The
hash operation applied on passwords which are the sensitive
information in this guideline, will result in an undecryptable
data that can propagate to a public output without having
any risk on its secrecy. From this perspective, the guideline
somehow indicates a technique for declassifying the security
level of sensitive information such as passwords. However,
the identification of a specific variable or data as password
requires semantic inference rules and a rich knowledge base.

l) Store unencrypted keys away from the encrypted
data: [20] This guideline recommends not to store encrypted
together with the encryption key, as this operation can result
in a compromise for both the sensitive data and the encryption
keys. However, encryption keys can be declared as byte arrays
with insignificant names, which makes their identification as
secret and sensitive data very difficult.

D. Sensitive information security
In this category, we collected the guidelines that deal

with sensitive data, that include user’s private information,

passwords, credit card numbers, etc.
m) MSC03-J:Never hard code sensitive information:

[10]
In this guideline, it is recommended not to expose sensitive

information on plain text at the code level. This guideline is
not about the behavior of the program, but it is more about
the code, meaning class files. The motivation behind it is the
risk of exposure of sensitive data if an intruder gets access to
the class files or decompile the byte code, then he can easily
discover sensitive data.

n) IDS15-J:Do not allow sensitive information to leak
outside a trust boundary: [4] This guideline is considered as
a stub, in a sense that it is generic, and can be instantiated
through different mechanisms, like for instance preventing
catching an exception that exposes sensitive data, or forbidding
the storage of sensitive data on external storage, etc. The
notion of trust boundary can lead to misinterpretation, hence to
improper implementation. From a developer perspective, it is
tough to identify all the sensitive information in his program,
the complexity of this operation increases with the complexity
and the size of the program.

o) 5.1.2(i) Apps cannot use or transmit someones per-
sonal data without first obtaining their permission and
providing access to information about how and where the
data will be used.: [1]

This guideline explains that applications requiring access to
user’s data should explicitly request the access to private data
and should also inform the user about where the data will
be processed and to which end. From a developer point of
view, the identification of private information cannot be easily
carried out. This operation requires an advanced semantic
knowledge base covering the main naming conventions of
personal information.. The developer is faced with another
lack of clarity concerning the access to data; the access is
not explicitly defined: is it read, write, modify, delete? There
is a lack of precision about the purpose of the access, and also
about how to inform the user about where and how the data
will be processed. On top of that, the operation of granting
or revoking a requested permission occurs at install time or
even run-time for some specific permissions, hence, verifying
whether the application was granted the permission or not
cannot be checked statically. The problems described are also
faced by the tester or the reviewer of the application.

p) 5.1.2(ii) If your app doesnt include significant
account-based features, let people use it without a log-in.
Apps may not require users to enter personal information
to function, except when directly relevant to the core
functionality of the app or required by law..: [1]

The guideline explains that applications requesting access
to private information will be rejected. We are faced with the
some ambiguities discussed for the previous guideline.

E. Execution environment security

This category is focused on guidelines that aim at ensuring
the security of the execution environment, They are neither
control flow nor data flow guidelines.



q) OBJ10-J:Do not use public static nonfinal fields:
This guideline recommends not to declare nonfinal fields as
public static, for the risk of exposure to improper change
of their values when there is a concurrent access to their
content, especially in the presence of multiple threads, where
the concurrent access to nonfinal public static fields can result
in an inconsistent modification of the content.

F. Summary and classification of security guidelines

By arranging the security guidelines into categories with re-
spect to the flow aspect; control or data or a some combination
thereof, we will be able to have concrete understanding on the
analysis type that will be performed on the program in order
to verify the adherence or not to the given guideline. We have
also considered some other categories that are neither control
nor data, but more about the data typing or semantic aspect of
the guideline. The classification of the guidelines is presented
in Table 1. Going back to our motivating example in Section
2, we notice that the nature of the guideline to be verified is
a combination between both control and data flows. Hence, in
order to validate it, we need to perform an information flow
analysis to track how the password data propagates through
the program, taking into account the implicit information flows
that can originate from the occurrence of multiple threads.

IV. Discussion

Security guidelines are mainly meant to simplify the
developer job in enhancing the software quality from
security perspective. However, if we take a closer look at
the guidelines presented above, we will notice that their
understanding and implementation are not trivial to the
developer. Considering only the events or actions from pure
control flow angle is not sufficient for guidelines that are
highly dependent on the information propagation through
a program, such is the case for the guidelines IDS03-J -
IDS15-J. Hence, considering information flow and integrating
them into the formal specification of security guidelines
becomes imperative.

When interpreting the guidelines, the developer is
faced with one other problem related to the semantic
interpretation of key-words such as the notion of sensitive
data, trusted/untrusted data, trust boundary, security check,
improper validation, etc. From this perspective, the developer
should be able to identify the sensitive variables or data
in his developed software, the problem gets even harder
when it is the tester who has to perform this identification
on a developed program. It is also the case for software
marketplaces when performing the approval process.
In the guidelines presented above, we notice the redundancy
of the notion of trusted or untrusted data, which is ambiguous
to interpret, to understand and to apply on the source code
level. In the CERT source, the authors provide a glossary to
explain further the different key-words and terms used in the
guidelines. The untrusted data is defined as Data originating

from outside of a trust boundary, which leads to uncertainty
with respect to the identification and determination of trust
boundary; does it refer to the system input/output? It is not
trivial to determine the perimeter of a program, for example
in the context of a distributed application, how to determine
the system boundaries?

The validation operation is used in multiple guidelines,
for example in IDS01-J and 124683. As one can notice, the
validation of array index is not the same validation operation
from program instructions point of view.

Another element caught our attention; the guideline or the
family of guidelines that recommends to encrypt or hash the
sensitive information. This operation always known as declas-
sification is widely known in the information flow vocabulary
[22]. Declassification operation can be seen as controlled
release of sensitive information using given mechanisms and
techniques such as encryption, hashing, obfuscation, etc.

Some rules do not have the same permissibility level, in a
sense if they are applied at the same time, this might lead to
ambiguities. For instance, the guidelines IDS06-J and IDS03-
J; the first rule forbids user input from format string, while the
second requires to sanitize user input. This brings to the table
the necessity of considering the relationships and dependencies
between guidelines.

It is important to note that all the specified categories
except Secret security are focused on data confidentiality, and
somehow miss the integrity which is according to Biba [3] the
dual of confidentiality. Integrity unlike confidentiality, can be
violated without any interaction with components external to
the system. This is the main major behind considering Secret
security category as an integral part of our classification.

V. RelatedWork

The classification of security guidelines has also been
addressed in the literature. For instance, HP Fortify[17]carries
out the classification of the analysis rules depending on the
vulnerability type, and makes use of a specific analyzer for
each category: Control, Data, Semantic, Structural and Con-
figuration. However, the analysis approach is not transparent,
neither is the specification of analysis rules. Apple App Store
proposes a set of guidelines that should be met by the appli-
cation developers/providers. The guidelines are arranged into
categories with respect to their context (safety, business, legal,
etc.). Apple reported in their reply to the FCC questionnaire
[2] that for an application to be accepted, it has to undergo a
vetting process comprising different verifications such as the
compliance with the guidelines. To achieve this, the applica-
tion is tested (automatically and manually) by more than one
reviewer. John Wilander and Pia Fak[23] identified verification
categories depending on the vulnerabilities types. The authors
proposed GraphMatch tool that considers examples of security
properties covering both positive and negative ones, that meet
good and bad programming practices. GraphMatch is more
focused on control-flow security properties and mainly on the
order and sequence of instructions.



ID Security guideline Validation approach
Control Data Typing Semantic

Input validation
IDS01-J Normalize strings before validating them X X
IDS03-J Do not log unsanitized user input X X
IDS06-J Exclude unsanitized user input from format strings X X X
IDS07-J Sanitize untrusted data passed to the Runtime.exec() method X X
IDS08-J Sanitize untrusted data included in a regular expression X X
124683 CWE 129: Improper Validation of Array Index X X

Method declaration and invocation
MET03-J Methods that perform a security check must be declared

private or final
X X X

MET53-J Ensure that the clone() method calls super.clone() X
MET56-J Do not use Object.equals() to compare cryptographic keys X X X
EXP02-J Do not use the Object.equals() method to compare two arrays X X

Secret security
MSC62-J Store passwords using a hash function X X X X

Store unencrypted keys away from the encrypted data X X X
Sensitive information security

MSC03-J Never hard code sensitive information X X X
IDS15-J Do not allow sensitive information to leak outside a trust

boundary
X X X X

5.1.2(i) Apps cannot transmit data about a user without obtaining the
user’s prior permission and providing the user with access to
information about how and where the data will be used

X X X

5.1.2(ii) Apps that require users to share personal information, such
as email address and date of birth, in order to function will
be rejected

X X X

Execution environment security
OBJ10-J Do not use public static nonfinal fields X

TABLE I
Security guidelines arranged into categories

VI. Conclusion and FutureWork

In this paper, we proposed a first attempt at classify-
ing the security guidelines gathered from different sources
into categories. We pointed out another key issue with the
guidelines, consisting in considering only closed systems, and
how they fall short in treating distributed systems and the
guidelines complexity they induce. The complexity can be
perceived from the difficulty of defining the system boundaries
for distributed and 3-tier systems. We are working towards
closing the gap between the informal aspect of the guidelines,
and their implementation and application through a formalism
that allows to strip away ambiguities. We aim to express
these guidelines in a formal language and to reason about
their satisfiability. Concerning those related to the first three
criteria, that is control, data and typing, they should be
translated automatically into formal language. However, for
those involving the semantic criterion, the formalization should
be led by an expert aware of the software security domain, as
semantic aspect is highly tied to the context. We are currently
developing a code analysis tool for the automatic or semi-
automatic verification of such formalized security guidelines

References

[1] Apple. App store review guidelines.
[2] Apple. Apple answers the fcc’s questions.

[3] Kenneth J Biba. Integrity considerations for secure computer systems.
Technical report, DTIC Document, 1977.

[4] CERT. Do not allow sensitive information to leak outside a trust
boundary.

[5] CERT. Do not log unsanitized user input.
[6] CERT. Do not use the object.equals() method to compare two arrays.
[7] CERT. Ensure that the clone() method calls super.clone().
[8] CERT. Exclude unsanitized user input from format strings.
[9] CERT. Methods that perform a security check must be declared private

or final.
[10] CERT. Never hard code sensitive information.
[11] CERT. Normalize strings before validating them.
[12] CERT. Sanitize untrusted data included in a regular expression.
[13] CERT. Sanitize untrusted data passed to the runtime.exec() method.
[14] CERT. Sei cert oracle coding standard for java.
[15] CERT. Store passwords using a hash function.
[16] Facebook Ireland Ltd Data Protection Commissioner. Report of re-audit.

September 2012.
[17] HP Fortify. Hp fortify static code analyzer:user guide.
[18] NIST. Cwe: 129 improper validation of array index.
[19] NSA. Juliet test suite.
[20] OWASP. Cryptographic storage cheat sheet.
[21] OWASP. Owasp secure coding practices quick reference guide.
[22] Andrei Sabelfeld and David Sands. Declassification: Dimensions and

principles. Journal of Computer Security, 17(5):517–548, 2009.
[23] John Wilander and Pia Fak. Pattern matching security properties of code

using dependence graphs.
[24] Roudier Yves and Apvrille Ludovic. Sysml-sec: A model driven

approach for designing safe and secure systems. Model-Driven En-
gineering and Software Development (MODELSWARD), 2015 3rd In-
ternational Conference, pages 655–664, February 2015.


