
Breaking the Gridlock of Spatial Correlation in
GPS-aided IEEE 802.11p-based Cooperative

Positioning
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Abstract—Spatial correlations found in vehicular mobility are
jeopardizing the precision level of Cooperative Positioning (CP)
for future Cooperative - Intelligent Transport System (C-ITS)
applications. Bayesian filters traditionally assume independence
of the measurement noise terms over space between different
vehicles and over time at each vehicle, whereas they are actually
correlated due to the local continuity of physical propagation
phenomena (e.g., shadowing, multipath. . . ) under highly con-
strained vehicular mobility. In this paper, we break this gridlock
by proposing an innovative data fusion framework capable of
mitigating these effects to maintain the positioning precision
level under severely correlated environments. We first illustrate
the dramatic impact of correlated noise affecting both GPS
and Vehicle-to-Vehicle (V2V) received power observations. Then
we propose a new generic data fusion framework based on
Particle Filter (PF) supporting three complementary methods
to decorrelate measurement noises in a globally asynchronous
context. Comparatively to conventional cooperative positioning,
simulations performed in canonical vehicular scenarios (highway,
urban canyon, tunnel) show that our proposed approach could
provide up to 60% precision improvement in correlated environ-
ments, while matching by less than 15–20% deviation an optimal
cooperative positioning scheme considered under independent
measurements.

Index Terms—Cooperative positioning, Correlated noise, Data
fusion, GPS, DSRC, IEEE 802.11p, ITS, VANET.

I. INTRODUCTION

GEO-LOCALIZATION is a critical requirement of future
Cooperative - Intelligent Transport Systems (C-ITS)

enabling advanced safety and traffic efficiency services. The
currently proposed C-ITS Basic Set of Applications (BSA) [1]
relies on the availability of the Global Navigation Satellite
System (GNSS), which provides a positioning precision on
the order of 3–10 meters in favorable conditions [2]. This
is obviously far from being sufficient for applications such
as for Road Hazard Warning (RHW), Vulnerable Road Users
(VRU) safety, Highly Autonomous Driving (HAD) or even
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platooning. The latter applications would indeed require a
sub-meter precision level (typically less than 0.5 m) in any
condition, which is not yet available with mass market GNSS
technologies (incl. Galileo) [1], [3].

Dedicated Short Range Communication (DSRC) (a.k.a.
IEEE 802.11p or ITS-G5), a vehicular-specific WiFi extension,
has been rapidly developing to enable wireless communi-
cations between vehicles (V2V), infrastructure (V2I), and
devices belonging to the Internet of Things (V2IoT). Each ve-
hicle periodically broadcasts, through Cooperative Awareness
Messages (CAMs) in Europe [4] or Basic Safety Messages
(BSMs) in the U.S. [5]1, its GPS-aided estimated position,
allowing neighboring vehicles to generate a cooperative sit-
uation awareness of their nearby traffic and thus, potential
danger. Such cooperative vehicular communications provide
a unique opportunity to enhance geo-localization through
Cooperative Positioning (CP) [1], [3], [6]–[9]. As illustrated
on Fig. 1, instead of considering only Road Side Units (RSUs)
as static anchors, CP integrates additional neighboring vehicles
as “virtual anchors”, using their periodically broadcast CAM
primarily to receive and fuse embedded GNSS data (raw or
refined), but also optionally, to measure range-dependent radio
metrics (e.g., Received Signal Strength Indicator (RSSI)) in
an opportunistic way. In comparison with non-cooperative
approaches, CP does not require any prior map containing
predefined anchor nodes’ locations but simply benefits from
other vehicles’ data and communications.

Despite the significant geo-localization improvements ex-
pected with CP (in particular in GPS denied environments),
the intrinsic mobile nature of both “virtual anchors” and vehic-
ular wireless channels makes that the indicated GNSS/GPS2

positions, as well as the received power over V2V links,
are still conditionally subject to strong errors and harmful
fading conditions respectively. Beyond, CP is also prone to
even more specific challenges. First of all, the transmission
intervals between consecutive CAMs are constrained by chan-
nel load conditions, leading to non-periodic transmission and
accordingly, to non synchronous data reception from “virtual
anchors”. If not appropriately addressed (e.g. [1], [6]), this
can lead to severe geo-localization errors. Another challenge
is related to restrictions in the application of the core fusion
filters when assuming that the GPS/RSSI readings integrated

1Due to equivalent roles played by CAMs and BSMs in our work, we will
only refer to CAMs for simplicity, without loss of generality.

2Due to equivalent challenges of any GNSS technology in our work, we will
interchangeably use GNSS and GPS for simplicity, without loss of generality.



as observations are affected by white error processes whereas
in practice, they are strongly correlated over both space and
time [1], [10]–[14]. Practically speaking, the spatial correlation
of observed measurement processes (and hence, their time
correlation under vehicles mobility) results from the conjunc-
tion of different factors triggered by constrained vehicular
mobility: GPS conditions (good or bad) may not change much
over multiple samples and between neighboring vehicles.
Similarly, the channel fading conditions (obstructed or not)
may not change much between two subsequent transmissions
of CAM (e.g. 100 ms) by neighboring vehicles. The direct
incorporation of correlated measurements into conventional
fusion filters then leads to inconsistent estimates with large
fluctuations [15], [16].

In this paper, we thus specifically aim at mitigating the
harmful effects of such spatial correlation phenomena with
an innovative cooperative positioning approach capable of
resynchronizing and decorrelating GPS/RSSI observations un-
der vehicular mobility. The main paper contributions can be
summarized as follows: (i) we provide concrete illustrations
of the impact of correlated GPS/RSSI data on state-of-the-art
CP performance in the vehicular Ad hoc NETwork (VANET)
context under steady-state mobility regimes; (ii) in a globally
asynchronous V2V context, we describe a new data fusion
framework coupling a particle filter (PF) with several decor-
relation mechanisms at both signal level (using empirical
measurement cross-correlations or forming differential mea-
surements relying on estimated velocities) and/or protocol
level (impacting Tx and/or Rx policies); (iii) we adapt typical
2-D GPS noise maps and 4-D V2V RSSI shadowing map
from [17] to model correlated observation noises for realistic
performance evaluation in our VANET context; (iv) based
on these models, we evaluate the proposed approaches in
three representative scenarios (i.e., urban canyon, tunnel, and
highway scenarios) based on Monte Carlo simulations.

The paper is organized as follows. In Section II, we de-
scribe the general background on GPS-aided IEEE 802.11p-
based CP. We then state the generic CP problem and stakes,
before introducing more specifically the correlated observation
models and related issues in Section III. Next, in Section IV,
methods alleviating correlation effects are suggested and in-
tegrated in a modified particle filter dedicated to fusion-
based CP in GPS-aided VANETs. Simulation results illustrate
the achievable performance gains in comparison with more
conventional CP approaches in Section V. Finally, Section VI
concludes the paper and provides an outlook on future works.

II. BACKGROUND ON GPS-AIDED IEEE 802.11P-BASED
COOPERATIVE POSITIONING

A. Cooperative Communications in VANETs

In the field of vehicular communications, cooperation relates
to vehicles regularly exchanging their sampled status (e.g.,
timestamp, GNSS position, motion state. . . ) and attributes
(e.g., specifications of the vehicle) via DSRC to create and
maintain cooperative awareness [3]–[5] (see Fig.1). DSRC3 is

3DSRC shall not be confused with CEN DSRC in Europe, which refers to
a dedicated communication solution for toll roads.

Fig. 1. Cooperative cars periodically exchange CAM messages to maintain
awareness of each other and to support distributed CP. Both the transmission
time @ti and the received power level RSSIi depend on the transmission
car i (and thus, on the V2V link).

a vehicular-specific extension of the WiFi 802.11a capable of
operating on a 10 MHz dedicated frequency band at 5.9 GHz,
outside the context of a Basic Service Set (BSS). These status
and attributes are encapsulated in CAMs and scheduled for
transmissions by a congestion control mechanism according
to vehicles dynamics and channel conditions. As illustrated in
Fig.1, an “ego” car may therefore benefit from its neighbors,
which have sent their CAMs at different times instants (@ti).
To be beneficial for multilateration purposes (i.e. measuring
the relative distances between the different neighbors), these
messages would need to be roughly received at similar times,
and the range-dependent information uniquely extracted from
the CAM RSSI readings at the “ego” vehicle.

Congestion control mechanisms are intended to provide
dependable vehicular communications for safety-critical ap-
plications. Different mechanisms are defined in standards [4],
but adjusting the transmit power of CAM and the inter-
transmit time between two successive CAMs are the two
leading mechanisms. Both approaches are expected to lead
to major drawbacks to CP if not properly addressed by fusion
engines. First, when using RSSI readings as range-dependent
measurements, it is assumed that all “virtual anchors” are
transmitting at the same transmit power. Uncoordinated trans-
mit power adjustments lead to inconsistent range estimations
from RSSI readings. Second, by using CAM for RSSI readings
and GNSS data, it is assumed that CAM are received at the
“ego” vehicle in a roughly synchronous way (similar @t).
However, uncoordinated CAM inter-transmit times lead to
a time lag between the different anchor measures and to
asynchronous inputs to fusion engines. Jointly or separately,
these congestion control mechanisms lead to increasing rather
than reducing geo-localization errors.

In this paper, we address these challenges by assuming a
constant transmit power for all vehicles and by proposing a
fusion engine that enables CAM data re-synchronization.

B. Cooperative Positioning in VANETs

In the field of wireless localization, cooperation is generally
intended in an even more specific sense. Whereas so-called
non-cooperative schemes aim at geo-localizing mobile nodes
uniquely with respect to a set of fixed anchors at known
locations, CP solutions make use of neighboring nodes (mov-
ing or static) as additional “virtual anchors” [18], typically



through distributed message-passing approaches [19]. Such
CP schemes have been successfully applied to static Wireless
Sensor Networks (WSNs) or even Mobile Ad Hoc Networks
(MANET). However, due to the particular mobility patterns
and route constraints, frequent network topology fragmenta-
tion, short link life time (e.g., 1 second for vehicles traveling
in opposite directions), applying CP to VANETs still remains
challenging.

Considering non-cooperative positioning in the vehicular
context, static elements of the road infrastructure, such as Road
Side Units (RSUs) or LTE eNBs, are considered as anchors,
and vehicles independently estimate their locations through
classical multilateration (i.e., measuring the relative distances
between the anchors), range-free cell connectivity information
(possibly combined with dead-reckoning [20]), or even fin-
gerprinting (e.g., possibly assisted by particle filtering [21]).
However these solutions strongly depend on the density, the
availability and the relative geometry of the road infrastructure.
For instance, as illustrated on Fig. 1, one single V2I link with
respect to a RSU would be insufficient to get the “ego” vehicle
positioned through standard multilateration with no ambiguity.

On the contrary, CP allows to complement these static an-
chors with neighboring vehicles to integrate additional position
awareness and opportunistic V2V radio link measurements [3],
[7], [16], [19], as shown on Fig. 1. For instance, the authors
in [9] propose a distributed tracking algorithm relying on
a standard Kalman Filter (KF), which fuses GPS position
estimates with nearby anchor nodes’ positions and V2V range
measurements (assumed to be perfect) after detecting harsh
GPS conditions. As another example, the cooperative solution
in [8] is based on a dissimilarity matrix composed of V2V
RSSI measurements. The latter are injected as observations
into an Extended KF (EKF), while using GPS estimates for
initialization purposes only. In [7], the V2V measurements
matrix and the GPS position are jointly incorporated as
observations in the filter. In [6], GPS positions and V2V
RSSI measurements are also combined within a global EKF
framework, while compensating for asynchronous input data.

Most of the above cooperative schemes still rely on too
simplistic or optimistic assumptions in terms of propagation
(e.g., regarding V2V RSSI shadowing dispersion and 2D cor-
relation, GPS error correlation. . . ), network connectivity (e.g.,
transmission range, instantaneous number of available neigh-
bors. . . ) and/or protocol constraints (e.g., asynchronous trans-
missions, power and rate control. . . ). Moreover the achieved
level of accuracy (equivalent to that of nominal GPS in
favorable operating conditions) is still largely insufficient
for the foreseen safety-oriented applications. In a globally
asynchronous context, the approach described in this paper
thus aims at fusing local GPS information (whenever avail-
able) with both measured RSSIs with respect to neighboring
vehicles (i.e., out of their received CAMs) and GPS position
estimates provided by these neighbors (i.e, resulting from their
own fusion processes), while considering jointly realistic prop-
agation, mobility and protocol constraints. The combination
of V2V and GPS information in distributed contexts raises
unprecedented challenges that require in-depth understanding
and careful assessment, as presented in the next subsection.

Fig. 2. Possible shadowing autocorrelations/cross-correlations on/between
V2V link(s) having dual mobility in VANETs.

C. Correlated Position Errors and Fading

In GPS-aided VANETs, GPS positions and V2V power
measurements (or RSSI readings) used for positioning are
measured over noisy propagation channels. Generally speak-
ing, these noises are both time-variant and space-variant under
typical vehicular mobility (on highways or in urban areas).

On the one hand, time-variant noise can be filtered out by
averaging the signal in time or frequency domains (e.g. small-
scale fading in RSSI measurements) [10] or using correction
models at receivers and information broadcast by transmitters
(GPS satellite clock errors or atmospheric errors) [11].

On the other hand, location-dependent measurements are
more challenging as they are significantly impacted by the
physical arrangement of surrounding objects in the environ-
ment (e.g., buildings, trees, hills. . . ) [22]. More specifically,
the spatial correlation of observed measurement processes and
thus, their time correlation under car mobility, partly results
from the local continuity of electromagnetic interactions in
the environment. For GPS position estimates and V2V range-
dependent power respectively, multipath (often dominating the
error budgets) [11] and shadowing (i.e., large-scale or slow
fading) [10] are major sources of spatial correlation, espe-
cially under constrained mobility patterns and/or constrained
acquisition time intervals.

As an example, a GPS receiver can experience very large
2-D positioning errors in a narrow street, due to its limited
visibility to satellites (i.e., few available satellites causing poor
geometric dilution of precision, biased pseudo-range measure-
ments due to GPS signal diffraction on building edges...).
Intuitively, while moving along the street, these GPS errors
will remain of the same order of magnitude for a few tens
or even hundreds of meters and as such, will be spatially
correlated. The extent of such GPS spatial correlation depends
on the environment. In urban canyons, both the number of
available satellites and the multipath propagation conditions
shall remain unchanged over a distance equivalent to the
width of a typical building. In more open-sky environments
(e.g., on highways), these conditions remain unchanged over
much larger distances. Generally speaking and regardless of
the environment, this spatial correlation is always present in
VANETs and definitely impact the use of GPS data.

Spatial correlation also exists for V2V propagation channels
(i.e., in terms of slow fading characteristics). They may be
intuitively explained by both the relative network topology
and the local link obstruction conditions (e.g., generated by
the transmitting/receiving cars’ bodies themselves, by non-



Fig. 3. “Ego” car receiving asynchronous CAMs from 1-Hop “virtual
anchors” to perform distributed CP. The dispersion of CP location estimates
(i.e. through GPS+DSRC) is expected to be lower than that of non-CP
estimates (i.e., standalone GPS).

cooperative trucks, by pieces of urban furniture. . . ), which
evolve slower under constrained mobility patterns (e.g., pla-
tooning on highways, queuing vehicles during rush hours in
urban canyons. . . ) than the time intervals between successive
transmissions (i.e., 1–10 Hz [4], [5]). Regardless of the envi-
ronment, spatial correlations in V2V propagation channels thus
impact all the vehicles involved in range-dependent informa-
tion estimation (i.e., based on RSSI readings). An illustration
is provided on Fig. 2. Considering the V2V link between the
“ego” car and “car 1”, successive RSSI readings are auto-
correlated if the inter-transmit times between packets are larger
than the rate change of their mobility patterns and fading
conditions. Similarly, considering the two V2V links between
“ego” car and “car 1” and “car 2”, successive RSSI readings
are cross-correlated if the inter-transmit times between packets
are larger than the rate change between the mobility patterns of
“car 1” and “car 2”. Depicted on Fig. 2 for V2V measurements
(RSSI readings), cross-correlations and autocorrelation also
impact the use of GPS information at the “ego” car. Successive
CAM transmissions of the GPS information from “car 1” and
from “car 2” will indeed integrate also GPS spatial correlation
(as previously described) if their inter-transmit time is higher
than the time to move over the GPS decorrelation distance.

Summarizing, widely observed and reported in GNSS and
V2V fading literature [1], [10]–[14], [23], spatial correlations
are yet hardly addressed in previous works dealing with
distributed and/or cooperative positioning in the vehicular con-
text. It is however essential to consider a realistic observation
model with correlated noises (on both GPS and V2V RSSI
observation ingredients) in order to avoid producing biased
and/or unreliable results while assessing CP performance.

III. PROBLEM FORMULATION

A. Generic Cooperative Positioning

We consider here a set of cooperative GPS-equipped vehi-
cles exchanging CAMs over a typical DSRC technology. The
goal of an “ego” vehicle is to infer its position (as part of its
so-called “state” in the following) based on its own estimated
GPS position, on V2V received signal strengths with respect
to 1-hop neighbors (measured out of incoming CAMs), and
on imperfect state information from these neighbors, viewed

Fig. 4. Example of the space-time schematic managed by the “ego” i whose
neighbors are vehicle j and l. Due to asynchronous estimates, the “ego” i
needs to perform prediction of received information at its time of interest ti,k .

as “virtual anchors” (i.e., estimated locations and their related
uncertainties, encapsulated in the CAMs). Fig. 3 illustrates
this CP concept. We do not consider V2I communications
here to assist positioning, since we provide a generic problem
formulation for all GPS-aided cooperative objects. The use of
RSUs is considered as a special but simpler case of the generic
problem formulation.

In order to perform CP in pure VANET contexts, the
following challenges must be overcome. First, distributed data
processing (local position estimation, CAM trigger. . . ) induces
event-driven CAM transmissions and accordingly, RSSI mea-
surements too. Hence on the receiver side, the aggregation of
asynchronous data (see Fig. 3) makes the whole information
misaligned or outdated and thus useless to CP, unless a careful
prediction scheme is employed. Second, as already pointed
out, as the efficiency of Bayesian filters relies mostly on the
assumption of white measurement, spatial correlation effects
causing both spatial and temporal correlated GPS positions
and RSSI readings yield inconsistent and inaccurate fusion
results [1], [12].

B. Filtering Model including Correlated Observations

The mobility model is at the core of any tracking problem,
from which many different model-based filtering techniques
can be applied. It is generally usual to consider models that
are linear and non-linear for state and observation dynamics
respectively [24]:

θi,k+1 = Fiθi,k + fi,k + Giwi,k, (1a)
zi,k = h(θi,k) + ni,k, (1b)

where θi,k is the state vector of vehicle i collecting the
components of interest for the system (e.g., position, velocity,
heading,. . . ) at its local discrete time k4, Fi the state
transition matrix, fi the control inputs (e.g., throttle settings,
braking forces), Gi the matrix that applies the effects of
each noise component in the process noise vector wi,k,
h(θi,k) the transformation matrix that maps the state vector

4Due to asynchronously sampled time instants, the index k is different from
one vehicle to others. For notation brevity, the subscript indicating the “ego”
vehicle is deliberately omitted hereafter.



parameters θi,k into the measurement/observation zi,k, which
is corrupted by a measurement noise term ni,k.

In the vehicular context, a stochastic mobility model such
as the Gauss-Markov prediction model, where the predicted 2-
D velocity (at a discrete instance) is determined based on its
previous sample and a Gaussian independent and identically
distributed (i.i.d) process wi,k, may be applied into (1a) [25].
However, the measurement noise ni,k is commonly correlated
and so is the measurement zi,k, which will be analyzed and
modeled hereafter.

Generally speaking, the GPS positions of different vehi-
cles are collected asynchronously leading to asynchronous
enhanced position estimates (i.e., after filtering/fusion), as
shown in Fig. 4. For ease of notations, we consider a global
timeline divided into time windows indexed by k so that all
the events of position estimates occurring within this time slot
granularity share the same index k (See Fig. 4). Throughout
this paper, we will use the notations in Table I, some of them
being also illustrated in Fig. 4.

Given all the available measurements Zki , the goal of each
vehicle is to track its own state (i.e., Θk

i ), as well as to build
and update a local dynamic map (LDM) of its immediate
neighbors’ locations (i.e., {Θki

j }, j ∈
⋃
kNi,k−1:k).

1) GPS Absolute Position: The 2-D position xi,k is first
determined by a GPS receiver and the corresponding measure-
ment zGPS

i,k = (zxi,k, z
y
i,k)† is contaminated by additive noise

nGPS
i,k = (nxi,k, n

y
i,k)†, as follows:

zxi,k = xi,k + nxi,k, zyi,k = yi,k + nyi,k. (2)

The latter errors affecting 2-D coordinates, nxi,k and nyi,k,
are commonly supposed to be i.i.d centered Gaussian like
in [6], [8], [9], for the sake of simplicity. However, as already
mentioned, this i.i.d assumption is too optimistic due to the
spatial correlation between observations successively collected
by a single moving GPS receiver (autocorrelation) and/or
between simultaneous observations at nearby receivers (cross-
correlation).

Motivated by the common idea of modeling the spatial
correlation of shadowing with the exponentially decreasing
autocorrelation function (ACF) (Gudmundson’s model) [13],
we adapt it for GPS residual errors too. This is a fairly
reasonable model since its ACF fits well the first order Gauss-
Markov process recommended by [26] to model GPS errors.
More particularly, this yields:

R
(·)
GPS(τ) =

(
σ

(·)
GPS

)2

r
(·)
GPS(τ) =

(
σ

(·)
GPS

)2

exp

(
−v |τ | log 2

d
(·)
cor

)
,

(3)
where (·) can be either x- or y-coordinate, σ(·)

GPS the standard
deviation of residual noise in one direction, v the mobile
speed, τ the time lag between measurements, and finally d(·)

cor

the equivalent correlation distance at which the corresponding
normalized ACF is equal to 50%. These correlation distances
are of critical importance and can be determined by a prior
calibration procedure [10].

To model spatially correlated GPS error components
n(·)(x), with x = (x, y)

† indicating 2-D GPS receiver’s

position, whose ACF has the exponential decay as in (3), the
2-D correlated GPS error map n̂(·)(x) can be approximated
by generating a finite sum of sinusoids (SOS) (e.g., 100)
whose periodicity is dependent on the GPS receiver’s x- and
y-coordinates, as presented in [27]. It is worth noticing that
these two spatially correlated GPS errors affecting x- and y-
coordinates are generated independently in the present paper
for simplicity. This is however compliant with the remark that
strong spatial correlation effects usually occur along one single
dimension in typical vehicular scenarios (e.g., along a street
in urban canyons).

2) V2V Received Power: The RSSI measurements per-
formed out of received CAMs can be modeled as follows:

zj→i = P (d0)− 10np log10

(
‖xi − xj‖

d0

)
+ sj→i , (4)

where P (d0) [dBm] is the average received power at a
reference distance d0 = 1 m, np the path loss exponent, ‖·‖
the Euclidean distance, and finally sj→i , a random shadowing
term that is centered Gaussian with standard deviation σSh,
and usually correlated in space [10], [12]. Again, while using
RSSI measurements in the wireless localization context, it is
common to remove small-scale fading effects by averaging in
either time or frequency domain first [28].

Note that, as a preliminary investigation step, we also
focus herein on Line of Sight (LoS) situations. This choice
is first motivated by the fact that we are mostly interested
in evaluating canonical scenarios under regular steady-state
mobility over straight portions of tracks, where correlation
effects are more frankly observable and likely more penalizing
(See Sec. V). We thus exclude obstructions caused by build-
ings [29], [30], which occur typically in urban intersection
scenarios and are strongly dependent on the buildings kind,
size and number. We also discard deliberately mobile Non
Line of Sight (NLoS) situations caused by moving cars or
trucks (e.g., [31], [32]) since CP is selective and deliberately
restricted to the closet ring of neighboring vehicles like in [6],
[33], hence limiting drastically the probability of incorporating
mobile NLoS observations in the fusion filter.

The correlated V2V RSSI shadowing properties are again
modeled by an exponential ACF [13]:

RSh(τ) = σ2
ShrSh(τ) = σ2

Sh exp

(
−v |τ | log 2

dSh
cor

)
, (5)

where, similarly to (3), v indicates the speed of the vehicle,
τ the time lag, and dSh

cor the correlation distance at which the
shadowing effect is half of its maximum value.
Gudmundson’s model was originally proposed to predict shad-
owing correlations in cellular networks, that is, for radio links
between base stations and mobile stations [13]. Accordingly,
in the vehicular context, it could be applied as it is uniquely for
links with common end points (e.g., V2I links) but not for links
involving two mobile extremities (i.e., V2V links). In other
words, a suitable shadowing model dedicated for V2V links
has to account for the mobility of both end points and thus, lies
beyond the scope of Gudmundson’s model. To cope with this
problem, an extension of the previous model i.e., the model
of Wang et al. [17], which generalizes the setting of V2V



TABLE I
MATHEMATICAL NOTATIONS USED IN THE PAPER

Notation Description

ti,k Vehicle i’s sampling instant according to its estimation timeline (e.g., GPS sampling instants).
xi,k = (xi,k, yi,k)† Vehicle i’s 2-D position at time ti,k .
vi,k = (vxi,k, v

y
i,k)† Vehicle i’s 2-D velocity at time ti,k .

θi,k = (xi,k,vi,k)† Vehicle i’s state vector at time ti,k .
θj,ki

Vehicle j’s state vector at vehicle i’s sampling instant ti,k . If j ≡ i, θj,ki
≡ θi,k .

Θk
i , Θ

ki
j Sets of all states θi,k , θj,ki

up to (and including) time ti,k respectively.
tj,k∗

i
Vehicle j’s latest sampling instant seen by vehicle i at time ti,k . If j ≡ i, tj,k∗

i
≡ ti,k−1.

θj,k∗
i

Vehicle j’s state vector at time tj,k∗
i

. For i ≡ j, θj,k∗
i
≡ θi,k−1 (at ti,k−1).

Ni,k−1:k Set of vehicle i’s neighbors in its communication range rmax in the time interval
[
ti,k−1, ti,k

)
.

Si,k ⊂ Ni,k−1:k Set of vehicle i’s reference nodes whose CAMs are selected to feed its fusion engine.
θref,i,k = {θj,ki

}j∈Si,k Aggregate state vector of vehicle i’s |Si,k| reference nodes at time ti,k (synchronized state).

θref,i,k∗ = {θj,k∗
i
}j∈Si,k Aggregate state vector of vehicle i’s |Si,k| reference nodes (asynchronous state).

zGPS
i,k = (zxi,k, z

y
i,k)† Vehicle i’s 2-D GPS position at time ti,k .

zj→i,k Approximated/extrapolated RSSI values at exact filtering time ti,k under some circumstances.
zref→
i,k = {zj→i,k }j∈Si,k Set of vehicle i’s RSSI measurements to its reference nodes Si,k at time ti,k .

zi,k Vehicle i’s observation vector at time ti,k (i.e., zGPS
i,k and/or zref→

i,k ).
Zk

i Set of all vehicle i’s observations up to (and including) time ti,k .

Z
k∗i
j Set of all vehicle j’s observations up to (and including) time tj,k∗

i
.

Z
ki
ref = {Zk∗i

j }j∈Si,k Set of all observations of vehicle i’s reference nodes up to (and including) time tj,k∗
i

, j ∈ Si,k .

links with dual mobility, is chosen to model the correlated
shadowing map in this paper. Based on the assumption that the
displacements of the two mobile nodes introduce independent
but equivalent contributions onto correlation coefficients, the
normalized joint ACF when both the Tx and the Rx are
in motion can be approximated by the product of the two
normalized ACFs when either the Tx or the Rx moves [17],
as follows:

RSh(∆xt,∆xr) = σ2
ShrSh(∆xt,∆xr)

= σ2
ShrSh(∆xt, 0)rSh(0,∆xr)

= σ2
Sh exp

(
−‖∆xt‖

dSh
cor

log 2

)
exp

(
−‖∆xr‖

dSh
cor

log 2

)
= σ2

Sh exp

(
−vt + vr

dSh
cor

τ log 2

)
= σ2

ShrSh(τ) = RSh(τ),

(6)

where ∆xt = (∆xt,∆yt)
† and ∆xr = (∆xr,∆yr)

† represent
the 2-D displacements of the Tx and the Rx respectively within
a time interval τ .
The correlation coefficient RSh can also be represented as a
function of the time lag τ given the knowledge of Tx’s and
Rx’s speeds i.e., vt and vr, respectively. Since the spatial joint
correlation property of the V2V shadowing is characterized,
given both Tx’s and Rx’s 2-D locations as inputs variables
(i.e., xt = (xt, yt)

† and xr = (xr, yr)
† respectively), we

can simply generate a 4-D spatially correlated shadowing map
ŝ(xt,xr) for mobile transceivers by using the SOS-based joint
shadowing model in [17]. From (6), one can notice that the
joint ACF is now affected by mobility on both extremities of
the link, in compliance with generic V2V shadowing needs.

IV. MITIGATION OF OBSERVATION NOISE CORRELATIONS

A. Signal Level Mitigation

1) Estimation of Cross-Measurement Correlations: This
technique relies on the intuition that the knowledge of cross-

correlations between the components of the measurement
vector provides relevant information to CP [14]. Recall that,
although the x-to-y correlation in GPS position is commonly
assumed to be null, the cross-correlations between links’
fading measurements are accounted in the 4-D shadowing
map and can be determined. More particularly, an “ego”
vehicle can infer from its “ego” position and the constellation
of its “virtual anchors” the correlations between links’ fad-
ing measurements. From the aforementioned 4-D correlated
shadowing model, we therefore derive the cross-correlation
between two separate links a = (i→ j) and b = (l → m) as
follows:

RSh(a, b) = σ2
Sh exp

(
−‖xi − xl‖+ ‖xj − xm‖

dSh
cor

log 2

)
,

(7)
where ‖xi − xl‖ and ‖xj − xm‖ are the Euclidean distances
between the transmitters i, l and between the receivers j, m
respectively.

For illustration, consider a simplified example where the
“ego” car i moving at speed vi collects three asynchronous
RSSI readings with respect to the three neighbors 1, 2,
and 3 during the time interval ∆T (e.g., every 100 ms or
equivalently, at the fusion rate of 10 Hz). The covariance
matrix for the shadowing experienced over these three links is
thus inferred from (7) as:

RSh(1, 2, 3→ i)

=

 σ2
Sh RSh(1, 2→ i) RSh(1, 3→ i)

RSh(2, 1→ i) σ2
Sh RSh(2, 3→ i)

RSh(3, 1→ i) RSh(3, 2→ i) σ2
Sh

 ,
(8)

with

RSh(j, l→ i) = σ2
Sh exp

(
−‖xj − xl‖+ vi|tj − tl|

dSh
cor

log 2

)
,

j, l ∈ {1, 2, 3},
(9)



where tj and tl represent the time instants at which vehicle i
receives the CAMs from its neighbors j and l, respectively.
Note that (9) is deduced after applying (7) to a pair of links
that has a common end point (i.e., “ego” vehicle i). As
vehicle i collects data while moving, cross-link correlation
depends on the traveling distance between two corresponding
CAMs. Hence, this distance varies from one pair of links
to the others. In practice, the true positions (e.g., xj , xl
in (7)) cannot be perfectly known. Accordingly, a possible
and reasonable approximation R̂Sh(j, l → i), j, l ∈ {1, 2, 3}
leading to R̂Sh(1, 2, 3 → i) can be estimated as a function
of the estimated positions x̂j , x̂l, j, l ∈ {1, 2, 3}, which
are included in/derived from the received CAM payloads in
this example. In practice, when the “ego” vehicle has more
reference neighbors, the generalization is straightforward.

2) Differential Measurement (DM): In the literature, there
exists a couple of techniques to deal with correlated/colored
observation noise. One first approach is to augment the state
with the observation noise components [12], [15]. However,
this causes a singular measurement noise covariance, which of-
ten results in numerical problems [15]. Hence, we concentrate
in our work on the second option, referred to as differential
measurement (DM). As suggested by its name, the key idea
is to whiten the noise by subtracting the correlated part.
This problem is solved by building a noise prediction model
(from its correlation properties). Being both characterized
by the exponential ACF, GPS residual error and shadowing
can be predicted by a Gauss-Markov model. In addition, the
most dominant mobility pattern in the vehicular context is
platooning-like when vehicles move in groups (coordinated
or not). Accordingly, their velocities become highly correlated
and thus, the memory levels in the prediction model are almost
time-invariant in first approximation5. For the GPS x- and y-
residual errors nxi,k and nyi,k respectively, this yields:

nxi,k = λxGPSn
x
i,k−1 + ñxi,k, nyi,k = λyGPSn

y
i,k−1 + ñyi,k, (10)

and for the shadow fading of the link (j → i), denoted by
sj→i,k , this leads to:

sj→i,k = λShs
j→
i,k−1 + s̃j→i,k , (11)

where ñxi,k, ñyi,k, and s̃j→i,k are zero mean white Gaussian
processes with little variances of (1 − (λxGPS)2)(σxGPS)2,
(1− (λyGPS)2)(σyGPS)2, and (1− λ2

Sh)σ2
Sh respectively.

The memory levels are computed by λxGPS ≈
exp (−vi∆T/dxcor), λyGPS ≈ exp (−vi∆T/dycor), and
λSh ≈ exp

(
−(vi + vj)∆T/d

Sh
cor

)
≈ exp

(
−2vi∆T/d

Sh
cor

)
6

where ∆T is the measurement sampling period, vj and vi the
asymptotic mean speeds of the Tx j and the Rx i respectively.
In the time interval ∆T till the next fusion time k, the “ego”

5The technique is not limited to highly correlated mobility. In a general
case, the memory levels become time-variant i.e., depending on the last known
speeds of the participants, leading to prediction noises that are statistically
independent but not identically distributed (i.e., varying standard deviation).

6We consider here the fusion/filter rate equal to the GPS rate i.e., 1/∆T ,
therefore, only vehicles that send CAMs at this rate (or higher) can become
“virtual anchors”. If so, the time interval between two consecutive received
CAMs/RSSI readings is more or less ∆T due to random CAM generation
time and/or congestion control.

car i communicates with its set Ni,k−1:k of “virtual” anchors
whose cardinality is denoted by ¯̄Ni,k. Hence, the prediction
model in the vector form is:

ni,k = λni,k−1 + ñi,k, (12)

where λ = diag(λxGPS, λ
y
GPS, . . . , λSh, . . .), λ : R ¯̄Ni,k+2 →

R ¯̄Ni,k+2 represents the diagonal memory matrix, ni,k =

(nxi,k, n
y
i,k, . . . , s

j→
i,k , . . .)

† ∈ R ¯̄Ni,k+2 the observation noise
vector, and finally ñi,k = (ñxi,k, ñ

y
i,k, . . . , s̃

j→
i,k , . . .)

† ∈
R ¯̄Ni,k+2 the whitened noise vector.
Now the auxiliary measurement z̃i,k can be expressed as:

z̃i,k = zi,k − λzi,k−1 = h̃ (θi,k,θref,ki) + ñi,k, (13)

with

h̃ (θi,k,θref,ki) = h (θi,k,θref,ki)− λh (θi,k−1,θref,ki−1) ,

and
ñi,k = ni,k − λni,k−1,

where θi,k ∈ Rnθ , θref,ki ∈ R ¯̄Ni,k×nθ are the state vector of
“ego” vehicle i and the aggregate state vector of its cooperative
neighbors as “virtual anchors” (i.e., the set Ni,k−1:k)
respectively, nθ the dimension of the state vector θi,k,
zi,k = (xi,k, yi,k, . . . , z

j→
i,k , . . .)

† ∈ R ¯̄Ni,k+2 the aggregate
measurement vector, h̃ : Rnθ × R ¯̄Ni,k×nθ → R ¯̄Ni,k+2 the
corresponding model vector for the new measurement vector
z̃i,k ∈ R ¯̄Ni,k+2, and ñi,k ∈ R ¯̄Ni,k+2 the prediction noise
vector, which is assumed white with a diagonal covariance
matrix but cross-correlated with the process noise [12], [15],
although this cross-correlation can be neglected at the price
of marginal accuracy degradation [12].

Accordingly, our new equivalent observation model can now
be written in the same form as (13). Note that contrarily to
our proposal, the initial differential measurement technique
relies on a new measurement z̃i,k = zi,k+1 − λzi,k, which
uses the future measurement zi,k+1 as equivalent to 1-lag
smoothing [15], thus likely yielding better accuracy gains.
Nevertheless, it is inappropriate for real-time tracking in high-
mobility contexts such as VANETs.

In addition, in realistic settings, the use of random CAM
transmissions introduces specific challenges that should be
accounted carefully. Even in case of periodic CAMs, the trans-
missions are still random due to a so-called CAM generation
time between the instant when CAM generation is triggered
and the instant when the CAM is delivered to the networking
transport layer [4], as illustrated in Fig. 5. Assume that the
CAMs are triggered right after estimating the position, it is
possible that the CAM is transmitted and thus received too
late with respect to the “ego” estimation time, causing i) a
lack of up-to-date CAMs (e.g., time window k − 1 in Fig. 5)
and ii) redundant CAMs afterwards (e.g., time window k, same
Fig.). In the former subcase, the solution is to simply exclude
this neighbor j from the list of “virtual” anchors since there
is no RSSI measurement to j available at the estimation time
(i.e., ti,k−1). In the latter subcase, it is reasonable to retain



Fig. 5. Impacts of asynchronous position estimates and CAM transmissions
on the information fusion.

the latest CAM and to drop the old CAM (e.g., the late CAM
in Fig. 5). We observe that this scenario usually occurs as a
result of late CAMs. Since there was no observation of j at
time ti,k−1, the DM can not be performed at time ti,k. In other
words, a late CAM can prevent its transmitter from becoming
a “virtual” anchor up to two “ego” estimates when adopting
the DM technique.

B. Adaptive Sampling Mitigation

Unlike signal level mitigation approaches, this protocol level
solution eliminates correlations by artificially decreasing the
cooperative fusion rate (in comparison with the available rate)
without manipulating the observations. For each source of
information (i.e., GPS positions and RSSI readings), as the
observations are correlated in space with a limited correlation
distance dcor, a vehicle moving over a distance D along a
straight line can temporally collect up to 1 + bD/ (γdcor)c
uncorrelated measurements where γ ≥ 1 measures the quality
of independent instantiations. This simple technique may not
be appropriate for GPS collection because GPS correlation dis-
tance can be up to hundreds of meters and GPS-assisted dead-
reckoning (DR) accumulates errors over time and distance [1].
However, it can be more beneficial for RSSIs due to the
short shadowing correlation distance in urban environments
(e.g. typically 10–20 m [12], [13], [17]). Moreover, recall that
in V2V channels, the decay of the correlation coefficient is
affected by both Tx and Rx’s displacements (see (6)), hence,
Rx vehicles can obtain uncorrelated measurements before
completing dSh

cor or experience more modest correlation effects
at the same distance. Thus, an option is to primarily rely on
the DM technique for the correlated GPS sources. The CP is
activated to improve the accuracy only if uncorrelated RSSIs
are available leading to reduced fusion rates (in comparison
with the standalone GPS-based filter rate). One advantage of
this hybrid scheme is to cut down on computations by avoiding
unnecessary fusion steps while maintaining an equivalent
tracking performance. Another benefit lies in the ability to
adopt the first proposed technique (i.e., estimation of cross-link
correlations) to minimize the effects of correlated noises or to
approach the standard filtering performance with i.i.d noises.
Finally, the scenario depicted in Fig. 5 (i.e., late CAMs) are
also interestingly supported with this technique. Remarkably,
the strategy (and thus, the impact) is similar to that of DM

techniques. In other words, one neighbor sending a late CAM
cannot be a reference vehicle.

In case of channel congestion, the ETSI Decentralized
Congestion Control (DCC) rules recommend to scale the
transmission rate down to 2 Hz, what is still higher than
the slowest proposed fusion rate (e.g., 1.43 Hz on Fig. 9).
Accordingly, we do not expect any negative impact from
channel congestion cases. We even claim that the system is
perfectly resilient to channel congestion situations, besides its
clear advantage in terms of overhead.

C. Integration into the Fusion Framework

1) Resynchronization of Cooperative Information: As avail-
able sources of information (i.e., data received from neigh-
boring vehicles and/or on-board device like GPS) are ad-
versely asynchronous in the high speed vehicular context,
data resynchronization is then naturally achieved via an early
prediction step applied to both “ego” and neighboring position
estimates [6]. Thus, in compliance with PF as core fusion
engine, the prediction step made by vehicle i can be simply
formulated as follows:

θ
(p)
j,ki
∼ p

(
θj,ki

∣∣∣θ(p)
j,k∗i

)
, w

(p)
j,ki|k∗i

= w
(p)
j,k∗i

,

j ∈ {i} ∪ Ni,k−1:k, p = 1, . . . , Np,

where {θ(p)
j,ki

, w
(p)
j,ki|k∗i

}Np

p=1 indicates the predicted Np-
particle cloud drawn from the dynamic/mobility model (i.e.,
from (1a)). Intuitively, it yields (See again Fig. 4):

θ
(p)
j,ki

= Fj(ti,k − tj,k∗i )θ
(p)
j,k∗i

+ fj(ti,k − tj,k∗i )+

Gj(ti,k − tj,k∗i )w
(p)
j,k , j ∈ {i} ∪ Nj,k−1:k, p = 1, . . . , Np.

So far, we have just re-synchronized both “ego” and
neighboring position estimates. But RSSI readings are also
not perfectly synchronous (e.g., the CAM broadcasts may
occur at different rates and/or they can be event-driven) with
estimation times. In case of highly correlated velocities (e.g.,
vehicles forming a platoon on a highway), relative distances
are expected to remain quite stable in the medium term, and
hence, so are the RSSI measurements (at least, in average) [6].
For this reason, not all the neighbors can become “virtual”
anchors for CP with respect to a given “ego” car. This paper
only concentrates on selecting neighboring vehicles that lead
to exploitable RSSIs at the fusion time (i.e., according to a
short-term stable V2V distance criterion). In most common
platooning cases, stable V2V distances between vehicles are
usually observable, leading to the possibility of exhaustive
cooperation.

2) Overall Fusion Implementation: As the observation
model of interest linking the state vector to the measurements
is non-linear here (e.g., See (4)), filtering strategies relying
on numerical approximations (e.g., PF) are expected to out-
perform that based on linear approximations (e.g., Extended
Kalman Filters) in terms of accuracy, at the price of higher

7Note that when employing decreased fusion rate the cross-link correlation
information (in terms of covariance matrix) helps to better characterize the
distribution of the measurement noise vector (i.e., p(z̄ref→

i,k |θ
(p)
i,k ,θ

(p)
ref,i,k)).



Algorithm 1 PF in CP engine (iteration k, “ego” vehicle i)
1: Collection of CAMs: Receive CAMs from the set Ni,k−1:k of the

neighbors, read the RSSI values, extract the neighboring particle clouds
{θ(p)

j,k∗i
, w

(p)
j,k∗i
}Np

p=1, j ∈ Ni,k−1:k .
2: Data Resynchronization: Perform prediction at the “ego” estimation

instance k (i.e., the global time ti,k)

θ
(p)
j,ki
∼ p

(
θj,ki

∣∣∣θ(p)
j,k∗i

)
, w

(p)
j,ki|k∗i

= w
(p)
j,k∗i

= 1/Np,

j ∈ {i} ∪ Ni,k−1:k, p = 1, . . . , Np,

build the LDM of all the neighbors as the first output

θ̂j,ki
≈

Np∑
p=1

w
(p)
j,ki|k∗i

θ
(p)
j,ki

=
1

Np

Np∑
p=1

θ
(p)
j,ki

, j ∈ Ni,k−1:k.

3: Mitigation of Noise Correlations: Select the subset Si,k ⊂ Ni,k−1:k

of appropriate links. Manipulate the measurements (and the correspond-
ing observation model)

z̄i,k =

[(
z̄GPS
i,k

)†
,
(
z̄ref→
i,k

)†]†

=



[(
z̃GPS
i,k

)†
,
(
z̃ref→
i,k

)†]†
, if differential measurement,[(

z̃GPS
i,k

)†
,−
]†

, if non-fusion instant k,[(
z̃GPS
i,k

)†
,
(
zref→
i,k

)†]†
, if fusion instant k,

where z̃GPS
i,k and z̃ref→

i,k are the differential 2-D GPS position and RSSI
vector respectively, zref→

i,k is the standard RSSI vector.
4: Observation Update: Calculate the new weights according to the

likelihood7 (by using the proposal distribution in (16))

w
(p)
i,k ∝ p

(
z̄i,k

∣∣∣θ(p)
i,k ,θ

(p)
ref,i,k

)
= p

(
z̄GPS
i,k

∣∣∣θ(p)
i,k

)
p
(
z̄ref→
i,k

∣∣∣θ(p)
i,k ,θ

(p)
ref,i,k

)
, p = 1, . . . , Np,

and normalize them to sum to unity. Then compute the approximate
mean as the second filter/fusion output

θ̂i,k ≈
Np∑
p=1

w
(p)
i,k θ

(p)
i,k .

5: Resampling
6: Broadcast

computational load [15], [24], [34]. However, in the vehicular
context, the relative extra-cost to supply adequate powerful
hardware and software capabilities looks still reasonable (com-
paring with the cost of the whole car). The key idea of PF is
to approximately represent the a posteriori density function8

by a set of random samples with associated weights and to
compute estimates based on these samples and weights [24],
[34]. Accordingly, we approximate the optimal solution:

θ̂i,k =

∫
θi,kp

(
θi,k,θref,i,k

∣∣Zki ,Zkiref

)
dθi,kdθref,i,k, (14)

by

θ̂i,k ≈
Np∑
p=1

w
(p)
i,k θ

(p)
i,k , (15)

8In our proof-of-concept validations, CAMs encapsulate the particles cloud
to account for local estimates uncertainty, what could result in prohibitive
overhead under current standard specifications. This issue, which does not
fall in the paper scope, has been investigated in [35] without contradicting
the first findings exposed herein.

where {θ(p)
i,k }

Np

p=1 is a set of particles (samples of the
state vector) with associated weights {w(p)

i,k }
Np

p=1, w(p)
i,k ∝

p(θ
(p)
i,k ,θ

(p)
ref,i,k|Zki ,Z

ki
ref)
/
q(θ

(p)
i,k ,θ

(p)
ref,i,k|θ

(p)
i,k−1,θ

(p)
ref,i,k∗ , zi,k)

with the (important) distribution q(·).
A classical and intuitive choice for computing these weights

involves the measurement likelihood function [24], [34]. It can
be solved by choosing the following distribution:

q
(
θi,k,θref,i,k

∣∣∣θ(p)
i,k−1,θ

(p)
ref,i,k∗ , zi,k

)
= p

(
θi,k

∣∣∣θ(p)
i,k−1

)
× p

(
θref,i,k

∣∣∣θ(p)
ref,i,k∗

)
= p

(
θi,k

∣∣∣θ(p)
i,k−1

) ∏
j∈Si,k

p
(
θj,ki

∣∣∣θ(p)
j,k∗i

)
.

(16)

We then propose to apply the PF described in Algorithm 1 as
the core filter/fusion engine of our CP framework.

V. PERFORMANCE EVALUATION

A. Simulation Settings and Scenarios

1) Gauss-Markov Mobility Model: We consider a stochas-
tic mobility model suitable for the vehicular context called
modified Gauss-Markov prediction model (GMM). It describes
well the correlated velocity of the vehicle as a time-correlated
process and enables good predictions of the vehicle’s position
and velocity [25], while remaining still analytically tractable9.
In discrete time, the predicted velocity in 2-D is computed
based on its previous value and a Gaussian i.i.d process [6],
[25], as follows:

v
(·)
i,k+1 = αv

(·)
i,k + (1− α)µ

(·)
i + ∆T

√
1− α2w

(·)
i,k, (17)

where (·) can be either x- or y-coordinate, α is the memory
level, ∆T the time step, µ(·)

i the asymptotic 1-D mean velocity,
and a

(·)
i,k =

√
1− α2w

(·)
i,k the Gaussian i.i.d. 1-D acceleration

noise. Note that vehicles usually move along the lanes on the
roads. Accordingly, the uncertainty along the road direction is
much higher than that along the orthogonal dimension [8].

Also note that we use this mobility model to perform the
predictions of both “ego” and neighbors’ estimated locations
and resynchronize related data before fusion (See step 2 of
Algorithm 1).

2) Correlated Observation Generation: As the spa-
tial/temporal correlation properties and models have been
investigated in Subsection III-B, we herein recall the SOS-
based approach to generate the corresponding processes in
our simulations. Given the true 2-D GPS receiver’s position
x = (x, y)†, the 2-D correlated GPS x- and y-error maps
n̂x(x), n̂y(x) are drawn as follows:

n̂(·)(x) = σ
(·)
GPS

√
2

N

N∑
n=1

cos
(

2πf (·)†
n x + ψ(·)

n

)
, (18)

where (·) can be either x- or y-coordinate, {ψ(·)
n t}Nn=1 repre-

sents a set of random phase terms uniformly distributed over
[0, 2π), {f (·)

n }Nn=1 = {f (·)
x,n, f

(·)
y,n}Nn=1 the 2-D random discrete

spatial frequencies that can be generated according to a given

9The evaluation of this work over real or synthetic mobility traces are left
to future work (See VI).



Fig. 6. Topology of the evaluated VANETs and related attributes in (a)
highway/tunnel and (b) urban canyon scenarios.

joint pdf p(f (·)) related to the 2-D power spectral density
(PSD) of the shadowing process (i.e., performing 2-D Fourier
transformation on (3)), by using a frequency sampling Monte
Carlo method (MCM), as detailed in [27].

Regarding the V2V RSSI measurements, with knowledge
of both Tx’s 2-D position xt = (xt, yt)

† and Rx’s position
xr = (xr, yr)

†, the 4-D spatially correlated shadowing map
ŝ(xt,xr) is then generated using [17], as follows:

ŝ(xt,xr) = σSh

√
2

N

N∑
n=1

cos

(
2πf†n

(
x†t ,x

†
r

)†
+ φn

)
, (19)

where {φn}Nn=1 are random phase terms uniformly
distributed over [0, 2π), {fn}Nn=1 = {f tn, frn}Nn=1 =
{f tx,n, f ty,n, frx,n, fry,n}Nn=1 4-D random spatial frequencies
generated according to a given joint pdf related to the 4-D
PSD of the shadowing process (i.e., performing 4-D Fourier
transformation on (6)) through MCM, again like in [17], [27].

Moreover, following [17], we consider the shadowing sym-
metric property in V2V networks, leading to identical fluc-
tuations on both sides of the link i.e., s(xt,xr) = s(xr,xt)
due to a common channel propagation path. Accordingly, we
“symmetrically” manipulate the aforementioned 4-D spacial
frequencies and phases through symmetric MCM.

3) Evaluation Scenarios and Related Simulation Settings:
In this paper, our evaluation framework is based on MATLAB
simulations, which are more flexible and suitable in the spe-
cific wireless localization context (estimation algorithms) than
network simulators, more devoted to communication aspects.
Our Monte Carlo trials are performed in 3 representative en-
vironments and scenarios, namely the highway, the urban city
and the tunnel, which naturally provide contrasted vehicular
propagation channels and mobility conditions. In particular, as
illustrated in Fig 6, we firstly model a three-lane highway (of
most common kind in Europe), where fifteen IEEE 802.11p-
connected cars are driving steadily (in the same north-east
direction) at the average speed of 110 km/h (i.e., ≈ 30 m/s) for
3,000 meters. The latter vehicles establish a pure VANET and
can benefit from relatively favorable GPS signals due to the
open sky operating environment. Secondly, we focus on a more
critical GPS-denied scenario. Specifically, the aforementioned
VANET goes through a 3-lane straight portion of urban tunnel
at the average speed of 50 km/h (i.e., ≈ 15 m/s) for 1,500
meters. Finally, we consider a short urban canyon of 300
meters in the form of a 2-lane narrow street with opposite

traffic directions (i.e., one direction per lane).
In the previous scenarios, we systematically consider a

group of 15 vehicles, focusing our analysis on a segment
of the entire vehicles flow. CAMs could indeed be received
up to practical transmission ranges of 1,000 m. However we
consider a nominal selective CP scheme that incorporates only
the messages from its nearest neighbors like in [6], [33].
Accordingly, simulating 15 vehicles is enough to avoid border
effects or artifacts, while preserving the generality of the
obtained CP results. The related mobility and traffic model
parameters are summarized in Table II.

TABLE II
MOBILITY MODEL AND TRAFFIC PARAMETERS

Parameter Highway Urban Canyon Tunnel

Memory level α 0.95
Asym. mean speed ‖µi‖ 30 [m/s] 15 [m/s] 15 [m/s]

Std. of the noise σd
i 1 [m/s2] 3 [m/s2] 1 [m/s2]

Std. of the noise σo
i 0.1 [m/s2] 0.95 [m/s2] 0.1 [m/s2]

Sampling period ∆T 0.1 [s]
Simulation time 100 [s] 12 [s] 100 [s]
Number of lanes 3 2 3

Traffic direction(s) 1 (Common) 2 (Opposite) 1 (Common)
Simulated track length 3,000 [m] 300 [m] 1,500 [m]

Besides, depending on each scenario configuration and
on generated mobility traces, conditional models are applied
in terms of both GPS and V2V RSSI observations based
on measurement-based parameters from the recent literature
(whenever available), as reported in Table III.

As for the CAM transmission policy, we assume that each
vehicle periodically broadcasts its position every 100 ms
corresponding to the critical CAM rate of 10 Hz (equal to
the “core” BSM rate in the U.S. [5]) for several reasons:
first, this assumption is valid on high speed mobility scenarios
(e.g., highways) where dynamic related conditions in [4] are
triggered to get critical rates; second, the positions can be
collected up to 10 Hz thanks to the high-rate GPS receivers;
third, we are interested in how the cooperative information
can improve the CP accuracy10. Besides, the random CAM
generation time between the instant at which CAM generation
is triggered (GPS position is sampled) and the instant at which
the message is delivered to the transport layer is uniformly
drawn in the interval [0, 50] ms (complying with [4]) to
alleviate simultaneous transmissions and temporal correlated
packet collisions. Besides mobility and propagation considera-
tions, Table IV summarizes the remaining common simulation
parameters and settings used in the three simulated scenarios,
regarding the CAM transmission rate and times, the GPS
refresh rate and the generation of correlated processes.

In our comparative study, we consider two different po-
sitioning contexts i.e., the filtered standalone GPS (non-CP
solution) and the exhaustively fused GPS+DSRC (CP solution)
both running at the filter/fusion rate of 10 Hz (i.e., the rate
of GPS refreshment and critical CAM generation). First, we
analyze them in unrealistic i.i.d noise environments, which

10Injecting too many packets to the channel with limited capacity causes
traffic congestion. As this work is positioning-oriented, communication be-
havior is not examined to the fullest but left for further studies.



TABLE III
CORRELATED OBSERVATION ERROR/DISPERSION MODEL PARAMETERS

Modality Parameter Urban Canyon Tunnela Highway

V2V RSSI
np low (1.6 [36]) id. low (1.9 [37])
σdB large (3.4 dB [36]) id. medium (2.5 dB [37])
dSh

cor very short (3 m [23]) id. large (20 m [23])

GPS position
σGPS large (10–30 m [2], [9]) N/A (no GPS) medium (3-10 m [2], [8], [9])
dGPS

cor medium/building-dependent (50–100 m) N/A (no GPS) very large/open sky (100–500 m)
a In lack of representative figure/information available for this scenario in the recent literature (to the best of our knowledge), we

assume in first approximation i) rather similar conditions than that of the Urban canyon scenario (due to the confined propagation
medium, and rather similar conditions in terms of car density and speed) but ii) no GPS at all and a larger number of lanes having
the same traffic direction (See Section II).

TABLE IV
OTHER COMMON HIGH-LEVEL SIMULATION PARAMETERS.

Parameter Description

GPS refresh rate 10 [Hz]
CAM rate 10 [Hz] (critical) [4], [5]

CAM generation time U(0, 50) [ms] [4]
No. of cosines N for models in (18), (19) 100–1000 [17], [27]

No. of particles Np in Algorithm 1 1000

are widely considered in literature so far as two benchmark
approaches. Second, we test them under realistic correlated
conditions. Last, we add two proposed methods to decorrelate
the noises i.e., differential measurement (DM) and decreased
fusion rate (or adaptive sampling). More specifically, we obtain
three solutions including the filtered GPS with DM (at 10 Hz),
the exhaustively fused GPS+DSRC with DM (at 10 Hz), and
the hybrid fused GPS+DSRC incorporating the filtered GPS
with DM at 10 Hz and DSRC at lower rate.

Regarding the hybrid option, the RSSIs are collected over
each traveling distance equivalent to the shadowing correlation
length. Thus, the normalized joint ACF (i.e., (6)) reduces by
1/2 × 1/2 = 1/4 due to dual mobility at both “ego” and
neighboring cars. Mathematically, considering 10-Hz refresh
rate of the filter/fusion, the decreased fusion rate can be
computed by:

rx = 10

⌈
10
−dSh

cor log2 x

2v

⌉−1

, (20)

where rx [Hz] is the decreased fusion rate aiming at x% in the
normalized joint ACF, and v is the vehicle’s average speed.
For example, in the highway scenario, 20-m correlation length
and 30-m/s speed yield a rate of about 1.43 Hz while in the
urban case, 3-m correlation length and 15-m/s speed give a
rate of 5 Hz.

Besides, cross-link correlation information is added to the
hybrid solution but not with the DM technique, whose differ-
ential noise vector is by design white (i.e., having diagonal
covariance matrix).

B. Performance Metrics

To evaluate the positioning/tracking performance, we first
define the positioning error Ei of the “ego” vehicle i. Ei is a
random variable which takes sampled value ei,k at time ti,k
as follows:

ei,k = ‖x̂i,k − xi,k‖, (21)

positioning error [m]
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Fig. 7. Positioning performance comparison of different schemes assuming
correlated GPS noise and i.i.d shadowing except the two top curves of the all
i.i.d cases in the highway scenario.

where x̂i,k and xi,k represent respectively the 2-D estimated
and true positions of the “ego” car i at time ti,k. We are
then interested in the empirical cumulative distribution func-
tion (CDF) of the positioning error Ei. Said differently, the
probability that the positioning error does not exceed a certain
threshold can be specified for all threshold values, that is:

F (x) = Ei {p (ei ≤ x)} , (22)

where the expectation Ei{·} is taken over all the vehicles in
the VANET.

We then extract characteristic values of the error statistics,
such as the median error (CDF of 50%) or the so-called worst-
case (WC) error (arbitrarily defined for a CDF of 90% herein).

C. Numerical Results

1) Highway Scenario: We now analyze the effects of
measurement correlation on filtering/fusion performance and
evaluate the gains from the proposed techniques by undertak-
ing “step-by-step” investigations. We first consider either GPS
noise or shadowing to be correlated (while assuming the other
process to be i.i.d.) and ultimately, we assume both processes
to be correlated.

a) Testing Scenario of Correlated GPS Noise and i.i.d
Shadowing (S1): In this first example, we deal with GPS noise
correlation with the DM technique. The results are summarized
in Fig. 7 by means of empirical CDFs. As expected, when
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the GPS position noise is decorrelated by DM, huge accuracy
improvements are observed in both non-CP (i.e., single GPS)
and CP (i.e., GPS+DSRC) solutions. More specifically, for
the filtered standalone GPS, the position estimates accounting
for the noise correlation experience significant relative drops
by 58% in median error and 37% in WC error from those
neglecting the noise correlation. Similarly, massive relative
decreases by 75% in median error and 63% in WC error
are noticeable after integrating the DM technique in the
exhaustively fused GPS+DSRC. On the other hand, Fig. 7
confirms the advantage of CP over non-CP regardless of noise
decorrelation. A closer look reveals that the filtered GPS
without DM draws less significant accuracy gains from the
DSRC than that with DM as correlated noise is a threat
to the effectiveness of data fusion. Besides, the positioning
performance delivered by the filtered GPS after whitening
the correlated noise remains quite below that achieved in
the i.i.d noise case. Three main reasons can be invoked:
first, error transfer from the previous estimate to the current
estimate via the new observation model (i.e., h̃(·) in (13))
after performing DM between the current and the previous
measurements; second, model mismatch (i.e., simulating finite
SOS based on an exponential ACF vs. assuming first order
Gauss-Markov noise prediction model); third, possible cross-
correlation between the whitened measurement noise and the
process noise. Nevertheless, this problem can be solved by
enabling CP (i.e., exhaustively fused GPS (DM) and DSRC),
which approaches the i.i.d case, as shown in Fig. 7.

b) Testing Scenario of i.i.d GPS Noise and Correlated
Shadowing (S2): In case of correlated shadowing, both DM
and decreased fusion rate can be employed for RSSI measure-
ments. Note that when GPS error is assumed i.i.d, the filtered
GPS achieves very high accuracy (See the second top curve in
Fig. 7). This is challenging to our fusion scheme since RSSI-
based positioning is not considered as a high precision solution
and as such, may deteriorate the performance [22]. It can
be seen clearly from Fig. 8 that the cooperative GPS+DSRC
solution neglecting shadowing correlation produces erroneous
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Fig. 9. Positioning comparison of different schemes assuming correlated GPS
noise and correlated shadowing except the two top curves of the all i.i.d cases
in the highway scenario.

estimates in comparison with the non-cooperative filtered GPS,
confirming that the careless handling of shadowing correlation
incurs convergence issues. When the shadowing is decorrelated
by either the DM method or by a decreased fusion rate (from
10 Hz to 1.43 Hz), the cooperative GPS+DSRC option now
slightly outperforms the standalone filtered GPS and closely
approaches the GPS+DSRC fusion option in the i.i.d case.
The reason can be understood as follows. In comparison with
GPS positions, RSSI measurements with respect to “virtual
anchors” can contribute to the positioning performance but
to a rather modest extent due to the non-linear relationship
between the received power and the state variables. Finally,
both extrapolated/approximate RSSI values at the fusion time
instant and virtual anchors’ uncertainties may alter the posi-
tioning performance. In other words, when the accuracy of the
filtered GPS remains high enough (e.g., under i.i.d assumption
and low GPS noise), there is little room for improvement by
fusing with DSRC.

c) Testing Scenario of Correlated GPS Noise and Cor-
related Shadowing (S3): In this experiment, we let both GPS
position noise and shadowing correlated to examine the per-
formance of the proposed algorithms. The results summarized
in Fig. 9 are compliant with that of the previous case (S1)
for the filtered standalone GPS with/without DM. As we have
already noted accuracy improvements from noise decorrelation
in the filtered standalone GPS, it is worth verifying how
the performance can be further boosted under correlated
RSSIs too. The corresponding performance will be seen as
a reference. As expected, the cooperative fused GPS+DSRC
with DM yields apparent performance improvement (relative
drops of 23% in median error and 26% in WC error) over
the filtered GPS with DM. However, this scheme does not
approach the corresponding i.i.d case as in (S1) (See again
Fig. 7) due to the fact that the DM method for RSSIs has the
same drawbacks as for GPS positions (as pointed out in (S1)).
Hence, differential RSSIs are less beneficial than i.i.d RSSIs
in (S1). On the other hand, the hybrid fused GPS+DSRC
(i.e., combining the filtered GPS with DM at 10 Hz and
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DSRC at 1.43 Hz) enables very favorable positioning results
in consideration of collecting temporally uncorrelated RSSI
measurements and exploiting the cross-link correlation, thus
compensating for the information loss in the fusion model.
Quantitatively, the accuracy improvement matches by less
than 10% the performance of optimal CP when considered
under i.i.d measurements. In comparison with cooperative
GPS+DSRC under the same decreased fusion rate as in (S2)
(See again Fig. 8), we observe that the hybrid scheme in (S3)
suffers from slightly degraded positioning performance due to
GPS noise correlation.

2) Urban Canyon Scenario: Just like in the highway envi-
ronment, we now evaluate the different solutions in the urban
canyon scenario. Fig. 10 shows the performance compari-
son. We note again the adverse effects of correlated noises
on the filtering performance (the two dash curves vs. the
two dotted curves). From this figure, we also remark that
CP provides lower performance gains in comparison with
standalone GPS than in the highway scenario. This can be
explained as follows. Firstly, the two platoons traveling in
opposite directions along the narrow street (i.e., 1 single lane
per traffic direction) introduce poorer GDOP conditions that
tend to spoil the RSSI-based multilateration result. That can be
even more severe since neighboring vehicles (i.e., considered
as “virtual anchors”) experience equivalent dispersion of their
respective positioning errors. Secondly, shadowing in urban
environments is usually stronger than on highways, leading to
higher observation noise in the fusion filter [13]. Interestingly,
the three proposed techniques (i.e., the filtered GPS with
DM, the fused GPS+DSRC with DM, and the hybrid fused
GPS+DSRC) now approach closely the ideal i.i.d cases. This
is due to the specificities of the tested urban canyon scenario. It
is commonly admitted that urban canyons belong to the most
problematic situations with respect to vehicular localization.
We reasonably assume that the vehicles entering the urban
canyons from other areas would have preliminary produced
rather good state estimates e.g., in open sky areas, along
wider avenues or roads with smaller buildings. . . (See again
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Fig. 2) [33]. Hence, in the short term, the noise prediction
model depending on velocity estimation is beneficial to effec-
tively decorrelate the noises. However, in the long term, larger
state errors would appear, thus jeopardizing the prediction
and further impairing the accuracy performance in comparison
with the i.i.d schemes. This happens in the highway scenario
with a simulated track length of 3,000 m but not within our
short urban canyon scenario of 300 m since the vehicles
soon escape from this canyon. A closer look at Fig. 10
reveals that GPS+DSRC with DM marginally outperforms the
hybrid fused GPS+DSRC scheme. This is due to the short
correlation length in urban environments (i.e., 3 m in this
case). Accordingly, the correlation between two consecutive
RSSI measurements becomes weak. Quantitatively, 10-Hz
RSSI measurements, 15 m/s mobility, and a 3-m correlation
distance would lead to a normalized joint ACF value of 50%,
which can already be considered as a successful decorrelation
without decreasing further the fusion rate. However, weakly
correlated measurements imply new information contained in
each new measurement. As a result, reducing the fusion rate
leads to miss such information and hence, to lower accuracy.

3) Tunnel Scenario: Finally, we are interested in the even
more specific GPS-denied tunnel environment. In this case, we
only rely on one single modality, namely RSSI measurements,
to perform ad hoc-based multilateration with respect to neigh-
boring vehicles. Fig. 11 shows the performance comparison.
Once again, we remark that the DM technique decorrelates
the shadowing noises to improve accuracy close to that of the
ideal i.i.d case. Considering the filtered DSRC without DM as
reference for benchmark purposes, relative accuracy gains of
respectively 36% on the median error and 27% in the worst-
case (WC) error regime are reported. Moreover, it matches
by less than 20% the ideal scheme under i.i.d shadowing.
Interestingly, from Fig. 11, we can see that decreasing the
fusion rate provides the poorest performance, which is even
worse than that of the original filtered DSRC. It can be
explained as follows. First, this is again due to very short
correlation length, which leads to loose information from



naturally decorrelated RSSI measurements while decreasing
the fusion rate, as already mentioned in the urban canyon
scheme. Secondly, with a 5-Hz RSSI fusion rate, we need
to use prediction (i.e., Dead Reckoning) in order to deliver
10-Hz position estimates because of the GPS loss. Thus, the
positioning error tends to accumulate more easily over time.

4) Discussion on Practical Context-Aware Correlation Mit-
igation: We have evaluated our proposed methods in different
kinds of environments and scenarios. We have found that
the characteristics of the environment, including correlation
lengths, mobility patterns, GPS availability. . . strongly influ-
ence how the CP data fusion processes the different input
measurements to mitigate the noise correlation. A technique
can be very favorable in one environment but may be less
effective in the others. Thus, we suggest a context-aware
correlation mitigation strategy that assists the CP engine to
achieve the best accuracy regardless of the operating con-
ditions. Learning from the previous results, in Table V, we
summarize the recommended technique regarding each modal-
ity in each environment. When the vehicle enters a specific
environment (e.g., based on the a priori knowledge of the
map), the system could determine the most suitable technique
and the associated attributes, before feeding them into the
positioning engine to perform correlation mitigation. The aim
is to match as close as possible to the accuracy of the optimal
schemes under i.i.d measurements and accordingly, to provide
a constant quality (i.e., highest accuracy) of the navigation
service, while preserving low computational complexity.

TABLE V
INPUTS FOR CONTEXT-AWARE CORRELATION MITIGATION

Scenario Modality
V2V RSSI GPS position

Highway adaptive sampling differential measurement
Urban canyon optional differential measurement

Tunnel differential measurement N/A

VI. CONCLUSION AND FUTURE WORK

This paper contributes to the evaluation of CP in GPS-
aided VANETs including realistic correlation effects. Sim-
ulation models for the GPS residual errors (i.e., 2-D error
maps) and the shadowing process over V2V links (i.e., 4-D
shadowing map) have been considered to capture the real-
world spatial correlation of practical operating environments.
On this occasion, we have first shown that this measurement
noise correlation, if not handled carefully, is a threat to
Bayesian filters/fusions. Then, two signal level and a proto-
col level approaches are proposed and can be combined to
almost completely mitigate the deleterious correlation effects,
including estimation of cross-link correlations (compensating
for information loss), differential measurements (subtracting
autocorrelations), and decreased fusion rate (collecting uncor-
related measurements) respectively. Sophisticated simulation
experiments in canonical vehicular scenarios (urban canyon,
tunnel, highway) show that the previous noise decorrelation
techniques exhibit convincing performance gains over standard
approaches that would neglect correlation. Apart from the

specific tunnel environment, where decreasing the fusion rate
does not seem appropriate, all the other cases lead to very high
position accuracy. Beyond, the obtained results also highlight
that there exists an optimal combination of correlation mitiga-
tion techniques depending on the operating environment and
conditions, thus paving the way to context-aware solutions.
Our evaluations take account of ad hoc communication and
positioning manners, such as distributed and asynchronous
position estimates or random CAM transmissions.

We have identified some directions for future work. Re-
garding positioning first, one aim is to benefit even further
from correlation to go beyond the standard accuracy of i.i.d
noise cases (e.g., by scheduling cooperative neighbors for
uncorrelated data, by transmitting also raw unfiltered GPS
data to extract correlation information...). Overall, we intend to
refine our context-aware correlation mitigation strategies (e.g.,
by dynamically adjusting the assumed mobility model and
implementing maneuvering car detection through innovation
monitoring or multi-hypothesis filtering). New radio-based
ranging (e.g., Ultra Wideband) and non-radio (e.g., inertial
units) modalities shall be also integrated in the CP problem. As
for communication aspects, the effects of congestion controls
(i.e., power and/or rate controls) under ETSI DCC constraints,
as well as message approximation, will be investigated in
terms of particle-based CP accuracy, CAM overhead and
resulting channel load. Finally, a dedicated traffic simula-
tor [38] will be considered, generating realistic longer-term
mobility traces that can mix several kinds of environments and
regular/erratic mobility conditions. On this occasion, static and
mobile NLoS effects shall be accounted too.
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