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Abstract
It is well known that automatic speaker verification (ASV) sys-
tems can be vulnerable to spoofing. The community has re-
sponded to the threat by developing dedicated countermeasures
aimed at detecting spoofing attacks. Progress in this area has
accelerated over recent years, partly as a result of the first stan-
dard evaluation, ASVspoof 2015, which focused on spoofing
detection in isolation from ASV. This paper investigates the in-
tegration of state-of-the-art spoofing countermeasures in combi-
nation with ASV. Two general strategies to countermeasure in-
tegration are reported: cascaded and parallel. The paper reports
the first comparative evaluation of each approach performed
with the ASVspoof 2015 corpus. Results indicate that, even
in the case of varying spoofing attack algorithms, ASV perfor-
mance remains robust when protected with a diverse set of inte-
grated countermeasures.
Index Terms: Automatic speaker recognition, spoofing, coun-
termeasures, presentation attack detection.

1. Introduction
It has long been suspected that automatic speaker verification
(ASV) systems can be vulnerable to spoofing [1], also referred
to as presentation attacks [2]. Spoofing refers to the fraudulent
manipulation of an ASV system with specially crafted speech
data in order to provoke false alarms. The Interspeech 2013 spe-
cial session on Spoofing and Countermeasures for Automatic
Speaker Verification [3] was organized to stimulate the collab-
oration needed for the collection of standard datasets and the
definition of protocols and metrics for future research.

The first Automatic Speaker Verification Spoofing and
Countermeasures Challenge (ASVspoof) [4] followed soon af-
ter in 2015. This first evaluation aimed to promote the develop-
ment of generalized countermeasures [5], namely countermea-
sures with the potential to detect varying and unforeseen spoof-
ing attacks; the ASVspoof 2015 evaluation dataset contained
spoofing attacks generated with 10 different speech synthesis
and voice conversion spoofing algorithms. Being the first eval-
uation of its kind, the evaluation focused on spoofing detection
in isolation from ASV.

Evaluation results [4] showed considerable variation in
spoofing detection performance. Many systems obtained good
performance for some spoofing conditions, but relatively poor
performance for others, most notably the S10 condition for
which no similar training material was provided in the devel-

opment set. These results suggest that a bank of fused counter-
measures may prove beneficial.

While the broader picture was encouraging, with some ex-
ceptionally low error rates being achieved for some conditions,
even small spoofing detection errors may yet have significant
impacts on ASV performance. The integration of spoofing
countermeasures with ASV was foreseen at the time as a future
goal [6].

The contributions of this paper are thus two-fold. First, we
report a new study of fused, state-of-the-art spoofing detection
systems evaluated on the ASVspoof 2015 dataset. This work is
performed with a host of different countermeasures developed
by three different research groups. The second contribution re-
lates to a study of different ASV and countermeasure integra-
tion strategies. The manner in which the two tasks should best
be combined has attracted only modest attention to date [7]. The
work reported in this paper is the first reported for the standard
ASVspoof dataset.

2. ASV and countermeasure integration
Spoofing countermeasures (CMs) are expected to improve the
reliability of biometric systems by preventing fraudulent access.
It is however impossible to gauge the impact of CMs unless they
are evaluated when integrated with a biometric system [8]. A
diverse body of research reports the combination of CMs in the
context of many different biometric modalities, especially for
fingerprint and face verification [9, 10, 11, 12].

While they have a common goal of preventing fraudulent
access, ASV and CM systems have specific objectives. They
are illustrated in Table 1. While the ASV system should reject a
zero-effort impostor (the speakers differ), the CM should detect
a valid trial (which is genuine human speech). The problem of
ASV and CM integration is somewhat different to conventional
fusion which typically involves two systems with identical ob-
jectives.

Since genuine trials should be accepted by both systems
and since either ASV or CM systems could cause the rejection
of impostor or spoofed trials, a simple cascaded combination
of ASV and CMs provides a straightforward solution. This ap-
proach is illustrated in Fig. 1(a). The cascaded approach was re-
ported in [13] which describes a countermeasure to protect ASV
from synthetic speech spoofing attacks. A similar approach was
reported in [14] for the protection of ASV from voice conver-
sion spoofing attacks. The cascaded system illustrated in Fig. 1
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Figure 1: Block diagrams showing integration of ASV with CM:
(a) cascade and (b) parallel.

Table 1: Definition of positive and negative trials for ASV and
CM tasks.

Task Genuine
Zero-effort Spoofing
impostor impostor

Stand-alone ASV +1 -1 -1

Stand-alone CM +1 +1 -1

ASV with CM +1 -1 -1

will only accept trials which produce an ASV score (ScoreASV)
greater than or equal to the recognition threshold (θasv). Only
accepted trials are then processed by the CM where trials with
a CM score (ScoreCM) greater that the CM threshold (θcm) are
then finally accepted. The final decision is thus obtained by
ANDing the ASV and CM decisions.

The cascaded approach is, however, not the only solution.
A parallel approach such as that illustrated in Fig. 1(b) can be
used to combine ASV and CM scores in order to obtain the
decision for a given trial based on a single threshold (θjoint).
An approach similar to this was used in [15]. This paper reports
the performance of different ASV and CM systems which are
first combined separately and subsequently fused according to
one of the approaches illustrated in Fig. 1. Until now, no such
comparison has been reported in the literature.

3. System descriptions
The ASV and CM systems used for experiments reported in
this paper have been developed by different partners of the EU
H2020 OCTAVE project1. There are two different ASV systems
(ASV1-2) and six different CM systems (CM1-CM6).

3.1. CM systems
All CM systems employ the same back-end which is a simple
two-class classifier based on Gaussian mixture models (GMM).

1http://www.octave-project.eu/

A GMM is trained for each class, namely genuine and spoofed
speech by means of the expectation-maximization (EM) algo-
rithm. Scores are the log-likelihood ratio given the two mod-
els. The GMM-based approach often outperforms more sophis-
ticated classification methods for the ASVspoof 2015 dataset,
e.g. [22, 18].

The six different CM systems differ only in their front-ends.
A summary of the different systems is shown in Table 2. All are
recent and at the state-of-the-art as judged by results generated
using the ASVspoof 2015 database [16, 18]. Common to all is
the use of cepstral processing and, importantly, the absence of
static features; dynamic features give better performance. Delta
and delta-delta coefficients are all extracted in the usual way.
No speech activity detection is used since non-speech frames
tend also to contain information useful for spoofing detection
at least on ASVspoof 2015. Details of each feature set and the
common back-end are given below.

CM1: Conventional mel-frequency cepstral coefficients
(MFCCs) are extracted using a bank of 20, triangular-shaped
filters positioned on a mel scale and the application of the dis-
crete cosine transform (DCT) to the filterbank log energies.

CM2: Inverted-mel frequency cepstral coefficients (IM-
FCCs) are extracted in similar fashion to MFCCs except that
filters are placed on an inverted-mel scale [23] (See [16] for an
illustration).

CM3: Linear frequency cepstral coefficients (LFCCs) are
computed in the same way as MFCCs except that filters are po-
sitioned on a linear scale.

CM4 Originally reported in [17], cochlear filter cepstral
coefficients (CFCCs) have shown promise in detecting spoofed
speech. CFCCs model the physiological elements of the human
hearing system, namely the cochlea, the inner hair cells and the
nerve spike density. The work reported here uses the same con-
figuration as [24] for the extraction of 12 static coefficients.

CM5: Originally reported in [18], constant Q cepstral
coefficients (CQCCs) are based on the constant Q transform
(CQT) [25] popular in the study of music processing. The con-
stant Q transform is a time-frequency analysis tool which em-
ploys a variable time-frequency resolution, providing greater
frequency resolution for lower frequencies and greater time res-
olution for higher frequencies. First, the power spectrum is
computed with the CQT. Second, cepstral analysis is performed
by first linearising the frequency scale and then by computing
the DCT in the usual way to derive a set of 19 coefficients.

CM6: Gammatone frequency cepstral coefficients
(GFCCs) are based upon Gammatone filters derived from
psychophysical observations of the auditory periphery [19].
The filterbank is a standard model of cochlear filtering which
emulates the characteristics of the human basilar membrane.
Filters and filter bandwidths are positioned according to the
equivalent rectangular bandwidth (ERB) scale. In contrast to
the standard approach, the gain of each filter is set to give equal
emphasis to each of 128 bands. The DCT is applied in the usual
way to log filterbank outputs to produce a set of 20 coefficients.

3.2. ASV systems

ASV configurations are also summarised in Table 2. Details of
each are provided in the following.

ASV1: Our first ASV system is based on the MFCC fea-
tures and a Gaussian mixture model – universal background
model (GMM-UBM) architecture [20]. MFCCs are the same
as those used for CM1. For ASV, however, static coefficients
are retained hence a feature dimension of 60. For training



Table 2: Summary of the countersmeasures (CM) and speaker verification systems used for experiments reported in this paper.
Task Name Feature (Dim.) Classifier Development Data

CM1 [16] MFCC-40
CM2 [16] IMFCC-40

Countermeasures CM3 [16] LFCC-40 GMM-ML ASVspoof 2015
Systems CM4 [17] CFCC-40 Mixtures: 512 (Train Set)

CM5 [18] CQCC-40
CM6 [19] GFCC-40

Speaker ASV1 [20] MFCC-60 GMM-UBM TIMIT, RSR2015
Verification ASV2 [21] MFCC-60 i-Vector TIMIT, RSR2015

target models, first a gender-dependent UBM of 512 compo-
nents is trained with the speech data from the TIMIT [26]
and RSR2015 [27] corpora. Target models are created using
maximum-a-posteriori (MAP) adaptation with a relevance fac-
tor of 3. Scores are the log-likelihood ratio computed between
the target model and the UBM.

ASV2: The second is an i-vector system in which GMM
super-vectors are projected into a low-dimensional space re-
ferred to as the total variability space [21]. i-vectors are
computed using the same MFCCs as used for ASV1, from
the Baum-Welch statistics and the total variability matrix T.
Gender-dependent UBMs are learned using the same TIMIT
and RSR2015 databases. Whereas we use the full TIMIT data
consisting of 630 speakers (438 male and 192 female) we use a
subset of 10 different sentences for 300 speakers (157 male and
143 female) in the RSR2015 database. This gives 5950 sen-
tences for male speakers and 3350 sentences for female speak-
ers which are used as development data. The T-matrix is es-
timated with the same data. The i-vector dimension is set to
300. Since each target has five different sentences for enrol-
ment, extracted i-vectors are averaged to derive a single train-
ing i-vector per speaker. Finally, the score is given by the cosine
similarity between the length normalized training and testing i-
vectors. Note that using probabilistic linear discriminant anal-
ysis (PLDA) could be helpful for scoring [28], but we have not
implemented it due to the unavailability of suitable development
data such as WSJCAM [4].

4. Experimental setup
Described here is the database used for all experimental work
and the evaluation metric.

4.1. Database description

All experiments are conducted with the ASVspoof 2015, a pub-
licly available corpus2 and supports both the study of ASV and
spoofing CMs. The database is summarized in Table 3. It con-
tains both genuine human as well as spoofed speech generated
using 10 different voice conversion and speech synthesis meth-
ods. A subset of five algorithms are used to generate spoofed
speech contained in both development and evaluation subsets
and are thus referred to as known (K) attacks. The evaluation
subset also contains spoofed speech generated with the other
five spoofing algorithms and are thus referred to as unknown
(U) attacks. Full details of the ASVspoof 2015 database are
available in [4].

2http://datashare.is.ed.ac.uk/handle/10283/
853

Table 3: Database description of ASVspoof 2015 database for
joint ASV and CM experiments.

Trial Male Female
Type Dev Eval Dev Eval

Genuine 1498 4053 1999 5351
Imposter 4275 8000 5700 10400

Spoofed (K) 21375 40000 28500 52000
Spoofed (U) - 40000 - 52000

4.2. Evaluation metric

As per the ASVspoof 2015 evaluation plan [6], CM perfor-
mance is assessed in terms of the equal error rate (EER), here
calculated using the BOSARIS toolkit3 and the so-called re-
ceiver operating characteristics convex hull (ROCCH) method.
EERs are reported for the development and evaluation subsets
and separately for unknown and known spoofing attacks.

ASV performance is assessed in terms of the false rejec-
tion rate (FRR) and the false acceptance rate (FAR). With
this evaluation involving two types of negative class, namely
zero-effort impostor and spoofing impostor, the FAR is reported
separately for each. The FARs for two types of spoofing at-
tacks, known and unknown, are also computed separately. The
FAR for zero-effort impostors is referred to as FAR(Z), whereas
that for spoofing impostors is referred to as FAR(K) in the
case of known attacks and FAR(U) in the case of unknown
attacks. FARs and FRRs are calculated with EER thresholds
obtained from the gender-dependent development subsets and
where EERs are computed from genuine trials and zero-effort
impostors only.

5. Results and discussion
Performance is first reported for CM and ASV is isolation, then
when integrated.

5.1. Countermeasure performance

Comparative CM results are illustrated in Table 4 for the de-
velopment set and the known (K) and unknown (U) subsets of
the evaluation set. All the systems perform well and the perfor-
mance of CM5, which uses the recently proposed CQCC fea-
tures [18], is the best among the six. Even then, performance
for the unknown spoofing attacks is poorer than for known at-
tacks.

Also illustrated in the last row of Table 4 are results for a
logistic regression based fusion of scores produced by all six

3https://sites.google.com/site/
bosaristoolkit/



Table 4: Stand-alone spoofing detection performance (in terms
of % EER) for the ASVSpoof 2015 database.

System Male Female
Dev Eval(K) Eval(U) Dev Eval(K) Eval(U)

CM1 0.54 0.53 1.58 0.25 0.23 4.21
CM2 0.12 0.12 0.96 0.19 0.25 2.91
CM3 0.03 0.06 0.76 0.21 0.16 2.43
CM4 1.41 1.10 1.26 0.74 0.61 1.75
CM5 0.01 0.02 0.41 0.03 0.03 1.34
CM6 0.10 0.11 0.61 0.09 0.06 1.95
Fused 0.00 0.02 0.16 0.00 0.01 0.80

Table 5: Stand-alone ASV performance in terms of % of FRR
and FAR for the ASVspoof 2015 database. FAR(Z): FAR for
zero-effort impostor, FAR(K): FAR for spoofed known attack im-
postor, FAR(U): FAR for spoofed unknown attack impostor.

System Eval Male Female
Metric Dev Eval Dev Eval

ASV1

FRR 5.67 7.85 7.60 7.77
FAR(Z) 5.67 6.61 7.60 6.51
FAR(K) 59.89 59.80 34.50 30.81
FAR(U) - 39.48 - 33.42

ASV2

FRR 10.62 15.96 14.22 10.22
FAR(Z) 10.62 9.13 14.22 13.12
FAR(K) 59.63 55.39 45.19 46.10
FAR(U) - 50.77 - 50.58

Fused

FRR 5.34 7.38 7.45 7.21
FAR(Z) 5.34 6.24 7.45 6.26
FAR(K) 60.76 59.15 34.99 31.68
FAR(U) - 39.76 - 34.03

CMs. CM fusion delivers universally improved or equivalent
performance to the single best system. Of particular note, the
improvement is greatest for the unknown attacks, thereby show-
ing the benefit of a bank of diverse CMs for spoofing detection.

5.2. Speaker verification performance

Performance for ASV1 and ASV2 systems is shown in Table 5.
Since the decision thresholds are computed on the development
data with zero-effort impostors, the FRR is equal to the FAR(Z)
in this case. The same thresholds are used on the evaluation
set where the FRR and FAR(Z) then differ. Both FAR(K) and
FAR(U) are considerably higher than the FAR(Z).

ASV1 outperforms ASV2; it is not uncommon for a basic
back-end approach to give better results in the case of short du-
ration ASV on clean data. This may also be due to the lack of
suitable development data as used in [7]. Even so, performance
once again generally improves with score fusion, although im-
provements are modest and not always consistent.

5.3. Integrated performance

Attention now turns to the integration of ASV and CMs. Results
for cascaded and parallel approaches are given in Tables 6 and
Table 7, respectively. In both cases, the results are presented for
ASV1 combined with CM5 (ASV1-CM5) and for fused ASV
and CMs (Fused-Fused). When subjected to spoofing, the per-
formance for integrated ASV and CMs is considerably better
than the performance of stand-alone ASV. For the integrated
systems, the FRR and FAR(Z) are almost the same as for the
stand-alone approach. However, FAR(K) and FAR(U) are sig-

Table 6: Performance for cascaded ASV and CM in terms of %
of FRR and FAR for the ASVspoof 2015 database. FAR(Z): FAR
for zero-effort impostor, FAR(K): FAR for spoofed known attack
impostor, FAR(U): FAR for spoofed unknown attack impostor.

Eval Male Female
Metric Dev Eval Dev Eval

ASV1-CM5

FRR 5.81 7.85 7.65 7.79
FAR(Z) 5.66 6.61 7.61 6.51
FAR(K) 0.00 0.02 0.01 0.01
FAR(U) - 0.96 - 2.60

Fused-Fused

FRR 5.47 7.40 7.50 7.29
FAR(Z) 5.33 6.24 7.44 6.26
FAR(K) 0.00 0.00 0.00 0.00
FAR(U) - 0.34 - 1.75

Table 7: Performance for parallel ASV and CM in terms of %
of FRR and FAR for the ASVspoof 2015 database. FAR(Z): FAR
for zero-effort impostor, FAR(K): FAR for spoofed known attack
impostor, FAR(U): FAR for spoofed unknown attack impostor.

Eval Male Female
Metric Dev Eval Dev Eval

ASV1-CM5

FRR 20.83 27.69 18.95 20.65
FAR(Z) 20.83 20.05 18.95 16.42
FAR(K) 0.00 0.00 0.00 0.00
FAR(U) - 0.20 - 0.87

Fused-Fused

FRR 14.49 14.53 15.35 14.80
FAR(Z) 14.49 18.65 15.35 14.73
FAR(K) 0.00 0.00 0.00 0.00
FAR(U) - 0.27 - 1.50

nificantly reduced. The FAR(U) is lower for the parallel integra-
tion of ASV and CM systems, though the FRR and FAR(Z) is
considerably worse. Fusion is once again universally beneficial.

6. Conclusions
This paper reports the first comparative study of different coun-
termeasures and different approaches to their integration with
automatic speaker verification using ASVspoof 2015 database.
Countermeasure fusion is shown to offer the greatest potential
to detect spoofing attacks especially in the face of unknown
spoofing attacks – the only real scenario. The cascaded integra-
tion of ASV and CMs greatly reduces the FAR whereas the FRR
relatively unaffected. On the other hand, while performance in
the absence of spoofing deteriorates, the parallel integration of
ASV and CMs gives better performance when the ASV sys-
tem is subjected to spoofing attacks. The best performance in
all cases is delivered through fusion which also increases re-
silience to unknown spoofing attacks. In future, investigation
will be made on speaker-dependent techniques to tackle spoof-
ing attacks.
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