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Abstract—In this paper1 we consider the Network MIMO
channel under the so-called Distributed Channel State Infor-
mation at the Transmitters (D-CSIT) configuration. In this
setting, the precoder is designed in a distributed manner at each
Transmitter (TX) on the basis of local versions of Channel State
information (CSI) of various quality. Although the use of simple
Zero-Forcing (ZF) was recently shown to reach the optimal DoF
for a Broadcast Channel (BC) under noisy, yet centralized, CSI
at the TX (CSIT), it can turn very inefficient when faced with D-
CSIT: The number of Degrees-of-Freedom (DoF) achieved is then
limited by the worst CSI accuracy across TXs. To circumvent this
effect, we develop a new robust transmission scheme improving
the DoF. A surprising result is uncovered by which, in the regime
of so-called weak CSIT, the proposed scheme is shown to be
DoF-optimal and to achieve a centralized outerbound consisting
in the DoF of a genie-aided centralized setting in which the CSIT
versions of all TXs are available everywhere. Building upon the
insight obtained in the weak CSIT regime, we develop a general
D-CSIT robust scheme for the 3-user case which improves over
the DoF obtained by conventional robust approaches for any
arbitrary CSIT configuration.

I. INTRODUCTION

Multiple-antennas at the TX can be exploited to serve

multiple users at the same time, thus offering a strong DoF

improvement over time-division schemes [1]. This DoF im-

provement is however critically dependent on the accuracy of

the CSIT. Indeed, the absence of CSIT is known to lead to

the complete loss of the DoF improvement in the case of an

isotropic BC [2]. Going further, a long standing conjecture by

Lapidoth, Shamai, and Wigger [3] has been recently settled in

[4] by showing that a scaling of the CSIT error in P−α for

α ∈ [0, 1] leads to a DoF of 1 + (K − 1)α in the K antennas

BC.

In the above literature, however, centralized CSIT is typi-

cally assumed, i.e., precoding is done on the basis of a single

imperfect/outdated multiuser channel estimate being common

at every transmit antenna. Although meaningful in the case

of a BC with a single TX, this assumption can be challenged

when the joint precoding is carried out across distant TXs

linked by heterogeneous and imperfect backhaul links, as in

the Network MIMO context. In this case, it is expected that

the CSI exchange introduces further delay and quantization

noise such that it becomes necessary to study the impact of

TX dependent CSI noise.
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In order to account for TX dependent feedback limitations,

a distributed CSIT model is introduced in [5]. In this model,

TX j receives its own multi-user imperfect estimate Ĥ
(j) on

the basis of which it designs its transmit coefficients, without

additional communications with the other TXs. The finite-

SNR performance of regularized ZF under D-CSIT has been

computed in the large system limit in [6] while heuristic robust

precoding schemes have been provided in [7], [8] for practical

cellular networks. In [9], [10], Interference Alignment with

distributed CSIT is studied and methods to reduce the required

CSIT gaining at each TX are provided.

In terms of DoF, it was shown in [5] that using a con-

ventional ZF precoder (regularized or not) in the Network

MIMO setting with distributed CSIT leads to a severe DoF

degradation caused by the lack of a consistent CSI shared

by the cooperating TXs. A two-user specific scheme called

“Active-Passive ZF (AP-ZF)” was proposed to lift the DoF.

In this work, we study the DoF for a general K-user

Network MIMO channel with D-CSIT. More precisely, our

main results read as follows.

• In a certain weak CSIT regime, which will be defined

rigorously below, we provide a transmission scheme

achieving the optimal DoF. Surprisingly, the DoF ob-

tained is the same as in a genie-aided setting in which

all TXs share the knowledge of the most accurate CSI

estimate.

• In the arbitrary CSIT regime, the above D-CSIT robust

scheme is extended, helping lift the DoF substantially

above what is achieved by conventional ZF precoding.

Notations: We will use
.
= to denote exponential equality,

i.e., we write f(P )
.
= P x to denote limP→∞

log f(P )
logP

= x.

The exponential inequalities ≤̇ and ≥̇ are defined in the same

way.

II. SYSTEM MODEL

A. Transmission Model

We study a communication system where K TXs jointly

serve K Receivers (RXs) over a Network (Broadcast) MIMO

channel. We consider that each TX is equipped with a single-

antenna. Each RX is also equipped with a single antenna and

we further assume that the RXs have perfect CSI so as to

focus on the impact of the imperfect CSI on the TX side.

The signal received at RX i is written as

yi = hH
i x+ zi (1)



where hH
i ∈ C

1×K is the channel to user i, x ∈ C
K is the

transmitted multi-user signal, and zi ∈ C is the additive noise

at RX i, being independent of the channel and the transmitted

signal, and distributed as NC(0, 1). We further define the

channel matrix H , [h1, . . . ,hK ]H ∈ C
K×K . The channel is

assumed to be drawn from a continuous ergodic distribution

such that all the channel matrices and all their sub-matrices

are full rank with probability one.

B. Distributed CSIT Model

The D-CSIT setting differs from the conventional central-

ized one in that each TX receives a possibly different (global)

CSI on the basis of which it designs its own transmission

parameters without any additional communication to the other

TXs. Specifically, TX j receives the imperfect multi-user

channel estimate Ĥ
(j) = [ĥ

(j)
1 , . . . , ĥ

(j)
K ]H ∈ C

K×K where

(ĥ
(j)
i )H refers to the estimate of the channel from all TXs to

user i, at TX j. TX j then designs its transmit coefficients

solely as a function of Ĥ(j) and the statistics of the channel.

We model the CSI uncertainty at the TXs by

Ĥ
(j) = H+

√

P−α(j)
∆

(j) (2)

where ∆
(j) is a random variable with zero mean and bounded

covariance matrix verifying (2). The scalar α(j) is called the

CSIT scaling coefficient at TX j. It takes its value in [0, 1]
where α(j) = 0 corresponds to a CSIT being essentially

useless in terms of DoF while α(j) = 1 corresponds to a

CSIT being essentially perfect in terms of DoF [4], [11].

The distributed CSIT quality is represented through the

multi-user CSIT scaling vector α ∈ R
K defined as

α ,






α(1)

...

α(K)




 . (3)

For ease of exposition, we consider the simple configuration

where the channel realizations and the channel estimates are

drawn in an i.i.d manner. Furthermore, we consider that for

a given transmission power P , the conditional probability

density functions verify that

max
H∈CK×K

(

p
H|Ĥ(1),...,Ĥ(K)(H)

)
.
=

√
Pαmax . (4)

Remark 1. This condition extends the condition provided in

[4] which writes in our setting as

max
H∈CK×K

(

p
H|Ĥ(j)(H)

)
.
=

√

Pα(j) , ∀j ∈ {1, . . . ,K}. (5)

Condition (4) is a mild technical assumption, which holds

for the distributions usually considered.

Example 1. We show in the extended version [12] that

condition (4) is satisfied in the usual case where the noise re-

alizations ∆
(j) ∈ C

K×K are i.i.d. according to NC (0K , IK)
and all the CSI noise error terms ∆

(j) are independent of

each other. �

C. Degrees-of-Freedom Analysis

Let us denote by C(P ) the sum capacity [13] of the MISO

BC with distributed CSIT considered. The optimal sum DoF

is then denoted by

DoFDCSI(α) , lim
P→∞

C(P )

log2(P )
. (6)

III. MAIN RESULTS

As one of the key observations made in this paper, we found

that the DoF behavior in a Network MIMO channel with D-

CSIT quite depends on the CSI quality regime. To this end,

notions of “weak CSIT” regime and “arbitrary CSIT” regimes

are introduced to characterize the interval in which the CSIT

scaling coefficients {α(j)}Kj=1 are allowed to take their values.

The weak CSIT regime is defined as follows:

Definition 1. In the K-user Network MIMO with distributed

CSIT and K ≥ 2, we define the weak CSIT regime as

comprising all the CSIT configurations satisfying that

max
j∈{1,...,K}

α(j) ≤ 1

1 +K(K − 2)
. (7)

Hence in the two-user case, the condition reduces to α(j) ≤
1, ∀j ∈ {1, 2}, such that the notion of weak CSIT coincides

with the arbitrary regime in that case, which will be shown

to be coherent with the DoF result obtained in [5]. In the

three-user case, CSIT is said to be weak if α(j) ≤ 1/4, ∀j ∈
{1, 2, 3}, and so forth.

A. Weak CSIT Regime

Theorem 1. In the K-user Network MIMO with distributed

CSIT, the optimal sum DoF in the weak CSIT regime is

DoFDCSI(α) = 1 + (K − 1) max
j∈{1,...,K}

α(j). (8)

Proof. The achievability follows from the description of the

scheme in Section V while the outerbound follows from the

intuitive fact that CSIT discrepancies between the TXs cannot

improve the DoF. The rigorous proof is given in the extended

version [12].

Quite surprisingly, it can be seen that the DoF expression

only depends on the best CSIT accuracy among all TXs. This

indicates that even TXs with no CSI are useful in lifting

the DoF in a decentralized setting. This result is in sharp

contrast with the performance obtained using a conventional

ZF approach, for which the DoF is shown in [5] to be limited

by the worst accuracy across the TXs (more precisely to be

equal to 1 + (K − 1)minj α
(j) when considering successive

decoding). Note that this is despite the fact that the ZF

approach was recently shown to be DoF optimal for the BC

under centralized CSIT setting [4].



B. Arbitrary CSIT Regime with K = 3

Developing a transmission scheme optimally exploiting the

available CSIT for any CSIT configuration is very challenging

due to the large number of parameters. Consequently, we focus

first on the 3-user case while finding the optimal DoF for any

number of users and any CSIT configuration is an ongoing

research.
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Fig. 1: Sum DoF as a function of α(1). The DoF achieved is

presented for exemplary values of α(2), while α(3) = 0.

Theorem 2. In the 3-user Network MIMO with distributed

CSIT and α(1) ≥ α(2) ≥ α(3), it holds that

DoFDCSI(α) ≥
{

1 + 2α(1) if α(1) ≤ 1
4

3 2α(1)−α(2)+2α(1)α(2)

4α(1)−α(2) if α(1) ≥ 1
4 .

(9)

Proof. The detailed description of the scheme can be found

in the extended version [12].

The DoF achieved with the proposed scheme is illustrated

in Fig. 1. For α(1) ≤ 1
4 , the transmission occurs in the

weak CSIT regime, and the proposed scheme coincides with

the transmission scheme for the weak CSIT, as described in

Section V. Note that the achieved DoF does not depend on

α(3). This is coherent with the results in [5] and follows from

the use of Active-Passive (AP-) ZF.

The proposed D-CSI robust transmission schemes rely on

several ingredients which are (i) AP-ZF precoding, (ii) in-

terference quantization, and (iii) superposition coding. As

a necessary preliminary, we start by extending the AP-ZF

precoding scheme introduced in [5] to more than one passive

TX.

IV. PRELIMINARY: ACTIVE-PASSIVE ZERO FORCING

Let us consider a setting in which K single-antenna TXs

aim to send K − n symbols to serve one user (e.g., a user

having K − n antennas) while zero-forcing interference to

n other single-antenna users, where n < K. The channel from

the K TXs to the interfered users is denoted by H ∈ C
n×K .

We divide the TXs between so-called active TXs and passive

TXs and we consider without loss of generality that the first

n TXs are the active TXs while the remaining K−n TXs are

the passive ones.

We define the active channel as the channel coefficients

from the active TXs, denoted by HA ∈ C
n×n, and the passive

channel as the channel coefficients from the passive TXs,

denoted by HP ∈ C
n×(K−n), such that

H =
[
HA HP

]
. (10)

Turning to the CSIT configuration, we assume that an esti-

mate Ĥ
(j) ∈ C

n×K is available at TX j, for j ∈ {1, . . . ,K}.

We define the estimated active channel Ĥ
(j)
A ∈ C

n×n and the

estimated passive channel Ĥ
(j)
P ∈ C

n×(K−n) similarly such

that

Ĥ
(j) =

[

Ĥ
(j)
A Ĥ

(j)
P

]

. (11)

Turning to the computation of the precoder at TX j,

the AP-ZF precoder computed at TX j is then denoted by

T
APZF(j) ∈ C

K×K−n. The part of the precoder which

should be implemented at the active TXs is denoted by

λAPZF
T

A(j) ∈ C
n×K−n, where λAPZF is used to satisfy an

average sum power constraint (see its exact value in (15)),

and is called the active precoder (computed at TX j) while

the part of the precoder which should be implemented at the

passive TXs is denoted by λAPZF
T

P ∈ C
(K−n)×(K−n) and

is called the passive precoder. It then holds that

T
APZF(j) = λAPZF

[
T

A(j)

T
P

]

. (12)

The precoder TP is arbitrarily chosen as any full rank matrix

known to all TXs while the precoder TA(j) is computed as

T
A(j)=−

(

(Ĥ
(j)
A )HĤ

(j)
A +

1

P
In

)−1

(Ĥ
(j)
A )HĤ

(j)
P T

P (13)

where P is the total available average transmit power. Note

that the precoder TP is a CSI independent precoder which is

commonly agreed upon by all TXs beforehand.

Remark 2. The interpretation of (13) is as follows: The passive

TXs transmit with constant coefficients and the active TXs

adapt their transmission strategy to eliminate the interferences

generated. To gain more intuition, we refer the reader to the

easier case with a single passive TX in [5]

The effective AP-ZF precoder is implemented in a dis-

tributed manner and is denoted by T
APZF ∈ C

K×K−n. It

is a composite version of the precoders computed at each TX

and is hence given by

T
APZF , λAPZF








eH1 T
A(1)

...

eHnT
A(n)

TP







. (14)



where ei ∈ C
n for i ∈ {1, . . . , n} is the ith row of the

identity In and where the normalization coefficient λAPZF is

chosen as

λAPZF ,

√
P

E

[∥
∥
∥
∥

[

−
(
H

H
AHA + 1

P
In

)−1
H

H
AHPT

P

T
P

]∥
∥
∥
∥
F

] .

(15)

This normalization constant λAPZF requires only statistical

CSI and can hence be applied at every TX. It ensures that an

average sum power constraint is fulfilled, i.e., that

E
[
‖TAPZF‖2F

]
= P. (16)

The key following properties can be easily shown from the

precoder design and their proofs are relegated to the extended

version [12].

Lemma 1. With perfect channel knowledge at all (active) TXs,

the AP-ZF precoder with n active TXs and K−n passive TXs

satisfies

HT
APZF⋆ −−−−→

P→∞
0n×(K−n) (17)

where T
APZF⋆ denotes the AP-ZF precoder based on perfect

CSIT and is given as

T
APZF⋆ , λAPZF

[
T

A⋆

T
P

]

. (18)

Lemma 2. The AP-ZF precoder with n active TXs and K−n
passive TXs is of rank K − n.

Lemma 3. If Ĥ
(j) , H +

√
P−α(j)

∆
(j) for α(j) ∈ [0, 1]

with ∆
(j) a random variable with zero mean and bounded

covariance matrix, it then holds that

∥
∥
∥
∥
H

T
APZF

‖TAPZF‖F

∥
∥
∥
∥

2

F

≤̇ P−minj∈{1,...,n} α(j)

. (19)

The interpretation behind this result is that the interference

attenuation of AP-ZF precoding is only limited by the CSIT

accuracy at the active TXs, and does not depend on the CSIT

accuracy at the passive TXs.

V. WEAK CSIT REGIME: ACHIEVABLE SCHEME

We now consider the weak CSIT regime and we describe

the transmission scheme achieving the DoF expression given

in Theorem 1. We then verify that this transmission scheme

achieves the claimed DoF. Without loss of generality, we

assume that the TX with the best CSIT accuracy is TX 1,

i.e., that α(1) = maxj∈{1,...,K} α
(j).

A. Encoding

The proposed transmission scheme consists in a single

channel use during which the transmitted signal x ∈ C
K is

x =
K∑

i=1

T
APZF
i si +

[
1

0K−1

]

s0 (20)

where

RX 1

AP ZF signals
P 

RX 2 RX 3

BC signal

Fig. 2: Illustration of the transmission scheme for the weak

CSIT regime in the case of K = 3 users.

• si ∈ C
K−1 is a vector containing data symbols hav-

ing each a rate of α(1) log2(P ) bits and the power

E[|{si}ℓ|2] = Pα(1)

/(K(K − 1)), ∀ℓ ∈ 1, . . . ,K − 1.

T
APZF
i is the AP-ZF precoder described in Section IV,

with the interference being zero-forced at a single user,

user i+ 1 where i+ 1 = i mod [K] + 1, and with TX 1
being the only active TX.

• s0 ∈ C is a data symbol of rate (1 − α(1)) log2(P ) bits

and is broadcast with the power P − Pα(1)

from TX 1.

Upon omitting the signals received at the noise floor, the

received signal at user i is

yi=hH
i

[
1

0K−1

]

s0
︸ ︷︷ ︸

∼P

+hH
i T

APZF
i si

︸ ︷︷ ︸

∼Pα(1)

+hH
i

K∑

k=1,k 6=i,k 6=i−1

T
APZF
k sk

︸ ︷︷ ︸

∼(K−2)Pα(1)

(21)

where we have written under the bracket the power scaling to

help the reader. The term hH
i T

APZF
i−1

si−1 has been removed as

it was scaling in P 0 due to the attenuation by P−α(1)

through

AP-ZF with TX 1 being the only active TX, as shown in

Lemma 3. The scaling of the received signals are illustrated

in Fig. 2.

B. Interference Quantization

In fact, the broadcast data symbol s0 does not contain

only “fresh” new data symbol destinated to one user, but

also quantized side information, which once decoded at the

users, will be needed to decode the other data symbols. More

precisely, being the most informed user, TX 1 uses its locally

available CSI to compute the terms (ĥ
(1)
i )HTAPZF

k sk for

k 6= i, k 6= i− 1 which it then quantizes using α(1) log2(P )
bits for each term. Following well known results from rate-

distortion theory [14], the distortion noise then remains at the

noise floor as the SNR increases.

It can be seen from (21) that there are in total K(K − 2)
interference terms such that the total number of bits to transmit

is K(K − 2)α(1) log2(P ). In the weak interference regime, it

holds that K(K − 2)α(1) ≤ 1 − α(1). Hence, all these bits

can be transmitted through the broadcast data symbol s0 of

data rate (1− α(1)) log2(P ) bits. If the previous inequality is



strict, the quantized bits transmitted in s0 are completed with

information bits destined to any particular user.

C. Decoding and DoF Analysis

It remains to verify that this scheme leads to the claimed

DoF. Let us consider without loss of generality the decoding

at user 1 as the decoding at the other users will follow with a

circular permutation of the user’s indices.

Using successive decoding, the data symbol s0 is decoded

first, followed by s1. The data symbol s0 of rate of (1 −
α(1)) log2(P ) bits can be decoded with vanishing probability

of error as its SINR can be seen in (21) to scale in P 1−α(1)

.

Upon decoding s0, the quantized interference

(ĥ
(1)
1 )HTAPZF

k sk, k ∈ {2, . . . ,K − 1} are computed

(up to quantization noise) and exploited by user 1 for

interference cancellation. Yet, it remains to evaluate the

impact of the imperfect estimation at TX 1:

(ĥ
(1)
1 )HTAPZF

k sk =hH
1 T

APZF
k sk + P−α(1)

(δ
(1)
1 )HTAPZF

k sk
︸ ︷︷ ︸

∼P 0

(22)

It follows from (22) that subtracting the estimated interference

from the received signals can be done perfectly in terms of

DoF.

Remark 3. Note that this is possible only because the transmit

power is lower than Pα(1)

. It this is not the case, TX 1 is not

able to estimate the interference generated up to the noise

floor.

After having subtracted the quantized interference terms, the

remaining signal at user 1 is then (up to the noise floor)

y1 = hH
1 T

APZF
1 s1. (23)

The quantized interference terms (ĥ
(1)
i )HTAPZF

1 s1, i =
3, . . . ,K, which have been obtained through s0, are then used

to form a virtual received vector yv
1 ∈ C

K−1 equal to

yv
1 ,








hH
1

(ĥ
(1)
3 )H

...

(ĥ
(1)
K )H







T

APZF
1 s1. (24)

Each component of yv
1 has a SINR scaling in Pα(1)

and the

AP-ZF precoder is of rank K − 1 (See Lemma 2) such that

user 1 can decode its desired K − 1 data symbols, each with

the rate of α(1) log2(P ) bits.

In one channel use, (K−1)α(1) log2(P ) bits are transmitted

to each user and (1− α(1) −K(K − 2)α(1)) log2(P ) bits are

transmitted to any particular user through the data symbol s0.

Adding all the terms provides the desired DoF expression.

Remark 4. Interestingly, the above scheme builds on the prin-

ciple of interference quantization and retransmission, which

has already been exploited for the different context of precod-

ing with delayed CSIT (see e.g. [14], [15]). In contrast, the

distributed nature of the CSIT is exploited here such that the

interference terms are estimated and transmitted from the TX

having the most accurate CSIT, during the same channel use

in which the interference terms were generated.

VI. CONCLUSION

We have described a new D-CSIT robust transmission

schemes improving over the DoF achieved by conventional

precoding approaches when faced with distributed CSIT and

being even DoF-optimal over a certain “weak CSIT regime”.

We have then uncovered the surprising result that in that case,

the optimal DoF was the same as in a genie-aided CSIT con-

figuration where the most accurate channel estimate is made

available at all the TXs. The new scheme relies on several new

methods such as the estimation of the interference and their

retransmission from a single TX, and the AP-ZF precoding

with multiple passive TXs, which could certainly prove useful

to improve the DoF in other wireless configurations.
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